Knowledge

Fine-grained reduction

Source 📝

24:
is a transformation from one computational problem to another, used to relate the difficulty of improving the time bounds for the two problems. Intuitively, it provides a method for solving one problem efficiently by using the solution to the other problem as a
780: 1040: 1145: 646: 1461:
The term "fine-grained reduction" comes from later work by Virginia Vassilevska Williams in an invited presentation at the 10th International Symposium on Parameterized and Exact Computation.
1587:; Mihajlin, Ivan; Paturi, Ramamohan; Schneider, Stefan (2016), "Nondeterministic extensions of the strong exponential time hypothesis and consequences for non-reducibility", 961: 521: 1440: 1066: 547: 835: 1165: 855: 1569:. A preliminary version of these results, including the definition of a "subcubic reduction", a special case of a fine-grained reduction, was presented at the 2010 1197: 915: 815: 693: 475: 420: 157: 1338: 1289: 125: 76: 1386: 1366: 1309: 1260: 1237: 1217: 1086: 981: 935: 883: 666: 587: 567: 495: 443: 389: 369: 349: 325: 305: 285: 265: 237: 217: 197: 177: 96: 47: 1570: 698: 1450:
between two given vertices in a weighted graph, finding negative-weight triangles in weighted graphs, and testing whether a given
1458:. According to their results, either all of these problems have time bounds with exponents less than three, or none of them do. 1464:
Although the original definition of fine-grained reductions involved deterministic algorithms, the corresponding concepts for
1503:(2015), "Hardness of easy problems: basing hardness on popular conjectures such as the Strong Exponential Time Hypothesis", 986: 1091: 592: 1529: 1393: 1507:, LIPIcs. Leibniz Int. Proc. Inform., vol. 43, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, pp. 17–29, 1615: 17: 1525: 1500: 1389: 1469: 940: 500: 1399: 1045: 526: 1447: 820: 328: 1589:
ITCS'16—Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science
1443: 1150: 840: 1596: 1565: 1512: 1465: 1170: 888: 788: 671: 448: 398: 391:
are the time bounds for known or naive algorithms for the two problems, and often they are
130: 1314: 1265: 101: 52: 8: 1584: 287:
be computational problems, specified as the desired output for each possible input. Let
1534: 1371: 1351: 1294: 1245: 1222: 1202: 1071: 966: 920: 868: 651: 572: 552: 480: 428: 374: 354: 334: 310: 290: 270: 250: 222: 202: 182: 162: 81: 32: 1551: 1543: 1592: 1561: 1508: 1451: 1219:
by applying the transformation of the reduction and using the fast algorithm for
1609: 1532:(2018), "Subcubic equivalences between path, matrix, and triangle problems", 1455: 1556: 26: 1547: 1505:
10th International Symposium on Parameterized and Exact Computation
775:{\displaystyle \sum _{i}b(n_{i})^{1-\epsilon }<a(n)^{1-\delta }} 392: 1582: 1348:
Fine-grained reductions were defined, in the special case that
