Knowledge

Field (mathematics)

Source 📝

1903: 1412: 2080: 1898:{\displaystyle {\begin{aligned}&{\frac {a}{b}}\cdot \left({\frac {c}{d}}+{\frac {e}{f}}\right)\\={}&{\frac {a}{b}}\cdot \left({\frac {c}{d}}\cdot {\frac {f}{f}}+{\frac {e}{f}}\cdot {\frac {d}{d}}\right)\\={}&{\frac {a}{b}}\cdot \left({\frac {cf}{df}}+{\frac {ed}{fd}}\right)={\frac {a}{b}}\cdot {\frac {cf+ed}{df}}\\={}&{\frac {a(cf+ed)}{bdf}}={\frac {acf}{bdf}}+{\frac {aed}{bdf}}={\frac {ac}{bd}}+{\frac {ae}{bf}}\\={}&{\frac {a}{b}}\cdot {\frac {c}{d}}+{\frac {a}{b}}\cdot {\frac {e}{f}}.\end{aligned}}} 44: 7456: 10171: 1914: 4055: 10601: 10014: 8364: 4777:
in modern terms. Kronecker's notion did not cover the field of all algebraic numbers (which is a field in Dedekind's sense), but on the other hand was more abstract than Dedekind's in that it made no specific assumption on the nature of the elements of a field. Kronecker interpreted a field such as
2071:
coordinates), and the multiplication is – less intuitively – combining rotating and scaling of the arrows (adding the angles and multiplying the lengths). The fields of real and complex numbers are used throughout mathematics, physics, engineering, statistics, and many other scientific disciplines.
9701: 11024:
Dropping one or several axioms in the definition of a field leads to other algebraic structures. As was mentioned above, commutative rings satisfy all field axioms except for the existence of multiplicative inverses. Dropping instead commutativity of multiplication leads to the concept of a
2070:
given by the real numbers of their describing expression, or as the arrows from the origin to these points, specified by their length and an angle enclosed with some distinct direction. Addition then corresponds to combining the arrows to the intuitive parallelogram (adding the Cartesian
8209: 5803: 9274: 7521:
form an ordered field that is not Archimedean. It is an extension of the reals obtained by including infinite and infinitesimal numbers. These are larger, respectively smaller than any real number. The hyperreals form the foundational basis of
4860:
synthesized the knowledge of abstract field theory accumulated so far. He axiomatically studied the properties of fields and defined many important field-theoretic concepts. The majority of the theorems mentioned in the sections
11226: 5363: 9564: 4504:
does not split into linear factors in this smaller field. Elaborating further on basic field-theoretic notions, it can be shown that two finite fields with the same order are isomorphic. It is thus customary to speak of
1417: 4754:
By a field we will mean every infinite system of real or complex numbers so closed in itself and perfect that addition, subtraction, multiplication, and division of any two of these numbers again yields a number of the
547:, which are based on fields with additional structure. Basic theorems in analysis hinge on the structural properties of the field of real numbers. Most importantly for algebraic purposes, any field may be used as the 7491:
is required to have a least upper bound. Any complete field is necessarily Archimedean, since in any non-Archimedean field there is neither a greatest infinitesimal nor a least positive rational, whence the sequence
1401: 1196:
Fields can also be defined in different, but equivalent ways. One can alternatively define a field by four binary operations (addition, subtraction, multiplication, and division) and their required properties.
5213: 9810: 10580:
can help to shape mathematical expectations, often first by understanding questions about function fields, and later treating the number field case. The latter is often more difficult. For example, the
6564: 7930: 7357: 8056:) correspond to each other. The first manifestation of this is at an elementary level: the elements of both fields can be expressed as power series in the uniformizer, with coefficients in 3172: 7929:, but is not complete. The completion of this algebraic closure, however, is algebraically closed. Because of its rough analogy to the complex numbers, it is sometimes called the field of 10921: 8359:{\displaystyle \operatorname {Gal} \left(\mathbf {Q} _{p}\left(p^{1/p^{\infty }}\right)\right)\cong \operatorname {Gal} \left(\mathbf {F} _{p}((t))\left(t^{1/p^{\infty }}\right)\right).} 2697:
In addition to familiar number systems such as the rationals, there are other, less immediate examples of fields. The following example is a field consisting of four elements called
10313: 3257: 3204: 8672:. Consequently, as can be shown, the zeros of the following polynomials are not expressible by sums, products, and radicals. For the latter polynomial, this fact is known as the 2062:
It is immediate that this is again an expression of the above type, and so the complex numbers form a field. Complex numbers can be geometrically represented as points in the
1205:, fields can be defined by two binary operations (addition and multiplication), two unary operations (yielding the additive and multiplicative inverses respectively), and two 11280:
to be local fields. On the other hand, these two fields, also called Archimedean local fields, share little similarity with the local fields considered here, to a point that
5716: 2227: 9213: 9966: 8651: 2271: 8607:. By means of this correspondence, group-theoretic properties translate into facts about fields. For example, if the Galois group of a Galois extension as above is not 1225:. One may equivalently define a field by the same two binary operations, one unary operation (the multiplicative inverse), and two (not necessarily distinct) constants 2124:. For example, it was unknown to the Greeks that it is, in general, impossible to trisect a given angle in this way. These problems can be settled using the field of 11318:
are algebraically closed by Łoś's theorem. For the same reason, they both have characteristic zero. Finally, they are both uncountable, so that they are isomorphic.
4906:
is a set that is equipped with an addition and multiplication operation and satisfes all the axioms of a field, except for the existence of multiplicative inverses
10502:
can be reconstructed, up to isomorphism, from its field of functions. In higher dimension the function field remembers less, but still decisive information about
11798: 2136:. These numbers, endowed with the field operations of real numbers, restricted to the constructible numbers, form a field, which properly includes the field 2128:. Real constructible numbers are, by definition, lengths of line segments that can be constructed from the points 0 and 1 in finitely many steps using only 7210:
Since fields are ubiquitous in mathematics and beyond, several refinements of the concept have been adapted to the needs of particular mathematical areas.
4723:, in 1832, devised necessary and sufficient criteria for a polynomial equation to be algebraically solvable, thus establishing in effect what is known as 1406:
The abstractly required field axioms reduce to standard properties of rational numbers. For example, the law of distributivity can be proven as follows:
10753:. Studying arithmetic questions in global fields may sometimes be done by looking at the corresponding questions locally. This technique is called the 13485: 9696:{\displaystyle K_{n}^{M}(F)=F^{\times }\otimes \cdots \otimes F^{\times }/\left\langle x\otimes (1-x)\mid x\in F\smallsetminus \{0,1\}\right\rangle .} 13534:
Colloque d'algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre 1956, Centre Belge de Recherches Mathématiques Établissements Ceuterick, Louvain
11168: 5271: 8206:. Strikingly, the Galois groups of these two fields are isomorphic, which is the first glimpse of a remarkable parallel between these two fields: 1994:. Addition and multiplication of real numbers are defined in such a way that expressions of this type satisfy all field axioms and thus hold for 12837:"Die Struktur der absoluten Galoisgruppe 𝔭-adischer Zahlkörper. [The structure of the absolute Galois group of 𝔭-adic number fields]" 8151: 394: 13158: 12293: 3642:(and also with the multiplication), and is therefore a field homomorphism. The existence of this homomorphism makes fields in characteristic 1337: 1267:
Rational numbers have been widely used a long time before the elaboration of the concept of field. They are numbers that can be written as
2273:
is not a constructible number, which implies that it is impossible to construct with compass and straightedge the length of the side of a
5143: 4991:
such that all nonzero elements become invertible: forming the field of fractions, and forming residue fields. The field of fractions of
11063: 10198:
can be added and multiplied pointwise, e.g., the product of two functions is defined by the product of their values within the domain:
4025:) are fields with finitely many elements, whose number is also referred to as the order of the field. The above introductory example 1161:
An equivalent, and more succinct, definition is: a field has two commutative operations, called addition and multiplication; it is a
9279:
The Ax–Kochen theorem mentioned above also follows from this and an isomorphism of the ultraproducts (in both cases over all primes
10811:, i.e., ones with abelian Galois group, or equivalently the abelianized Galois groups of global fields. A classical statement, the 9720: 7708:
is as small as desired. The following table lists some examples of this construction. The fourth column shows an example of a zero
3705:, and is closed under addition, multiplication, additive inverse and multiplicative inverse of a nonzero element. This means that 6477: 10354: 2737:
in the axioms above). The field axioms can be verified by using some more field theory, or by direct computation. For example,
568: 10952:
In addition to the additional structure that fields may enjoy, fields admit various other related notions. Since in any field
13421: 13298: 13280: 13082: 13050: 13024: 12903: 12826: 12752: 12669: 12542: 12196: 12171: 12153: 55: 7282: 8574: 11008:
form a Field containing the reals, and would be a field except for the fact that they are a proper class, not a set. The
10572:). As for local fields, these two types of fields share several similar features, even though they are of characteristic 9995:
instead of fields) is much more complicated, because the above equation may have several or no solutions. In particular
5398:(as opposed to an arbitrary power series), the representation of fractions is less important in this situation, though. 7442:
whose value is greater than that element, that is, there are no infinite elements. Equivalently, the field contains no
4746:, which means "body" or "corpus" (to suggest an organically closed entity). The English term "field" was introduced by 4542:
Historically, three algebraic disciplines led to the concept of a field: the question of solving polynomial equations,
387: 4650: 13621: 13584: 13459: 13384: 13355: 13326: 13242: 13205: 13136: 13002: 12965: 12691: 12643: 12580: 12514: 12485: 12456: 12419: 12403: 12395: 12368: 10516:
attempts to identify the simplest (in a certain precise sense) algebraic varieties with a prescribed function field.
10443: 9844: 3133: 9707: 8488:
is an irreducible polynomial (as above). For such an extension, being normal and separable means that all zeros of
4948:(which means every element is invertible). Similarly, fields are the commutative rings with precisely two distinct 10882: 3259:
is an abelian group under multiplication (where 0 is the identity element of the addition), and multiplication is
13552: 8859: 7093:
has an algebraic closure, which is moreover unique up to (non-unique) isomorphism. It is commonly referred to as
17: 8098:, these fields are not isomorphic.) The following facts show that this superficial similarity goes much deeper: 12883: 12597: 11098: 10981:. In addition to division rings, there are various other weaker algebraic structures related to fields such as 8392:, together with the standard derivative of polynomials forms a differential field. These fields are central to 6971: 1217:). These operations are then subject to the conditions above. Avoiding existential quantifiers is important in 9366:
is fundamentally important: extending the case of finite Galois extensions outlined above, this group governs
5218:
It is straightforward to show that, if the ring is an integral domain, the set of the fractions form a field.
3263:
over addition. Some elementary statements about fields can therefore be obtained by applying general facts of
13709: 12771: 12623: 8378: 4704: 380: 7572:
with respect to the topology of the space. The topology of all the fields discussed below is induced from a
6984:
polynomial equation with complex coefficients has a complex solution. The rational and the real numbers are
6362:. Any finite extension is necessarily algebraic, as can be deduced from the above multiplicativity formula. 2120:
In antiquity, several geometric problems concerned the (in)feasibility of constructing certain numbers with
13704: 10266: 9999:
are much more difficult to solve than in the case of fields, even in the specially simple case of the ring
8397: 7446:(elements smaller than all rational numbers); or, yet equivalent, the field is isomorphic to a subfield of 3230: 3177: 35: 11125:" for denoting one part of a constant and for the additive inverses is justified by this latter condition. 8419: 4738:
introduced, for a set of real or complex numbers that is closed under the four arithmetic operations, the
543:
Fields serve as foundational notions in several mathematical domains. This includes different branches of
12766: 10812: 10758: 10122: 9996: 8422:
in the arithmetic operations of addition and multiplication. An important notion in this area is that of
6093: 4659: 4340: 471: 249: 9328:
In addition, model theory also studies the logical properties of various other types of fields, such as
5798:{\displaystyle \mathbf {R} /\left(X^{2}+1\right)\ {\stackrel {\cong }{\longrightarrow }}\ \mathbf {C} .} 4138:
The addition and multiplication on this set are done by performing the operation in question in the set
12386: 10761:
reduces the problem of finding rational solutions of quadratic equations to solving these equations in
10754: 10439: 8393: 7661:
in the sense that it is a real number that can be approximated arbitrarily closely by rational numbers
7269: 7057: 11967: 13714: 11328: 10876: 10493: 9823: 9269:{\displaystyle \operatorname {ulim} _{p\to \infty }{\overline {\mathbf {F} }}_{p}\cong \mathbf {C} .} 8578: 8447: 7618: 6811: 5901: 5628: 4886: 4625:) only yields two values. This way, Lagrange conceptually explained the classical solution method of 9875:. In higher degrees, K-theory diverges from Milnor K-theory and remains hard to compute in general. 8017:
These two types of local fields share some fundamental similarities. In this relation, the elements
2286: 13073: 11035:; sometimes associativity is weakened as well. The only division rings that are finite-dimensional 10986: 10702: 10045:
A widely applied cryptographic routine uses the fact that discrete exponentiation, i.e., computing
8807: 8673: 6862: 6675: 6027: 3413: 2202: 2121: 1218: 517: 475: 10508:. The study of function fields and their geometric meaning in higher dimensions is referred to as 10528: 8973: 7071: 4805: 4543: 972: 340: 9929: 8627: 4715:) cannot be solved algebraically; however, his arguments were flawed. These gaps were filled by 4450:, it can be checked case by case using the above multiplication table that all four elements of 2247: 1917:
The multiplication of complex numbers can be visualized geometrically by rotations and scalings.
13601: 13068: 10957: 10931: 10727: 10577: 10435: 10362:(a geometric object defined as the common zeros of polynomial equations) consists of ratios of 10182: 10178:
two (two handles). The genus can be read off the field of meromorphic functions on the surface.
9981: 9515: 9089:
if and only if it holds in any algebraically closed field of sufficiently high characteristic.
7577: 6718:. A similar construction can be carried out with a set of indeterminates, instead of just one. 5543: 5521: 4919: 4728: 4649:, Lagrange thus linked what eventually became the concept of fields and the concept of groups. 4428: 3297:, which consists of a single element; this guides any choice of the axioms that define fields. 2129: 2084: 1268: 1202: 1064: 626: 494: 479: 432: 13556: 12605: 4938:
In the hierarchy of algebraic structures fields can be characterized as the commutative rings
13638: 13480: 12704: 10860: 10782: 10586: 10513: 10337: 9495: 9356: 9189: 8624:
be expressed in terms of addition, multiplication, and radicals, i.e., expressions involving
8134: 7523: 7035:) and is algebraically closed (big enough to contain solutions of all polynomial equations). 4828: 4551: 3260: 2125: 2115: 2067: 857: 544: 12740: 12725: 11357:
Historically, division rings were sometimes referred to as fields, while fields were called
13631: 13431: 13365: 13252: 13215: 13181: 13146: 13092: 12975: 12941: 12913: 12868: 12848: 12761: 12653: 12555: 12524: 12466: 11246: 10341: 10125:, the multiplication in a finite field is replaced by the operation of adding points on an 9988: 9973: 9394: 8877: 7573: 6874: 4654: 3550: 3310: 3127: 2919:. In particular, one may deduce the additive inverse of every element as soon as one knows 2884: 548: 537: 529: 327: 319: 291: 286: 277: 234: 176: 59: 13674: 13594: 13514: 13469: 13439: 13394: 13336: 13034: 12807: 12718: 12708: 12590: 12429: 12352: 12242: 9475:
A description in terms of generators and relations is also known for the Galois groups of
8: 13012: 12610:(in German), vol. 1 (2nd ed.), Braunschweig, Germany: Friedrich Vieweg und Sohn 12378: 11135: 11076: 10532: 10509: 10246: 10175: 9062: 8892:
that are algebraically independent over the prime field. Two algebraically closed fields
8439: 8415: 7505:
is the unique complete ordered field, up to isomorphism. Several foundational results in
7273: 7020: 6878: 6807: 6359: 6216: 5382: 4949: 4630: 4043:
is the smallest field, because by definition a field has at least two distinct elements,
3264: 1162: 513: 444: 345: 335: 86: 78: 69: 12852: 13678: 13518: 13448: 13061: 12945: 12872: 12551: 12320: 12302: 12277: 12246: 11080: 10804: 10582: 10095: 9992: 9815: 9711: 8957: 8535: 8374: 8079: 6748: 6200: 6119:
Extensions whose degree is finite are referred to as finite extensions. The extensions
5813:
Fields can be constructed inside a given bigger container field. Suppose given a field
5038: 4945: 4646: 4626: 4547: 4099: 3788: 1185: 490: 151: 142: 100: 13067:, Lecture Notes in Logic, vol. 5 (2nd ed.), Association for Symbolic Logic, 12920:
Kiernan, B. Melvin (1971), "The development of Galois theory from Lagrange to Artin",
12501:, London Mathematical Society Student Texts, vol. 3, Cambridge University Press, 6877:
if it does not have any strictly bigger algebraic extensions or, equivalently, if any
4720: 13682: 13662: 13617: 13580: 13522: 13502: 13455: 13417: 13401: 13380: 13372: 13351: 13343: 13322: 13312: 13307: 13294: 13276: 13263: 13238: 13201: 13132: 13108: 13078: 13046: 13020: 12998: 12961: 12949: 12899: 12876: 12822: 12795: 12748: 12687: 12665: 12639: 12576: 12538: 12510: 12481: 12452: 12415: 12399: 12391: 12364: 12250: 12230: 12192: 12167: 12149: 11250: 10808: 10186: 9819: 9507: 9503: 9333: 9329: 8989: 8862:, a far-reaching extension of Galois theory applicable to algebro-geometric objects. 8103: 7634: 7545: 7535: 7464: 7429: 7399: 7395: 7132: 7081: 7009: 6847:
has a transcendence basis. Thus, field extensions can be split into ones of the form
6703: 6655: 6581: 6178: 5233: 4843: 4774: 4766: 4739: 4716: 2727:
plays the role of the additive identity element (denoted 0 in the axioms above), and
2274: 1169:
as the additive identity; the nonzero elements are a group under multiplication with
968: 714: 416: 13172: 11079:
division algebra, but is not a division ring. This fact was proved using methods of
7264:. For example, the real numbers form an ordered field, with the usual ordering  5137:. The operation on the fractions work exactly as for rational numbers. For example, 4885:
redeveloped Galois theory from 1928 through 1942, eliminating the dependency on the
2079: 838:. These operations are required to satisfy the following properties, referred to as 13670: 13654: 13609: 13590: 13510: 13494: 13465: 13435: 13390: 13332: 13230: 13193: 13167: 13124: 13030: 12990: 12929: 12891: 12856: 12803: 12714: 12631: 12601: 12586: 12502: 12494: 12473: 12444: 12436: 12425: 12348: 12340: 12312: 12269: 12238: 12222: 10612: 10605: 10590: 10418: 10363: 10328: 10257: 8451: 8443: 8426: 8423: 8381:, i.e., allow to take derivatives of elements in the field. For example, the field 8203: 7789: 7120: 4903: 4797: 4735: 4708: 4578: 4184: 3554: 3221:
equipped with two operations denoted as an addition and a multiplication such that
2063: 1940:, with the usual operations of addition and multiplication, also form a field. The 1198: 1177: 1012: 723: 612: 580: 533: 509: 171: 12324: 12316: 5392:). Since any Laurent series is a fraction of a power series divided by a power of 4150:
and taking the remainder as result. This construction yields a field precisely if
3441:
satisfying this equation, the smallest such positive integer can be shown to be a
756:, that is, a correspondence that associates with each ordered pair of elements of 196: 13627: 13427: 13413: 13361: 13270: 13248: 13222: 13211: 13177: 13142: 13104: 13088: 12971: 12937: 12909: 12864: 12814: 12649: 12627: 12532: 12520: 12462: 11084: 10941: 10458: 10421:
dense subvariety. In other words, the function field is insensitive to replacing
10366:, i.e., ratios of polynomial functions on the variety. The function field of the 9555: 8886:
over its prime field. The latter is defined as the maximal number of elements in
8654: 7897: 7627:
is another field in which, informally speaking, the "gaps" in the original field
7136: 6050: 5490: 5243: 5029: 4801: 4687: 4363: 4098:
The simplest finite fields, with prime order, are most directly accessible using
3662: 2987: 1262: 604: 525: 459: 436: 263: 257: 244: 224: 215: 181: 118: 48: 13542: 10705:, which asserts the non-existence of rational nonzero solutions to the equation 9390: 7432:
is an ordered field such that for each element there exists a finite expression
840: 489:
are commonly used and studied in mathematics, particularly in number theory and
13608:, Graduate Texts in Mathematics, vol. 83 (2nd ed.), Springer-Verlag, 13476: 12683: 12615: 12561: 11221:{\displaystyle \left\langle F\smallsetminus \{0\},\cdot ,{}^{-1}\right\rangle } 11075:, for which multiplication is neither commutative nor associative, is a normed 11005: 10594: 10485: 10126: 9969: 8608: 7760: 7688: 7569: 7443: 7410: 7193: 7189: 6306: 5632: 5422: 5358:{\displaystyle \sum _{i=k}^{\infty }a_{i}x^{i}\ (k\in \mathbb {Z} ,a_{i}\in F)} 5263: 3096: 1984: 1941: 1926: 1123: 556: 467: 428: 305: 30:
This article is about an algebraic structure. For vector valued functions, see
13613: 13498: 13234: 13128: 12994: 12895: 12635: 12448: 7050:. The situation that the algebraic closure is a finite extension of the field 6618:(and similarly for higher exponents) do not have to be considered here, since 2839:(highlighted in red in the tables at the right) is also a field, known as the 1173:
as the multiplicative identity; and multiplication distributes over addition.