569:
by transforming it into a sequence of instances of problem
1402: 1374: 1354: 1317: 1297: 1268: 1248: 1225: 1205: 1173: 1153: 1094: 1074: 1048: 1035:{\displaystyle O{\bigl (}b(n)^{1-\epsilon }{\bigr )}} 989: 969: 943: 923: 891: 871: 843: 823: 791: 701: 674: 654: 595: 575: 555: 529: 503: 483: 451: 431: 401: 377: 357: 337: 313: 293: 273: 253: 225: 205: 185: 165: 133: 104: 84: 55: 35: 668:, and producing a sequence of instances whose sizes 1311:cannot be solved in time significantly faster than 1262:cannot be solved in time significantly faster than 1140:{\displaystyle O{\bigl (}a(n)^{1-\delta }{\bigr )}} 641:{\displaystyle O{\bigl (}a(n)^{1-\delta }{\bigr )}} 1434: 1380: 1360: 1332: 1303: 1283: 1254: 1231: 1211: 1191: 1159: 1139: 1080: 1060: 1042:. Then, with these assumptions, there also exists 1034: 975: 955: 929: 909: 877: 849: 829: 809: 774: 687: 660: 640: 581: 561: 549:and an algorithm that solves instances of problem 541: 515: 489: 469: 437: 414: 383: 363: 343: 319: 299: 279: 259: 231: 211: 191: 171: 151: 119: 90: 70: 41: 199:implies that any significant speedup for problem 1607: 1524: 1442:-reductions between several problems including 1132: 1100: 1027: 995: 633: 601: 1571:Symposium on Foundations of Computer Science 648:for the transformation on instances of size 1396:in 2010. They also showed the existence of 1555: 219:would also lead to a speedup for problem 1499: 817:-reduction is given by the mapping from 351:and produce an integer result. Usually, 1608: 860: 1576: 1495: 1493: 1491: 1489: 1487: 1485: 1591:, ACM, New York, pp. 261–270, 1518: 13: 1583:Carmosino, Marco L.; Gao, Jiawei; 1482: 14: 1627: 837:to the pair of an algorithm and 1239:for each resulting subproblem. 18:computational complexity theory 1526:Williams, Virginia Vassilevska 1429: 1403: 1327: 1321: 1278: 1272: 1186: 1174: 1115: 1108: 1010: 1003: 956:{\displaystyle \epsilon >0} 904: 892: 804: 792: 757: 750: 729: 715: 616: 609: 516:{\displaystyle \epsilon >0} 464: 452: 331:that take an integer argument 146: 134: 114: 108: 65: 59: 1: 1475: 1435:{\displaystyle (n^{3},n^{3})} 1390:Virginia Vassilevska Williams 523:, there exists a real number 242: 1061:{\displaystyle \delta >0} 542:{\displaystyle \delta >0} 329:time-constructible functions 7: 1472:have also been considered. 1470:nondeterministic algorithms 127:, then the existence of an 10: 1632: 1343: 1167:be the value given by the 497:if, for every real number 830:{\displaystyle \epsilon } 1444:all-pairs shortest paths 1388:are equal monomials, by 159:-reduction from problem 1160:{\displaystyle \delta } 850:{\displaystyle \delta } 1616:Reduction (complexity) 1436: 1382: 1362: 1334: 1305: 1285: 1256: 1233: 1213: 1199:-reduction, and solve 1193: 1161: 1141: 1088:can be solved in time 1082: 1062: 1036: 983:can be solved in time 977: 957: 931: 911: 879: 851: 831: 811: 776: 