43: 13698: 13666: 13506: 13259: 12799: 12700: 12506: 12344: 12234: 12210: 12188: 12180: 11432: 11102: 11027: 10694: 10649: 10159: 10155: 8612: 8409: 7814: 7219: 5586: 5477: 5453: 5432: 5412: 4878: 4724: 4622: 3608: 3092: 2184: 926: 868: 564: 521: 502: 483: 452: 191: 156: 113: 13532:(1957), "Sur les analogues algébriques des groupes semi-simples complexes", 12960:, Fields Institute Monographs, vol. 12, American Mathematical Society, 10785:
studies the (unsolved) problem whether any finite group is the Galois group
10170: 9355:
For fields that are not algebraically closed (or not separably closed), the
8904:
are isomorphic precisely if these two data agree. This implies that any two
7548:, such that all operations of the field (addition, multiplication, the maps 7496:, every element of which is greater than every infinitesimal, has no limit. 13558:
Beiträge zur Geometrie der Lage (Contributions to the Geometry of Position)
13529: 12288: 10997: 10781:
Unlike for local fields, the Galois groups of global fields are not known.
10698: 10536: 10524: 10373: 9977: 9511: 9192:
states that any first order statement that holds for all but finitely many
9132: 8988:
and conversely. The mathematical statements in question are required to be
8953: 8520: 7477: 7455: 7150:, is exceptionally simple. It is the union of the finite fields containing 4683: 4336: 4157: 4013: 3442: 3305: 3294: 2841: 2803: 2133: 560: 552: 498: 365: 296: 130: 31: 11331:
between smooth proper algebraic curves over an algebraically closed field
11062:(in which multiplication is non-commutative). This result is known as the 10956:, any field has at least two elements. Nonetheless, there is a concept of 10260:. In this case the ratios of two functions, i.e., expressions of the form 9968:
This immediate consequence of the definition of a field is fundamental in
9822:
with coefficients the given field. For example, the process of taking the
13409: 13153: 12989:, Graduate Texts in Mathematics, vol. 211 (3rd ed.), Springer, 12779: 11092: 11013: 10615:
are among the most intensely studied number fields. They are of the form
10431: 10340:, i.e., complex differentiable functions. Their ratios form the field of 9403:. This statement subsumes the fact that the only algebraic extensions of 9099: 8909: 8905: 8053: 7958: 7482: 7472: 7468: 6411:
are necessarily algebraic as well. Moreover, the degree of the extension
6208: 4967: 3966: 3947: 2143: 1932: 1922: 608: 563:, the siblings of the field of rational numbers, are studied in depth in 463: 440: 424: 408: 355: 350: 239: 229: 203: 13547:, Grundlehren der mathematischen Wissenschaften, vol. 328, Springer 13043:
Algebra, Volume II: Fields with Structures, Algebras and Advanced Topics
13658: 13197: 12982: 12933: 12860: 12836: 12281: 12226: 12206: 11088: 11054: 10982: 10489: 9499: 7513: 6204: 5955: 5468: 4882: 4731:, but conceived neither an explicit notion of a field, nor of a group. 4367: 3943: 2165: 2104:
allows construction of the square root of a given constructible number
105: 13321:, Graduate Text in Mathematics, vol. 7 (2nd ed.), Springer, 6042:
can also be regarded from the opposite point of view, by referring to
1396:{\displaystyle {\frac {b}{a}}\cdot {\frac {a}{b}}={\frac {ba}{ab}}=1.} 12568: 12307: 10990: 10041:(red) is zero if there is a line (blue) passing through these points. 9436:, and that the Galois groups of these finite extensions are given by 8551: 4796:. Prior to this, examples of transcendental numbers were known since 3933: 1222: 1206: 360: 166: 123: 91: 13408:, Springer Monographs in Mathematics, Translated from the French by 12331:
Banaschewski, Bernhard (1992), "Algebraic closure without choice.",
12273: 10944:. For general number fields, no such explicit description is known. 10442:
and for the classification of algebraic varieties. For example, the
8567:
that preserve addition and multiplication and that send elements of
3987:(a prime number), the prime field is isomorphic to the finite field 12257: 12215:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
11625: 11067: 9896: 8582: 8506:
has only simple zeros. The latter condition is always satisfied if
7709: 7506: 6006:
satisfying a certain property, for example the biggest subfield of
4220:
is not a field: the product of two non-zero elements is zero since
3301: 2175: 420: 161: 51: 7499:
Since every proper subfield of the reals also contains such gaps,
6000:. The compositum can be used to construct the biggest subfield of 5208:{\displaystyle {\frac {a}{b}}+{\frac {c}{d}}={\frac {ad+bc}{bd}}.} 5061:
is constructed from the integers. More precisely, the elements of
3969:
if it has no proper (i.e., strictly smaller) subfields. Any field
10438:
of varieties. It is therefore an important tool for the study of
10098:, which is the inverse operation, i.e., determining the solution 9203:, also holds for the ultraproduct. Applied to the above sentence 4881:, and thus the area of analysis, to purely algebraic properties. 4550:. A first step towards the notion of a field was made in 1770 by 3351: 2152:. Using the labeling in the illustration, construct the segments 1293: 448: 13272:
Proceedings of the International Congress of Mathematicians 2014
13112: 12784:"Über eine neue Begründung der Theorie der algebraischen Zahlen" 10008: 9506:. The cohomological study of such representations is done using 8826:
is a Galois extension if and only if there is an isomorphism of
7481:) and limits, which should exist, do exist. More formally, each 7001:
does not have any rational or real solution. A field containing
4727:
today. Both Abel and Galois worked with what is today called an
3080: 2993:
In addition, the following properties are true for any elements
2142:
of rational numbers. The illustration shows the construction of
1913: 13643:"Die allgemeinen Grundlagen der Galois'schen Gleichungstheorie" 13642: 12783: 12213:(1927), "Eine Kennzeichnung der reell abgeschlossenen Körper", 11009: 10256:
of functions, one must consider algebras of functions that are
9714:, relates this to Galois cohomology by means of an isomorphism 7131:
is usually rather implicit since its construction requires the
2824: 95: 27:
Algebraic structure with addition, multiplication, and division
5415:
into a field, a field can be obtained from a commutative ring
4054: 9805:{\displaystyle K_{n}^{M}(F)/p=H^{n}(F,\mu _{l}^{\otimes n}).} 9071:
is elementarily equivalent to any algebraically closed field
6012:, which is, in the language introduced below, algebraic over 4633:, which proceeds by reducing a cubic equation for an unknown 3998:
introduced below. Otherwise the prime field is isomorphic to
2244:
Not all real numbers are constructible. It can be shown that
9524:, can be reinterpreted as a Galois cohomology group, namely 9502:
are fundamental in many branches of arithmetic, such as the
8573:
to themselves). The importance of this group stems from the
5808: 11628:
Earliest Known Uses of Some of the Words of Mathematics (F)
10600: 10589:(open as of 2017) can be regarded as being parallel to the 10013: 9000:, the addition and multiplication). A typical example, for 6684:
since there is no polynomial equation with coefficients in
6559:{\displaystyle \sum _{k=0}^{n-1}a_{k}x^{k},\ \ a_{k}\in E.} 4962:. Fields are also precisely the commutative rings in which 4846:(1891) studied the field of formal power series, which led 4286:
being prime) constructed in this way is usually denoted by
2146:
of constructible numbers, not necessarily contained within
13293:, Lecture Notes in Mathematics, vol. 1999, Springer, 13192:, Lecture Notes in Mathematics, vol. 1093, Springer, 12607:
Vorlesungen über Zahlentheorie (Lectures on Number Theory)
9177:
since it behaves in several ways as a limit of the fields
7272:
states that a field can be ordered if and only if it is a
4823:
The first clear definition of an abstract field is due to
435:
are defined and behave as the corresponding operations on
13350:, Graduate Texts in Mathematics, vol. 67, Springer, 12620:
Commutative algebra with a view toward algebraic geometry
10405:, i.e., the field consisting of ratios of polynomials in 9883: 8912:
and the same characteristic are isomorphic. For example,
8202:), yields (infinite) extensions of these fields known as 7509:
follow directly from this characterization of the reals.
5536:
cannot be expressed as the product of two polynomials in
10960:, which is suggested to be a limit of the finite fields 8810:
is not usually a field. For example, a finite extension
8597:
and the set of intermediate extensions of the extension
3683:
that is a field with respect to the field operations of
3267:. For example, the additive and multiplicative inverses 8450:
shows that finite separable extensions are necessarily
4682:
and, again using modern language, the resulting cyclic
3126:
form an abelian group under multiplication, called the
13118: 13059:
Marker, David; Messmer, Margit; Pillay, Anand (2006),
12573:
Modern algebra and the rise of mathematical structures
11428: 9077:
of characteristic zero. Moreover, any fixed statement
7352:{\displaystyle x_{1}^{2}+x_{2}^{2}+\dots +x_{n}^{2}=0} 583:
defined on that set: an addition operation written as
13536:, Paris: Librairie Gauthier-Villars, pp. 261–289 13156:(1893), "A doubly-infinite system of simple groups", 11171: 10885: 10269: 9932: 9723: 9567: 9216: 8630: 8212: 7285: 6480: 5719: 5681:, which implies that the map that sends a polynomial 5274: 5146: 4979:, there are two ways to construct a field related to 3322:
In addition to the multiplication of two elements of
3233: 3180: 3136: 2250: 2205: 1415: 1340: 5406:
In addition to the field of fractions, which embeds
3470:
since (in the notation of the above addition table)
603:, both of which behave similarly as they behave for 13119:Mines, Ray; Richman, Fred; Ruitenburg, Wim (1988), 13058: 11991: 7205: 6448:such that there is a polynomial equation involving 4245: 571:can help describe properties of geometric objects. 13561:, vol. 2, Nürnberg (Germany): Bauer and Raspe 13447: 13311: 13060: 12383:Groups, rings and fields: Algebra through practice 12260:(1968), "The elementary theory of finite fields", 11220: 10915: 10307: 9960: 9804: 9695: 9268: 8645: 8358: 7388:. The set of all possible orders on a fixed field 7351: 6558: 6167:A pivotal notion in the study of field extensions 5797: 5357: 5207: 3251: 3198: 3166: 2265: 2221: 1897: 1395: 13540: 11915: 11000:with field structure, which are sometimes called 10461:(i.e., the dimension is one), the function field 10457:, is invariant under birational equivalence. For 10129:, i.e., the solutions of an equation of the form 9336:(which are equipped with an exponential function 8976:if every mathematical statement that is true for 7534:Another refinement of the notion of a field is a 4897: 3975:contains a prime field. If the characteristic of 2896: 798:. Similarly, the result of the multiplication of 638:. This allows one to also consider the so-called 13696: 13229:, Springer Monographs in Mathematics, Springer, 13010: 12409: 11963: 11564: 11552: 11468: 10576:and positive characteristic, respectively. This 10094:can be performed much more efficiently than the 9972:. For example, it is an essential ingredient of 9826:of an invertible matrix leads to an isomorphism 7135:, a set-theoretic axiom that is weaker than the 6712:and its powers do not interact with elements of 4343:of this vector space is necessarily finite, say 1314:, and the multiplicative inverse (provided that 13486:Journal für die reine und angewandte Mathematik 13291:The Use of Ultraproducts in Commutative Algebra 13101:Introduction To Modern Algebra, Revised Edition 12834: 12788:Journal für die Reine und Angewandte Mathematik 12026: 10726:Local fields are completions of global fields. 10519: 10165: 9514:, which is classically defined as the group of 8154:of both fields are in bijection to one another. 8137:describing zeros of homogeneous polynomials in 7633:are filled, if there are any. For example, any 6814:(do not satisfy any polynomial relations) over 6779:. This isomorphism is obtained by substituting 5051:is built with the fractions of two elements of 3425:has characteristic 0 since no positive integer 2277:, another problem posed by the ancient Greeks. 1201:is, by definition, excluded. In order to avoid 13544:Galois Theory of Linear Differential Equations 12376: 7459:Each bounded real set has a least upper bound. 7060:, the degree of this extension is necessarily 4918:form a commutative ring, but not a field: the 3648:quite different from fields of characteristic 3167:{\displaystyle (F\smallsetminus \{0\},\cdot )} 13159:Bulletin of the American Mathematical Society 12294:Bulletin of the American Mathematical Society 12205: 10863:asks for a similarly explicit description of 10336:. In this case, one considers the algebra of 10009:Finite fields: cryptography and coding theory 7232:if any two elements can be compared, so that 5003:, the rationals, while the residue fields of 4874: 3655: 3451:and the field is said to have characteristic 3419:. For example, the field of rational numbers 3081:Additive and multiplicative groups of a field 2280: 2000:. For example, the distributive law enforces 1303:. The additive inverse of such a fraction is 579:Informally, a field is a set, along with two 524:, devoted to understanding the symmetries of 388: 13019:(2nd ed.), Cambridge University Press, 12537:, Dover Books on Mathematics Series, Dover, 12410:Borceux, Francis; Janelidze, George (2001), 12330: 11794: 11189: 11183: 10916:{\displaystyle F=\mathbf {Q} ({\sqrt {-d}})} 9682: 9670: 7956:The following topological fields are called 6394:is an algebraic element. That is to say, if 6346:A field extension in which every element of 4034:is a field with four elements. Its subfield 3246: 3240: 3193: 3187: 3152: 3146: 2287:Finite field § Field with four elements 593:, and a multiplication operation written as 555:, which is the standard general context for 12699: 12359:Beachy, John. A; Blair, William D. (2006), 12358: 11674: 11480: 11444: 11380: 11284:, p. vi) calls them "completely anomalous". 10778:, whose solutions can easily be described. 10446:, which equals the transcendence degree of 8438:, which are, by definition, those that are 7918:carries a unique norm extending the one on 7139:. In this regard, the algebraic closure of 7029:(roughly speaking, not too big compared to 6612:are rational numbers: summands of the form 1908: 13600: 13551: 13264:"Perfectoid spaces and their Applications" 12072: 9481:-adic number fields (finite extensions of 9207:, this shows that there is an isomorphism 8396:, a variant of Galois theory dealing with 7276:, which means that any quadratic equation 6092:A basic datum of a field extension is its 4785:abstractly as the rational function field 4645:. Together with a similar observation for 4398:Such a splitting field is an extension of 4207:of two strictly smaller natural numbers), 3392:If there is no positive integer such that 3304:of the multiplicative group of a field is 3099:of the field, and is sometimes denoted by 395: 381: 13288: 13221: 13171: 13072: 12596: 12306: 12003: 11809: 11642: 10318:form a field, called field of functions. 8947: 6706:. Informally speaking, the indeterminate 6442:-vector space, equals the minimal degree 6382:, as above, is an algebraic extension of 5809:Constructing fields within a bigger field 5329: 3095:under addition. This group is called the 1191: 36:Field (disambiguation) § Mathematics 13475: 12955: 12813: 12677: 12659: 12614: 12472: 12435: 12060: 12015: 11821: 11770: 11734: 11722: 11686: 11658: 11600: 11516: 11392: 11121:The a priori twofold use of the symbol " 10599: 10169: 10012: 9350: 8908:algebraically closed fields of the same 7454: 6988:algebraically closed since the equation 6108:-vector space. It satisfies the formula 4866: 4857: 4653:, also in 1770, and to a fuller extent, 4554:, who observed that permuting the zeros 4427:has as many zeros as possible since the 4349:, which implies the asserted statement. 4053: 3293:is imposed by convention to exclude the 2733:is the multiplicative identity (denoted 2078: 2074: 1912: 58:; this can be proven using the field of 42: 13565: 13541:van der Put, M.; Singer, M. F. (2003), 13314:A course in arithmetic. Translation of 13258: 13187: 12919: 12882: 12747:, Mathematical Association of America, 12735:, Universitext (2nd ed.), Springer 12493: 12161: 12143: 11904: 11857: 11845: 11646: 11588: 11576: 11540: 11528: 11504: 11492: 11281: 10736:, a global field, are the local fields 9997:systems of linear equations over a ring 8865: 6162: 4870: 3328:, it is possible to define the product 1987:, i.e., a (non-real) number satisfying 458:The best known fields are the field of 455:, and many other areas of mathematics. 