689: 662: 642: 583: 563: 543: 517: 491: 471: 439: 416: 385: 365: 345: 321: 301: 281: 261: 233: 213: 193: 173: 153: 121: 98:can be solved in time 92: 72: 49:can be solved in time 43: 22:fine-grained reduction 1501:Williams, Virginia V. 1466:randomized algorithms 1437: 1383: 1363: 1335: 1306: 1286: 1257: 1234: 1214: 1194: 1192:{\displaystyle (a,b)} 1162: 1142: 1083: 1063: 1037: 978: 958: 932: 912: 910:{\displaystyle (a,b)} 880: 852: 832: 812: 810:{\displaystyle (a,b)} 777: 690: 688:{\displaystyle n_{i}} 663: 643: 584: 564: 544: 518: 492: 472: 470:{\displaystyle (a,b)} 440: 417: 415:{\displaystyle n^{2}} 386: 366: 346: 322: 302: 282: 262: 234: 214: 194: 174: 154: 152:{\displaystyle (a,b)} 122: 93: 73: 44: 1585:Impagliazzo, Russell 1448:second-shortest path 1400: 1372: 1352: 1333:{\displaystyle b(n)} 1315: 1295: 1284:{\displaystyle a(n)} 1266: 1246: 1223: 1203: 1171: 1151: 1092: 1072: 1046: 987: 967: 941: 921: 889: 869: 841: 821: 789: 699: 672: 652: 593: 573: 553: 527: 501: 481: 449: 429: 399: 375: 355: 335: 311: 291: 271: 251: 223: 203: 183: 163: 131: 120:{\displaystyle b(n)} 102: 82: 71:{\displaystyle a(n)} 53: 33: 1542:(5): A27:1–A27:38, 937:, and there exists 861:Speedup implication 1535:Journal of the ACM 1432: 1378: 1358: 1330: 1301: 1281: 1252: 1229: 1209: 1189: 1157: 1137: 1078: 1058: 1032: 973: 953: 927: 907: 875: 847: 827: 807: 772: 711: 685: 658: 638: 579: 559: 539: 513: 487: 467: 435: 412: 381: 361: 341: 317: 297: 277: 257: 229: 209: 189: 169: 149: 117: 88: 68: 39: 1530:Williams, R. Ryan 1381:{\displaystyle b} 1361:{\displaystyle a} 1304:{\displaystyle B} 1255:{\displaystyle A} 1242:Equivalently, if 1232:{\displaystyle B} 1212:{\displaystyle A} 1081:{\displaystyle A} 976:{\displaystyle B} 930:{\displaystyle B} 878:{\displaystyle A} 702: 661:{\displaystyle n} 582:{\displaystyle B} 562:{\displaystyle A} 490:{\displaystyle B} 438:{\displaystyle A} 384:{\displaystyle b} 364:{\displaystyle a} 344:{\displaystyle n} 320:{\displaystyle b} 300:{\displaystyle a} 280:{\displaystyle B} 260:{\displaystyle A} 232:{\displaystyle A} 212:{\displaystyle B} 192:{\displaystyle B} 172:{\displaystyle A} 91:{\displaystyle B} 42:{\displaystyle A} 1623: 1600: 1599: 1580: 1574: 1568: 1559: 1522: 1516: 1515: 1497: 1441: 1439: 1438: 1433: 1428: 1427: 1415: 1414: 1387: 1385: 1384: 1379: 1367: 1365: 1364: 1359: 1339: 1337: 1336: 1331: 1310: 1308: 1307: 1302: 1290: 1288: 1287: 1282: 1261: 1259: 1258: 1253: 1238: 1236: 1235: 1230: 1218: 1216: 1215: 1210: 1198: 1196: 1195: 1190: 1166: 1164: 1163: 1158: 1146: 1144: 1143: 1138: 1136: 1135: 1129: 1128: 1104: 1103: 1087: 1085: 1084: 1079: 1067: 1065: 1064: 1059: 1041: 1039: 1038: 1033: 1031: 1030: 1024: 1023: 999: 998: 982: 980: 979: 974: 962: 960: 959: 954: 936: 934: 933: 928: 916: 914: 913: 908: 884: 882: 881: 876: 856: 854: 853: 848: 836: 834: 833: 828: 816: 814: 813: 808: 781: 779: 