14: 13697: 13574: 13483:[Algebraic Theory of Fields], 13445: 13040: 12778: 12739: 12724: 12550: 12441:Elements of the history of mathematics 12117: 11979: 11881: 11869: 11833: 11429:Mines, Richman & Ruitenburg (1988) 11268:Some authors also consider the fields 10430:The function field is invariant under 10411:indeterminates. The function field of 10355:function field of an algebraic variety 9884:Linear algebra and commutative algebra 8369: 8106:statement that is true for almost all 7167:). For any algebraically closed field 6649: 6590:consisting of all numbers of the form 5491:ideal generated by a single polynomial 5431:. Any field obtained in this way is a 5374:is the field of fractions of the ring 4892: 4847: 4058:In modular arithmetic modulo 12, 13637: 13400: 13371: 13342: 13306: 13152: 13098: 12922:Archive for History of Exact Sciences 12821:, vol. 1 (2nd ed.), Dover, 12567: 12530: 12179: 12095: 12083: 12048: 12037: 11893: 11782: 11758: 11746: 11710: 11670: 11612: 11456: 11416: 11404: 11245:Further examples include the maximal 10730:asserts that the only completions of 10308:{\displaystyle {\frac {f(x)}{g(x)}},} 7977:(local fields of characteristic zero) 7529: 7177:, the algebraic closure of the field 7105:. For example, the algebraic closure 6868: 6751:of a polynomial with coefficients in 6735:discussed above is a key example: if 6702:, which are not algebraic are called 5236:over a field (or an integral domain) 5023: 4824: 4747: 4167:results in the above-mentioned field 3252:{\displaystyle F\smallsetminus \{0\}} 3199:{\displaystyle F\smallsetminus \{0\}} 2860: 708: 56:straightedge and compass construction 13528: 12981: 12835:Jannsen, Uwe; Wingberg, Kay (1982), 12745:A Guide to Groups, Rings, and Fields 12287: 12128: 12106: 11951: 11939: 11927: 11698: 10853:obtained by adjoining all primitive 10427:by a (slightly) smaller subvariety. 10321:This occurs in two main cases. When 9991:(the analogue of vector spaces over 8575:fundamental theorem of Galois theory 7712:, i.e., a sequence whose limit (for 6400:is algebraic, all other elements of 4944:in which every nonzero element is a 4193:which can be expressed as a product 3227:is an abelian group under addition, 2986:. This means that every field is an 2798:, as required by the distributivity. 975:: there exist two distinct elements 11992:Marker, Messmer & Pillay (2006) 8944:isomorphic as topological fields). 8876:include the characteristic and the 8519:For a finite Galois extension, the 7996:, the field of Laurent series over 6678:, is not an algebraic extension of 6021: 4808:(1882) proved the transcendence of 4362:elements can be constructed as the 3636:is compatible with the addition in 3215:A field may thus be defined as set 2810:with four elements, and is denoted 2721:. The notation is chosen such that 1256: 1176:Even more succinctly: a field is a 528:, provides an elegant proof of the 54:cannot be constructed using only a 24: 13227:The theory of classical valuations 12680:A First Course In Abstract Algebra 12256: 11773:, Chapter V, §14, No. 2, Theorem 1 10947: 9498:and of related groups such as the 9228: 8337: 8258: 8067:. (However, since the addition in 6332:, since it satisfies the equation 5843:, there is a smallest subfield of 5291: 4862: 3311:Root of unity § Cyclic groups 501:, i.e., fields with finitely many 25: 13726: 13690: 13606:Introduction to Cyclotomic Fields 13481:"Algebraische Theorie der Körper" 13379:, Jones and Bartlett Publishers, 11019: 9376:. By elementary means, the group 9049:The set of such formulas for all 7213: 7196:, obtained by adjoining roots of 5922:, there is a minimal subfield of 5401: 5242:is the field of fractions of the 4928:is not itself an integer, unless 4873:can be found in Steinitz's work. 4114:" means to work with the numbers 3317: 1126:of multiplication over addition: 760:a uniquely determined element of 508:The theory of fields proves that 13553:von Staudt, Karl Georg Christian 13190:Lectures on formally real fields 13121:A course in constructive algebra 11148:⟨2, 2, 1, 1, 0, 0⟩ 10893: 10815:, describes the maximal abelian 10701:used cyclotomic fields to prove 10604:The fifth roots of unity form a 9708:norm residue isomorphism theorem 9496:Representations of Galois groups 9259: 9240: 8403: 8290: 8226: 8133:. An application of this is the 8007:(local fields of characteristic 7671:, in the sense that distance of 7206:Fields with additional structure 7080:. Such fields are also known as 6863:purely transcendental extensions 6721:Once again, the field extension 5788: 5721: 4711:(polynomial equations of degree 4160:. For example, taking the prime 4007: 1331:, which can be seen as follows: 929:of addition and multiplication: 871:of addition and multiplication: 764:. The result of the addition of 611:, including the existence of an 443:. A field is thus a fundamental 13570:, SUMS, vol. 151, Springer 13173:10.1090/S0002-9904-1893-00178-X 12886:(2007), Kleiner, Israel (ed.), 12598:Dirichlet, Peter Gustav Lejeune 12333:Z. Math. Logik Grundlagen Math. 12122: 12111: 12100: 12089: 12077: 12066: 12054: 12042: 12031: 12020: 12009: 11997: 11985: 11973: 11957: 11945: 11933: 11921: 11916:van der Put & Singer (2003) 11909: 11898: 11887: 11875: 11863: 11851: 11839: 11827: 11824:, Chapter VI, §2.3, Corollary 1 11815: 11803: 11788: 11776: 11764: 11752: 11740: 11728: 11716: 11704: 11692: 11680: 11664: 11652: 11636: 11618: 11606: 11594: 11582: 11570: 11558: 11546: 11534: 11522: 11510: 11498: 11486: 11474: 11383:, Definition 4.1.1, p. 181 11351: 11337:and finite field extensions of 11321: 11287: 11262: 11239: 11128: 10154:Finite fields are also used in 9878: 9370:finite separable extensions of 8754:is regarded as a polynomial in 8577:, which constructs an explicit 7951: 6980:is algebraically closed, i.e., 5912:. More generally, for a subset 5831:as a subfield. For any element 5595:) which satisfies the equation 4703:. Building on Lagrange's work, 4102:. For a fixed positive integer 2871:denotes an arbitrary field and 13454:, Cambridge University Press, 12414:, Cambridge University Press, 12363:(3 ed.), Waveland Press, 11964:Borceux & Janelidze (2001) 11565:Lidl & Niederreiter (2008) 11553:Lidl & Niederreiter (2008) 11469:Lidl & Niederreiter (2008) 11462: 11450: 11438: 11422: 11410: 11398: 11386: 11374: 11115: 10910: 10897: 10417:is the same as the one of any 10296: 10290: 10282: 10276: 9796: 9769: 9745: 9739: 9652: 9640: 9589: 9583: 9225: 8858:This fact is the beginning of 8312: 8309: 8303: 8300: 7655:, is a "gap" in the rationals 7097:algebraic closure and denoted 6972:fundamental theorem of algebra 6454:, as above. If this degree is 5772: 5731: 5725: 5352: 5319: 4985:, i.e., two ways of modifying 4898:Constructing fields from rings 4261:from being a field. The field 3932:. All field homomorphisms are 3161: 3137: 2897:Consequences of the definition 1707: 1689: 13: 1: 12888:A history of abstract algebra 12624:Graduate Texts in Mathematics 12317:10.1090/S0273-0979-01-00934-X 12162:Allenby, R. B. J. T. (1991), 12136: 12027:Jannsen & Wingberg (1982) 11016:, form such a Field as well. 10239:This makes these functions a 10174:A compact Riemann surface of 9152:is a field. It is denoted by 9061:is algebraically closed. The 8398:linear differential equations 7896:is used in number theory and 6826:is an algebraic extension of 6654:The above-mentioned field of 6215:, that is, if it satisfies a 4831:'s notion included the field 4663:(1801), studied the equation 4329:. This statement holds since 3805:between two fields such that 3601:-fold product of the element 3457:then. For example, the field 3431:is zero. Otherwise, if there 2222:{\displaystyle h={\sqrt {p}}} 1184:and all nonzero elements are 1080:, there exists an element in 1027:, there exists an element in 574: 470:. Many other fields, such as 12575:(2nd ed.), Birkhäuser, 12534:Elements of Abstract Algebra 12146:Introduction to Field Theory 11368: 11327:More precisely, there is an 11134:Equivalently, a field is an 11053:(which is a field), and the 10585:concerning the zeros of the 10520:Number theory: global fields 10440:abstract algebraic varieties 10166:Geometry: field of functions 9244: 9027:= "any polynomial of degree 8870:Basic invariants of a field 8860:Grothendieck's Galois theory 8117:is also true for almost all 7608:between any two elements of 7394:is isomorphic to the set of 6865:) and algebraic extensions. 5979:is the smallest subfield of 5514:) is maximal if and only if 4912:. For example, the integers 4639:to a quadratic equation for 4183:and more generally, for any 472:fields of rational functions 7: 13188:Prestel, Alexander (1984), 12767:Encyclopedia of Mathematics 12626:, vol. 150, New York: 11099:Wedderburn's little theorem 11004:s, with a capital 'F'. The 10535:. They are, by definition, 10123:elliptic curve cryptography 9818:is related to the group of 9550: 8418:of a field by studying the 8377:are fields equipped with a 8082:, which is not the case in 7044:is an algebraic closure of 5476:, this field is called the 4875:Artin & Schreier (1927) 4660:Disquisitiones Arithmeticae 4490:has only two zeros (namely 3445:. It is usually denoted by 3280:are uniquely determined by 3107:when denoting it simply as 2199:, at a distance of exactly 1251: 642:operations of subtraction, 10: 13731: 13566:Wallace, D. A. R. (1998), 13123:, Universitext, Springer, 12958:Ordered exponential fields 12678:Fraleigh, John B. (1976), 12387:Cambridge University Press 10877:imaginary quadratic fields 10545:) or function fields over 10083:in a (large) finite field 9976:and of the proof that any 9961:{\displaystyle x=a^{-1}b.