778: 773: 771: 770: 743: 742: 727: 726: 710: 694: 692: 691: 686: 684: 683: 667: 665: 664: 659: 647: 645: 644: 639: 637: 636: 630: 629: 605: 604: 588: 586: 585: 580: 568: 566: 565: 560: 548: 546: 545: 540: 522: 520: 519: 514: 496: 494: 493: 488: 476: 474: 473: 468: 444: 442: 441: 436: 421: 419: 418: 413: 411: 410: 390: 388: 387: 382: 370: 368: 367: 362: 350: 348: 347: 342: 326: 324: 323: 318: 306: 304: 303: 298: 286: 284: 283: 278: 266: 264: 263: 258: 238: 236: 235: 230: 218: 216: 215: 210: 198: 196: 195: 190: 178: 176: 175: 170: 158: 156: 155: 150: 126: 124: 123: 118: 97: 95: 94: 89: 77: 75: 74: 69: 48: 46: 45: 40: 1631: 1630: 1626: 1625: 1624: 1622: 1621: 1620: 1606: 1605: 1604: 1603: 1581: 1577: 1548:10.1145/3186893 1523: 1519: 1498: 1483: 1478: 1452:distance matrix 1423: 1419: 1410: 1406: 1401: 1398: 1397: 1373: 1370: 1369: 1353: 1350: 1349: 1346: 1316: 1313: 1312: 1296: 1293: 1292: 1267: 1264: 1263: 1247: 1244: 1243: 1224: 1221: 1220: 1204: 1201: 1200: 1172: 1169: 1168: 1152: 1149: 1148: 1131: 1130: 1118: 1114: 1099: 1098: 1093: 1090: 1089: 1073: 1070: 1069: 1047: 1044: 1043: 1026: 1025: 1013: 1009: 994: 993: 988: 985: 984: 968: 965: 964: 942: 939: 938: 922: 919: 918: 890: 887: 886: 870: 867: 866: 863: 842: 839: 838: 822: 819: 818: 790: 787: 786: 760: 756: 732: 728: 722: 718: 706: 700: 697: 696: 695:are bounded by 679: 675: 673: 670: 669: 653: 650: 649: 632: 631: 619: 615: 600: 599: 594: 591: 590: 574: 571: 570: 554: 551: 550: 528: 525: 524: 502: 499: 498: 482: 479: 478: 450: 447: 446: 430: 427: 426: 406: 402: 400: 397: 396: 376: 373: 372: 356: 353: 352: 336: 333: 332: 312: 309: 308: 292: 289: 288: 272: 269: 268: 252: 249: 248: 245: 224: 221: 220: 204: 201: 200: 184: 181: 180: 164: 161: 160: 132: 129: 128: 103: 100: 99: 83: 80: 79: 54: 51: 50: 34: 31: 30: 12: 11: 5: 1629: 1619: 1618: 1602: 1601: 1575: 1517: 1480: 1479: 1477: 1474: 1446:, finding the 1431: 1426: 1422: 1418: 1413: 1409: 1405: 1377: 1357: 1345: 1342: 1329: 1326: 1323: 1320: 1300: 1280: 1277: 1274: 1271: 1251: 1228: 1208: 1188: 1185: 1182: 1179: 1176: 1156: 1147:. Namely, let 1134: 1127: 1124: 1121: 1117: 1113: 1110: 1107: 1102: 1097: 1077: 1057: 1054: 1051: 1029: 1022: 1019: 1016: 1012: 1008: 1005: 1002: 997: 992: 972: 952: 949: 946: 926: 917:-reducible to 906: 903: 900: 897: 894: 874: 862: 859: 846: 826: 806: 803: 800: 797: 794: 769: 766: 763: 759: 755: 752: 749: 746: 741: 738: 735: 731: 725: 721: 717: 714: 709: 705: 682: 678: 657: 635: 628: 625: 622: 618: 614: 611: 608: 603: 598: 589:, taking time 578: 558: 538: 535: 532: 512: 509: 506: 486: 477:-reducible to 466: 463: 460: 457: 454: 445:is said to be 434: 409: 405: 380: 360: 340: 316: 296: 276: 256: 244: 241: 228: 208: 188: 168: 148: 145: 142: 139: 136: 116: 113: 110: 107: 87: 67: 64: 61: 58: 38: 9: 6: 4: 3: 2: 1628: 1617: 1614: 1613: 1611: 1598: 1594: 1590: 1586: 1579: 1572: 1567: 