} 8778:, for some indeterminates 8646:{\displaystyle {\sqrt{~}}} 8407: 8394:differential Galois theory 8152:Tamely ramified extensions 7217: 6159:is an infinite extension. 6025: 5469:has only one maximal ideal 4850:to introduce the field of 4537: 4339:over its prime field. The 4244:, which, as was explained 4011: 3926:are arbitrary elements of 3656:Subfields and prime fields 2284: 2281:A field with four elements 2266:{\displaystyle {\sqrt{2}}} 2113: 1920: 1260: 1209:operations (the constants 634:for every nonzero element 29: 13614:10.1007/978-1-4612-1934-7 13568:Groups, Rings, and Fields 13499:10.1515/crll.1910.137.167 13235:10.1007/978-1-4612-0551-7 13129:10.1007/978-1-4419-8640-5 12995:10.1007/978-1-4613-0041-0 12896:10.1007/978-0-8176-4685-1 12682:(2nd ed.), Reading: 12636:10.1007/978-1-4612-5350-1 12449:10.1007/978-3-642-61693-8 12390:. See especially Book 3 ( 12291:(2002), "The octonions", 12166:, Butterworth-Heinemann, 11675:Fricke & Weber (1924) 11481:Beachy & Blair (2006) 11445:Beachy & Blair (2006) 11381:Beachy & Blair (2006) 11329:equivalence of categories 10869:of general number fields 10652:, i.e., a complex number 8579:one-to-one correspondence 8448:primitive element theorem 7056:is quite special: by the 6812:algebraically independent 6425:, i.e., the dimension of 6096:, i.e., the dimension of 6032:The notion of a subfield 5861:, called the subfield of 5127:are equal if and only if 4973:Given a commutative ring 4887:primitive element theorem 4769:defined what he called a 4144:of integers, dividing by 2498: 2303: 2298: 2295: 810:is called the product of 476:algebraic function fields 13289:Schoutens, Hans (2002), 12956:Kuhlmann, Salma (2000), 12660:Escofier, J. P. (2012), 12507:10.1017/CBO9781139171885 12478:Algebra II. Chapters 4–7 12345:10.1002/malq.19920380136 12164:Rings, Fields and Groups 11645:, p. 42, translation by 11555:, Lemma 2.1, Theorem 2.2 11228:are abelian groups, and 11108: 10527:are in the limelight in 10072:factors, for an integer 10017:The sum of three points 9710:, proved around 2000 by 8808:tensor product of fields 7905:. The algebraic closure 6741:is not algebraic (i.e., 6376:generated by an element 6028:Glossary of field theory 4409:in which the polynomial 3962:are called isomorphic). 3382:(which is an element of 3338:of an arbitrary element 2183:), which intersects the 2122:compass and straightedge 1909:Real and complex numbers 1219:constructive mathematics 738:. A binary operation on 518:compass and straightedge 447:which is widely used in 13602:Washington, Lawrence C. 13450:Rings and factorization 13377:Topics in Galois theory 13099:McCoy, Neal H. (1968), 12202:, especially Chapter 13 12144:Adamson, I. T. (2007), 11968:Étale fundamental group 11101:states that all finite 10861:Kronecker's Jugendtraum 10813:Kronecker–Weber theorem 10759:Hasse–Minkowski theorem 10529:algebraic number theory 10492:(the analogue of being 9389:can be shown to be the 8974:elementarily equivalent 7119:is called the field of 7072:elementarily equivalent 6791:in rational fractions. 6569:For example, the field 6460:, then the elements of 6054:(or just extension) of 5498:in the polynomial ring 4806:Ferdinand von Lindemann 4800:'s work in 1844, until 4686:. Gauss deduced that a 4544:algebraic number theory 4469:, so they are zeros of 4090:is not a field because 2802:This field is called a 1949:consist of expressions 1203:existential quantifiers 1065:Multiplicative inverses 973:multiplicative identity 713:Formally, a field is a 495:cryptographic protocols 480:algebraic number fields 13446:Sharpe, David (1987), 13063:Model theory of fields 13041:Lorenz, Falko (2008), 12705:Weber, Heinrich Martin 12148:, Dover Publications, 11222: 10958:field with one element 10932:complex multiplication 10917: 10797:for some number field 10755:local–global principle 10609: 10578:function field analogy 10556:(finite extensions of 10539:(finite extensions of 10436:birational equivalence 10309: 10179: 10042: 9962: 9914:has a unique solution 9806: 9697: 9270: 8948:Model theory of fields 8647: 8611:(cannot be built from 8414:Galois theory studies 8360: 7460: 7362:only has the solution 7353: 7270:Artin–Schreier theorem 7058:Artin–Schreier theorem 6837:. Any field extension 6560: 6507: 5799: 5710:yields an isomorphism 5546:. This yields a field 5359: 5295: 5209: 5009:are the finite fields 4773:, which is a field of 4763: 4760:Richard Dedekind, 1871 4729:algebraic number field 4696:can be constructed if 4095: 4094:is not a prime number. 4076:leaves remainder  3253: 3200: 3168: 3085:The axioms of a field 2267: 2223: 2111: 2085:geometric mean theorem 1918: 1899: 1397: 1192:Alternative definition 1188:under multiplication. 1101:multiplicative inverse 627:multiplicative inverse 516:cannot be done with a 63: 34:. For other uses, see 13647:Mathematische Annalen 13575:Warner, Seth (1989), 12713:(in German), Vieweg, 11232:is distributive over 11223: 10918: 10783:Inverse Galois theory 10703:Fermat's Last Theorem 10603: 10587:Riemann zeta function 10514:minimal model program 10342:meromorphic functions 10338:holomorphic functions 10310: 10173: 10035:on an elliptic curve 10016: 9963: 9807: 9698: 9357:absolute Galois group 9351:Absolute Galois group 9271: 9119:is a field for every 8992:sentences (involving 8648: 8615:), then the zeros of 8361: 7980:finite extensions of 7966:finite extensions of 7795:, for a prime number 7524:non-standard analysis 7458: 7354: 6632:can be simplified to 6561: 6481: 6026:Further information: 5800: 5360: 5275: 5210: 4877:linked the notion of 4829:Heinrich Martin Weber 4771:domain of rationality 4752: 4647:equations of degree 4 4552:Joseph-Louis Lagrange 4515:elements, denoted by 4459:satisfy the equation 4108:, arithmetic "modulo 4057: 3551:binomial coefficients 3254: 3201: 3169: 2268: 2224: 2126:constructible numbers 2116:Constructible numbers 2082: 2075:Constructible numbers 2068:Cartesian coordinates 1916: 1900: 1398: 776:is called the sum of 545:mathematical analysis 60:constructible numbers 46: 13710:Algebraic structures 13412:, Berlin, New York: 13316:Cours d'arithmetique 13013:Niederreiter, Harald 12710:Lehrbuch der Algebra 12557:On Numbers and Games 11247:unramified extension 11169: 10883: 10267: 9974:Gaussian elimination 9930: 9721: 9565: 9395:profinite completion 9214: 8940:are isomorphic (but 8878:transcendence degree 8866:Invariants of fields 8674:Abel–Ruffini theorem 8665:is not solvable for 8628: 8544:that are trivial on 8454:, i.e., of the form 8416:algebraic extensions 8210: 8157:Adjoining arbitrary 7463:An ordered field is 7283: 6929:, with coefficients 6875:algebraically closed 6696:. Elements, such as 6478: 6163:Algebraic extensions 5717: 5675:is irreducible over 5579:contains an element 5272: 5144: 4879:orderings in a field 4707:claimed (1799) that 4655:Carl Friedrich Gauss 3965:A field is called a 3595:th power, i.e., the 3519:. This implies that 3231: 3178: 3134: 3128:multiplicative group 3113:could be confusing. 3091:imply that it is an 2248: 2203: 1413: 1338: 1165:under addition with 530:Abel-Ruffini theorem 292:Group with operators 235:Complemented lattice 70:Algebraic structures 13705:Field (mathematics) 12853:1982InMat..70...71J 12741:Gouvêa, Fernando Q. 12726:Gouvêa, Fernando Q. 12552:Conway, John Horton 11795:Banaschewski (1992) 11136:algebraic structure 11041:-vector spaces are 10859:th roots of unity. 10757:. For example, the 10728:Ostrowski's theorem 10593:(proven in 1974 by 10533:arithmetic geometry 10510:birational geometry 10247:commutative algebra 9845:Matsumoto's theorem 9820:invertible matrices 9795: 9738: 9582: 9510:. For example, the 9063:Lefschetz principle 8653:. For example, the 8581:between the set of 8536:field automorphisms 8512:has characteristic 8375:Differential fields 8370:Differential fields 8180:), respectively of 7854:obtained using the 7788:obtained using the 7538:, in which the set 7342: 7318: 7300: 7274:formally real field 7161:(the ones of order 6879:polynomial equation 6808:transcendence basis 6650:Transcendence bases 6584:is the subfield of 6360:algebraic extension 6305:. For example, the 6217:polynomial equation 5882:. The passage from 5383:formal power series 4893:Constructing fields 4867:Constructing fields 4335:may be viewed as a 4300:Every finite field 4072:, which divided by 3789:Field homomorphisms 3752:, and that for all 3490:has characteristic 3466:has characteristic 3435:a positive integer 2292: 514:squaring the circle 445:algebraic structure 346:Composition algebra 106:Quasigroup and loop 13659:10.1007/BF01446451 13577:Topological fields 13402:Serre, Jean-Pierre 13373:Serre, Jean-Pierre 13344:Serre, Jean-Pierre 13308:Serre, Jean-Pierre 13198:10.1007/BFb0101548 13154:Moore, E. Hastings 12934:10.1007/BF00327219 12861:10.1007/bf01393199 12531:Clark, A. (1984), 12227:10.1007/BF02952522 11848:, Proposition 1.22 11761:, Corollary 13.3.6 11673:, p. 33. See also 11507:, §I.2, p. 10 11431:, §II.2. See also 11359:commutative fields 11218: 11143:, +, ⋅, −, , 0, 1⟩ 11081:algebraic topology 10913: 10827:: it is the field 10809:abelian extensions 10805:Class field theory 10610: 10583:Riemann hypothesis 10305: 10180: 10096:discrete logarithm 10043: 9958: 9816:Algebraic K-theory 9802: 9778: 9724: 9712:Vladimir Voevodsky 9693: 9568: 9334:exponential fields 9330:real closed fields 9266: 8958:mathematical logic 8795:is any field, and 8643: 8356: 7937:and is denoted by 7530:Topological fields 7494:1/2, 1/3, 1/4, ... 7461: 7396:ring homomorphisms 7349: 7328: 7304: 7286: 7173:of characteristic 7082:real closed fields 6869:Closure operations 6656:rational fractions 6582:Gaussian rationals 6556: 6352:is algebraic over 6320:is algebraic over 6179:algebraic elements 5899:is referred to by 5795: 5639:, which satisfies 5355: 5234:rational fractions 5205: 5072:are the fractions 5039:field of fractions 5024:Field of fractions 4871:Elementary notions 4775:rational fractions 4627:Scipione del Ferro 4581:in the expression 4548:algebraic geometry 4509:finite field with 4475:. By contrast, in 4421:zeros. This means 4187:(i.e., any number 4100:modular arithmetic 4096: 3946:, it is called an 3249: 3196: 3164: 2861:Elementary notions 2291: 2275:cube with volume 2 2263: 2219: 2112: 1919: 1895: 1893: 1393: 844:(in these axioms, 722:together with two 709:Classic definition 538:solved in radicals 491:algebraic geometry 64: 13579:, North-Holland, 13423:978-3-540-42192-4 13406:Galois cohomology 13300:978-3-642-13367-1 13282:978-89-6105-804-9 13275:, Kyung Moon SA, 13084:978-1-56881-282-3 13052:978-0-387-72487-4 13026:978-0-521-06567-2 12905:978-0-8176-4684-4 12828:978-0-486-47189-1 12754:978-0-88385-355-9 12671:978-1-4613-0191-2 12602:Dedekind, Richard 12544:978-0-486-64725-8 12495:Cassels, J. W. S. 12474:Bourbaki, Nicolas 12437:Bourbaki, Nicolas 12198:978-0-13-004763-2 12173:978-0-340-54440-2 12155:978-0-486-46266-0 12073:Washington (1997) 11799:Mathoverflow post 11251:abelian extension 11162:, +, −, 0⟩ 11064:Frobenius theorem 11012:, a concept from 10908: 10613:Cyclotomic fields 10472:is very close to 10364:regular functions 10300: 10187:topological space 10005:of the integers. 9508:Galois cohomology 9504:Langlands program 9247: 8982:is also true for 8641: 8635: 8494:are contained in 8427:Galois extensions 8204:perfectoid fields 8135:Ax–Kochen theorem 7883: 7882: 7635:irrational number 7546:topological space 7536:topological field 7465:Dedekind-complete 7430:Archimedean field 7133:ultrafilter lemma 7121:algebraic numbers 7010:algebraic closure 6768:is isomorphic to 6536: 6533: 5958:of two subfields 5786: 5781: 5767: 5621:is obtained from 5318: 5200: 5168: 5155: 4844:Giuseppe Veronese 4827:. In particular, 4767:Leopold Kronecker 4717:Niels Henrik Abel 4709:quintic equations 3607:. Therefore, the 3557:are divisible by 3553:appearing in the 3130:, and denoted by 2865:In this section, 2695: 2694: 2691: 2690: 2496: 2495: 2261: 2217: 1886: 1873: 1860: 1847: 1826: 1803: 1780: 1751: 1722: 1670: 1638: 1620: 1597: 1569: 1543: 1530: 1517: 1504: 1486: 1460: 1447: 1429: 1385: 1362: 1349: 1013:Additive inverses 822:, and is denoted 788:, and is denoted 724:binary operations 621:for all elements 534:quintic equations 466:and the field of 405: 404: 16:(Redirected from 13722: 13715:Abstract algebra 13685: 13634: 13597: 13571: 13562: 13548: 13537: 13525: 13493:(137): 167–309, 13472: 13453: 13442: 13397: 13368: 13339: 13320: 13303: 13285: 13268: 13255: 13223:Ribenboim, Paulo 13218: 13184: 13175: 13149: 13115: 13095: 13076: 13066: 13055: 13037: 13007: 12978: 12952: 12916: 12879: 12831: 12815:Jacobson, Nathan 12810: 12775: 12757: 12736: 12721: 12696: 12674: 12656: 12611: 12593: 12564: 12547: 12527: 12490: 12469: 12432: 12389: 12379:Robertson, E. F. 12373: 12361:Abstract Algebra 12355: 12327: 12310: 12284: 12253: 12201: 12176: 12158: 12131: 12126: 12120: 12115: 12109: 12104: 12098: 12093: 12087: 12081: 12075: 12070: 12064: 12063:, §13, Theorem A 12058: 12052: 12046: 12040: 12035: 12029: 12024: 12018: 12013: 12007: 12004:Schoutens (2002) 12001: 11995: 11989: 11983: 11977: 11971: 11961: 11955: 11954:, Example VI.2.6 11949: 11943: 11937: 11931: 11925: 11919: 11913: 11907: 11902: 11896: 11891: 11885: 11879: 11873: 11867: 11861: 11855: 11849: 11843: 11837: 11836:, §22, Theorem 1 11831: 11825: 11819: 11813: 11810:Ribenboim (1999) 11807: 11801: 11792: 11786: 11780: 11774: 11768: 11762: 11756: 11750: 11749:, Theorem 13.3.4 11744: 11738: 11732: 11726: 11720: 11714: 11708: 11702: 11696: 11690: 11684: 11678: 11668: 11662: 11656: 11650: 11643:Dirichlet (1871) 11640: 11634: 11633: 11622: 11616: 11610: 11604: 11598: 11592: 11586: 11580: 11574: 11568: 11562: 11556: 11550: 11544: 11538: 11532: 11526: 11520: 11514: 11508: 11502: 11496: 11490: 11484: 11478: 11472: 11466: 11460: 11454: 11448: 11442: 11436: 11426: 11420: 11414: 11408: 11402: 11396: 11390: 11384: 11378: 11362: 11355: 11349: 11347: 11336: 11325: 11319: 11317: 11311: 11298: 11291: 11285: 11279: 11273: 11266: 11260: 11258: 11243: 11237: 11235: 11231: 11227: 11225: 11224: 11219: 11217: 11213: 11212: 11211: 11203: 11164: 11163: 11155:is not defined, 11154: 11150: 11149: 11144: 11132: 11126: 11124: 11119: 11074: 11061: 11052: 11046: 11040: 10980: 10976: 10970: 10955: 10939: 10930:, the theory of 10929: 10922: 10920: 10919: 10914: 10909: 10901: 10896: 10874: 10868: 10858: 10849: 10826: 10820: 10802: 10796: 10777: 10766: 10752: 10746: 10735: 10721: 10692: 10686: 10675: 10673: 10666: 10664: 10657: 10647: 10641: 10630: 10606:regular pentagon 10591:Weil conjectures 10575: 10571: 10555: 10544: 10507: 10501: 10483: 10477: 10471: 10456: 10426: 10416: 10410: 10404: 10381: 10371: 10361: 10349: 10335: 10329:complex manifold 10326: 10314: 10312: 10311: 10306: 10301: 10299: 10285: 10271: 10258:integral domains 10244: 10234: 10233: 10197: 10193: 10149: 10116: 10103: 10093: 10078: 10071: 10065: 10040: 10034: 10028: 10022: 10004: 9967: 9965: 9964: 9959: 9951: 9950: 9925: 9919: 9910: 9894: 9874: 9860: 9842: 9811: 9809: 9808: 9803: 9794: 9786: 9768: 9767: 9752: 9737: 9732: 9702: 9700: 9699: 9694: 9689: 9685: 9628: 9623: 9622: 9604: 9603: 9581: 9576: 9545: 9521: 9491: 9480: 9470: 9435: 9428: 9415: 9402: 9388: 9375: 9365: 9346: 9323: 9284: 9275: 9273: 9272: 9267: 9262: 9254: 9253: 9248: 9243: 9238: 9232: 9231: 9206: 9202: 9187: 9172: 9151: 9146:with respect to 9145: 9130: 9124: 9118: 9107: 9097: 9088: 9082: 9076: 9070: 9060: 9055:expresses that 9054: 9044: 9038: 9032: 9026: 9012: 9006: 8999: 8995: 8987: 8981: 8971: 8965: 8939: 8933: 8918: 8903: 8897: 8891: 8885: 8875: 8853: 8831: 8825: 8819: 8801: 8794: 8788: 8777: 8753: 8747: 8739: 8724: 8707: 8697: 8671: 8664: 8655:symmetric groups 8652: 8650: 8649: 8644: 8642: 8640: 8633: 8632: 8620: 8606: 8596: 8572: 8566: 8549: 8543: 8534:is the group of 8533: 8515: 8511: 8505: 8499: 8493: 8487: 8477: 8471: 8437: 8391: 8365: 8363: 8362: 8357: 8352: 8348: 8347: 8343: 8342: 8341: 8340: 8331: 8299: 8298: 8293: 8273: 8269: 8268: 8264: 8263: 8262: 8261: 8252: 8235: 8234: 8229: 8201: 8185: 8179: 8168: 8163:-power roots of 8162: 8147: 8132: 8116: 8097: 8077: 8066: 8052:(referred to as 8051: 8031: 8012: 8006: 7995: 7976: 7947: 7928: 7917: 7911: 7902: 7895: 7879: 7872: 7860:-adic valuation 7859: 7850: 7843: 7829: 7819: 7812: 7800: 7785: 7776: 7758: 7756: 7743: 7722: 7721: 7718: 7707: 7705: 7686: 7676: 7670: 7660: 7654: 7653: 7652: 7641: 7632: 7626: 7613: 7604:that measures a 7600: 7567: 7557: 7543: 7520: 7504: 7495: 7490: 7451: 7438: 7424: 7418: 7408: 7393: 7387: 7358: 7356: 7355: 7350: 7341: 7336: 7317: 7312: 7299: 7294: 7267: 7263: 7256: 7249: 7242: 7201: 7192:is the field of 7187: 7176: 7172: 7166: 7160: 7149: 7130: 7129: 7118: 7112: 7111: 7104: 7103: 7092: 7079: 7069: 7063: 7055: 7049: 7043: 7034: 7028: 7018: 7006: 6997: 6979: 6969: 6955: 6928: 6860: 6846: 6836: 6825: 6819: 6805: 6799: 6790: 6784: 6778: 6767: 6756: 6746: 6740: 6734: 6717: 6711: 6701: 6695: 6689: 6683: 6673: 6667: 6645: 6631: 6617: 6611: 6605: 6599: 6589: 6579: 6565: 6563: 6562: 6557: 6546: 6545: 6534: 6531: 6527: 6526: 6517: 6516: 6506: 6495: 6470: 6459: 6453: 6447: 6441: 6435: 6424: 6410: 6399: 6393: 6387: 6381: 6375: 6357: 6351: 6341: 6331: 6326:, and even over 6325: 6319: 6313: 6304: 6292: 6288: 6266: 6214: 6198: 6190: 6176: 6158: 6148: 6144: 6128: 6114: 6107: 6101: 6088: 6082: 6072: 6059: 6047: 6041: 6022:Field extensions 6017: 6011: 6005: 5999: 5998: 5990: 5985:containing both 5984: 5978: 5972: 5971: 5963: 5950: 5939: 5933: 5927: 5921: 5911: 5898: 5887: 5881: 5870: 5860: 5854: 5848: 5842: 5836: 5830: 5824: 5818: 5804: 5802: 5801: 5796: 5791: 5784: 5783: 5782: 5780: 5775: 5770: 5765: 5764: 5760: 5753: 5752: 5738: 5724: 5709: 5703: 5696: 5687: 5680: 5674: 5668: 5658: 5651: 5645: 5638: 5626: 5620: 5610: 5604: 5594: 5584: 5578: 5569: 5563: 5541: 5535: 5529: 5519: 5513: 5507: 5497: 5485: 5475: 5467: 5461: 5451: 5445: 5444: 5430: 5420: 5411: 5397: 5391: 5380: 5373: 5364: 5362: 5361: 5356: 5345: 5344: 5332: 5316: 5315: 5314: 5305: 5304: 5294: 5289: 5261: 5250: 5241: 5231: 5214: 5212: 5211: 5206: 5201: 5199: 5191: 5174: 5169: 5161: 5156: 5148: 5136: 5126: 5116: 5107:. Two fractions 5106: 5099: 5093: 5087: 5081: 5071: 5056: 5050: 5036: 5019: 5008: 5002: 4996: 4990: 4984: 4978: 4965: 4961: 4955: 4943: 4934: 4927: 4917: 4911: 4904:commutative ring 4855: 4841: 4820:, respectively. 