1563: 1558: 1557:1721.1/134750 1553: 1549: 1545: 1541: 1537: 1536: 1531: 1527: 1521: 1514: 1510: 1506: 1502: 1496: 1494: 1492: 1490: 1488: 1486: 1481: 1473: 1471: 1467: 1462: 1459: 1457: 1453: 1449: 1445: 1424: 1420: 1416: 1411: 1407: 1395: 1394:Ryan Williams 1391: 1375: 1355: 1341: 1324: 1318: 1298: 1275: 1269: 1249: 1240: 1226: 1206: 1183: 1180: 1177: 1154: 1125: 1122: 1119: 1111: 1105: 1095: 1075: 1055: 1052: 1049: 1020: 1017: 1014: 1006: 1000: 990: 970: 950: 947: 944: 924: 901: 898: 895: 872: 858: 844: 824: 801: 798: 795: 783: 767: 764: 761: 753: 747: 744: 739: 736: 733: 723: 719: 712: 707: 703: 680: 676: 655: 626: 623: 620: 612: 606: 596: 576: 556: 536: 533: 530: 510: 507: 504: 484: 461: 458: 455: 432: 423: 407: 403: 394: 378: 358: 338: 330: 314: 294: 274: 254: 240: 226: 206: 186: 166: 143: 140: 137: 111: 105: 85: 62: 56: 36: 29:. If problem 28: 23: 19: 1588: 1578: 1539: 1533: 1520: 1504: 1463: 1460: 1456:metric space 1454:describes a 1347: 1241: 864: 784: 424: 246: 78:and problem 21: 15: 179:to problem 1476:References 1068:such that 963:such that 243:Definition 27:subroutine 1155:δ 1126:δ 1123:− 1050:δ 1021:ϵ 1018:− 945:ϵ 845:δ 825:ϵ 768:δ 765:− 740:ϵ 737:− 704:∑ 627:δ 624:− 531:δ 505:ϵ 393:monomials 1610:Category 865:Suppose 395:such as 327:both be 1597:3629829 1566:3856539 1513:3452406 1344:History 1291:, then 1595:  1564:  1511:  425:Then 1468:and 1392:and 1368:and 1053:> 948:> 745:< 534:> 508:> 371:and 307:and 267:and 247:Let 20:, a 1552:hdl 1544:doi 885:is 785:An 16:In 1612:: 1593:MR 1562:MR 1560:, 1550:, 1540:65 1538:, 1528:; 1509:MR 1484:^ 1340:. 857:. 782:. 422:. 239:. 1573:. 1554:: 1546:: 1430:) 1425:3 1421:n 1417:, 1412:3 1408:n 1404:( 1376:b 1356:a 1328:) 1325:n 1322:( 1319:b 1299:B 1279:) 1276:n 1273:( 1270:a 1250:A 1227:B 1207:A 1187:) 1184:b 1181:, 1178:a 1175:( 1133:) 1120:1 1116:) 1112:n 1109:( 1106:a 1101:( 1096:O 1076:A 1056:0 1028:) 1015:1 1011:) 1007:n 1004:( 1001:b 996:( 991:O 971:B 951:0 925:B 905:) 902:b 899:, 896:a 893:( 873:A 805:) 802:b 799:, 796:a 793:( 762:1 758:) 754:n 751:( 748:a 734:1 730:) 724:i 720:n 716:( 713:b 708:i 681:i 677:n 656:n 634:) 621:1 617:) 613:n 610:( 607:a 602:( 597:O 577:B 557:A 537:0 511:0 485:B 465:) 462:b 459:, 456:a 453:( 433:A 408:2 404:n 379:b 359:a 339:n 315:b 295:a 275:B 255:A 227:A 207:B 187:B 167:A 147:) 144:b 141:, 138:a 135:( 115:) 112:n 109:( 106:b 86:B 66:) 63:n 60:( 57:a 37:A

Index

computational complexity theory
subroutine
time-constructible functions
monomials
Virginia Vassilevska Williams
Ryan Williams
all-pairs shortest paths
second-shortest path
distance matrix
metric space
randomized algorithms
nondeterministic algorithms






Williams, Virginia V.
MR
3452406
Williams, Virginia Vassilevska
Williams, R. Ryan
Journal of the ACM
doi
10.1145/3186893
hdl
1721.1/134750
MR
3856539

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.