4819: 4813: 4798:Joseph Liouville 4795: 4784: 4761: 4736:Richard Dedekind 4714: 4702: 4693: 4681: 4672: 4644: 4638: 4620: 4611: 4579:cubic polynomial 4576: 4533: 4525: 4514: 4503: 4497: 4493: 4489: 4483: 4474: 4468: 4458: 4449: 4442: 4436: 4426: 4420: 4414: 4408: 4393: 4388: 4378: 4361: 4348: 4334: 4328: 4321: 4316:elements, where 4315: 4305: 4296: 4285: 4279: 4273: 4260: 4243: 4230: 4219: 4206: 4192: 4185:composite number 4182: 4175: 4166: 4155: 4149: 4143: 4134: 4113: 4107: 4093: 4089: 4079: 4075: 4071: 4065: 4061: 4050: 4046: 4042: 4033: 4003: 3997: 3986: 3980: 3974: 3961: 3955: 3941: 3931: 3925: 3916: 3907: 3889: 3847: 3804: 3784: 3778: 3771: 3764: 3758: 3751: 3745: 3735: 3725: 3711: 3704: 3700: 3694: 3688: 3682: 3676: 3670: 3651: 3647: 3641: 3632: 3631: 3606: 3600: 3594: 3589:factors) is the 3588: 3582: 3569: 3562: 3555:binomial formula 3549:since all other 3544: 3543: 3537: 3518: 3512: 3506: 3495: 3489: 3480: 3469: 3465: 3456: 3450: 3440: 3430: 3424: 3418: 3412:is said to have 3411: 3401: 3387: 3381: 3364: 3358: 3349: 3343: 3337: 3327: 3292: 3289:The requirement 3285: 3279: 3273: 3258: 3256: 3255: 3250: 3226: 3220: 3211: 3205: 3203: 3202: 3197: 3173: 3171: 3170: 3165: 3125: 3112: 3106: 3090: 3076: 3069: 3057: 3028: 3016: 3011: 3004: 2998: 2985: 2955: 2948: 2944: 2938: 2932: 2922: 2918: 2907: 2892: 2882: 2876: 2870: 2856: 2852: 2838: 2832: 2822: 2818: 2797: 2796: 2765: 2736: 2732: 2726: 2720: 2714: 2708: 2702: 2687: 2680: 2673: 2666: 2659: 2650: 2643: 2636: 2629: 2622: 2613: 2606: 2599: 2598: 2590: 2589: 2581: 2572: 2565: 2558: 2557: 2549: 2548: 2540: 2531: 2524: 2517: 2510: 2500: 2499: 2492: 2485: 2478: 2471: 2464: 2455: 2448: 2441: 2434: 2427: 2418: 2411: 2404: 2403: 2395: 2394: 2386: 2377: 2370: 2363: 2362: 2354: 2353: 2345: 2336: 2329: 2322: 2315: 2305: 2304: 2293: 2290: 2272: 2270: 2269: 2264: 2262: 2260: 2252: 2241:has length one. 2240: 2234: 2228: 2226: 2225: 2220: 2218: 2213: 2198: 2192: 2182: 2173: 2163: 2157: 2151: 2141: 2109: 2103: 2096: 2058: 1999: 1993: 1982: 1972: 1962: 1948: 1939: 1904: 1902: 1901: 1896: 1894: 1887: 1879: 1874: 1866: 1861: 1853: 1848: 1840: 1836: 1827: 1825: 1817: 1809: 1804: 1802: 1794: 1786: 1781: 1779: 1768: 1757: 1752: 1750: 1739: 1728: 1723: 1721: 1710: 1684: 1680: 1671: 1669: 1661: 1644: 1639: 1631: 1626: 1622: 1621: 1619: 1611: 1603: 1598: 1596: 1588: 1580: 1570: 1562: 1558: 1549: 1545: 1544: 1536: 1531: 1523: 1518: 1510: 1505: 1497: 1487: 1479: 1475: 1466: 1462: 1461: 1453: 1448: 1440: 1430: 1422: 1419: 1402: 1400: 1399: 1394: 1386: 1384: 1376: 1368: 1363: 1355: 1350: 1342: 1330: 1320: 1313: 1302: 1291: 1285: 1279: 1257:Rational numbers 1247: 1236: 1232: 1228: 1216: 1212: 1199:Division by zero 1183: 1178:commutative ring 1172: 1168: 1156: 1119: 1108: 1098: 1091: 1085: 1079: 1073: 1060: 1049: 1042:additive inverse 1039: 1032: 1026: 1020: 1008: 998: 988: 982: 978: 964: 946: 922: 896: 863: 855: 851: 847: 837: 827: 821: 815: 809: 803: 797: 787: 781: 775: 769: 763: 759: 755: 741: 729: 721: 703: 683: 661: 652:, and division, 651: 637: 633: 624: 620: 613:additive inverse 605:rational numbers 602: 592: 526:field extensions 510:angle trisection 460:rational numbers 397: 390: 383: 172:Commutative ring 101:Rack and quandle 66: 65: 21: 13730: 13729: 13725: 13724: 13723: 13721: 13720: 13719: 13695: 13694: 13693: 13688: 13639:Weber, Heinrich 13624: 13587: 13477:Steinitz, Ernst 13462: 13424: 13414:Springer-Verlag 13387: 13358: 13329: 13301: 13283: 13266: 13245: 13208: 13139: 13105:Allyn and Bacon 13085: 13053: 13027: 13005: 12968: 12928:(1–2): 40–154, 12906: 12884:Kleiner, Israel 12829: 12760: 12755: 12694: 12672: 12646: 12628:Springer-Verlag 12616:Eisenbud, David 12583: 12545: 12517: 12488: 12459: 12422: 12412:Galois theories 12371: 12274:10.2307/1970573 12199: 12174: 12156: 12139: 12134: 12127: 12123: 12116: 12112: 12105: 12101: 12094: 12090: 12082: 12078: 12071: 12067: 12061:Eisenbud (1995) 12059: 12055: 12047: 12043: 12036: 12032: 12025: 12021: 12016:Kuhlmann (2000) 12014: 12010: 12002: 11998: 11994:, Corollary 1.2 11990: 11986: 11982:, Theorem 6.4.8 11978: 11974: 11962: 11958: 11950: 11946: 11938: 11934: 11930:, Theorem V.4.6 11926: 11922: 11914: 11910: 11903: 11899: 11892: 11888: 11880: 11876: 11868: 11864: 11856: 11852: 11844: 11840: 11832: 11828: 11822:Bourbaki (1988) 11820: 11816: 11808: 11804: 11793: 11789: 11781: 11777: 11771:Bourbaki (1988) 11769: 11765: 11757: 11753: 11745: 11741: 11735:Jacobson (2009) 11733: 11729: 11723:Eisenbud (1995) 11721: 11717: 11709: 11705: 11697: 11693: 11687:Bourbaki (1994) 11685: 11681: 11669: 11665: 11659:Bourbaki (1994) 11657: 11653: 11641: 11637: 11624: 11623: 11619: 11611: 11607: 11601:Bourbaki (1994) 11599: 11595: 11587: 11583: 11575: 11571: 11567:, Theorem 1.2.5 11563: 11559: 11551: 11547: 11539: 11535: 11527: 11523: 11517:Escofier (2012) 11515: 11511: 11503: 11499: 11491: 11487: 11483:, p. 120, Ch. 3 11479: 11475: 11467: 11463: 11455: 11451: 11447:, p. 120, Ch. 3 11443: 11439: 11427: 11423: 11415: 11411: 11403: 11399: 11393:Fraleigh (1976) 11391: 11387: 11379: 11375: 11371: 11366: 11365: 11356: 11352: 11338: 11332: 11326: 11322: 11316: 11307: 11306: 11300: 11294: 11292: 11288: 11275: 11269: 11267: 11263: 11254: 11249:or the maximal 11244: 11240: 11233: 11229: 11204: 11202: 11201: 11176: 11172: 11170: 11167: 11166: 11157: 11156: 11152: 11147: 11146: 11138: 11133: 11129: 11122: 11120: 11116: 11111: 11085:Michel Kervaire 11070: 11057: 11048: 11042: 11036: 11022: 11006:surreal numbers 10996:There are also 10978: 10972: 10969: 10961: 10953: 10950: 10948:Related notions 10942:elliptic curves 10935: 10924: 10900: 10892: 10884: 10881: 10880: 10870: 10864: 10854: 10843: 10831: 10822: 10816: 10798: 10786: 10776: 10768: 10762: 10748: 10745: 10737: 10731: 10709: 10688: 10677: 10669: 10668: 10660: 10659: 10658:that satisfies 10653: 10643: 10642:is a primitive 10640: 10632: 10628: 10616: 10573: 10565: 10557: 10554: 10546: 10540: 10522: 10503: 10497: 10479: 10473: 10462: 10447: 10422: 10412: 10406: 10402: 10393: 10383: 10377: 10367: 10357: 10345: 10331: 10322: 10286: 10272: 10270: 10268: 10265: 10264: 10240: 10203: 10202: 10195: 10189: 10168: 10133: 10108: 10104:to an equation 10099: 10092: 10084: 10073: 10067: 10049: 10036: 10030: 10024: 10018: 10011: 10000: 9943: 9939: 9931: 9928: 9927: 9921: 9915: 9902: 9889: 9886: 9881: 9868: 9862: 9854: 9848: 9833: 9827: 9787: 9782: 9763: 9759: 9748: 9733: 9728: 9722: 9719: 9718: 9633: 9629: 9624: 9618: 9614: 9599: 9595: 9577: 9572: 9566: 9563: 9562: 9556:Milnor K-theory 9553: 9543: 9528: 9517: 9516:central simple 9490: 9482: 9476: 9458: 9449: 9440: 9430: 9426: 9417: 9416:are the fields 9413: 9404: 9398: 9386: 9377: 9371: 9359: 9353: 9337: 9317: 9309: 9303: 9295: 9289: 9280: 9258: 9249: 9239: 9237: 9236: 9221: 9217: 9215: 9212: 9211: 9204: 9201: 9193: 9186: 9178: 9171: 9163: 9156: 9147: 9144: 9136: 9126: 9120: 9117: 9109: 9103: 9093: 9084: 9078: 9072: 9066: 9056: 9050: 9040: 9034: 9028: 9017: 9013:an integer, is 9008: 9001: 8997: 8993: 8983: 8977: 8967: 8961: 8950: 8935: 8932: 8923: 8914: 8913: 8899: 8893: 8887: 8881: 8871: 8868: 8845: 8836: 8827: 8821: 8811: 8796: 8790: 8787: 8779: 8775: 8765: 8755: 8749: 8746: 8735: 8734: 8720: 8711: 8699: 8680: 8666: 8663: 8657: 8636: 8631: 8629: 8626: 8625: 8616: 8598: 8586: 8568: 8554: 8545: 8539: 8523: 8513: 8507: 8501: 8495: 8489: 8483: 8467: 8458: 8429: 8412: 8406: 8382: 8372: 8336: 8332: 8327: 8323: 8319: 8315: 8294: 8289: 8288: 8287: 8283: 8257: 8253: 8248: 8244: 8240: 8236: 8230: 8225: 8224: 8223: 8219: 8211: 8208: 8207: 8195: 8187: 8181: 8178: 8170: 8164: 8158: 8146: 8138: 8126: 8118: 8115: 8107: 8091: 8083: 8076: 8068: 8065: 8057: 8045: 8033: 8030: 8018: 8008: 8005: 7997: 7989: 7981: 7975: 7967: 7954: 7946: 7938: 7927: 7919: 7916: 7907: 7906: 7898: 7894: 7886: 7875: 7863: 7855: 7846: 7844: 7834: 7825: 7815: 7811: 7803: 7796: 7793:-adic valuation 7781: 7771: 7748: 7746: 7739: 7713: 7693: 7691: 7678: 7672: 7662: 7656: 7650: 7648: 7643: 7637: 7628: 7622: 7609: 7583: 7570:continuous maps 7559: 7549: 7539: 7532: 7516: 7500: 7493: 7486: 7447: 7436: 7420: 7414: 7411:quadratic forms 7402: 7389: 7385: 7376: 7369: 7363: 7337: 7332: 7313: 7308: 7295: 7290: 7284: 7281: 7280: 7265: 7258: 7251: 7244: 7233: 7222: 7216: 7208: 7197: 7178: 7174: 7168: 7162: 7159: 7151: 7148: 7140: 7137:axiom of choice 7125: 7124: 7114: 7107: 7106: 7099: 7098: 7088: 7075: 7065: 7061: 7051: 7045: 7039: 7030: 7024: 7014: 7002: 6992: 6975: 6961: 6960:has a solution 6945: 6938: 6930: 6926: 6916: 6906: 6892: 6884: 6871: 6848: 6838: 6827: 6821: 6815: 6801: 6795: 6786: 6780: 6769: 6758: 6752: 6742: 6736: 6722: 6713: 6707: 6697: 6691: 6685: 6679: 6669: 6658: 6652: 6633: 6619: 6613: 6607: 6601: 6591: 6585: 6570: 6541: 6537: 6522: 6518: 6512: 6508: 6496: 6485: 6479: 6476: 6475: 6461: 6455: 6449: 6443: 6437: 6426: 6412: 6401: 6395: 6389: 6388:if and only if 6383: 6377: 6366: 6353: 6347: 6336: 6327: 6321: 6315: 6309: 6302: 6294: 6290: 6287: 6280: 6272: 6264: 6254: 6244: 6230: 6222: 6212: 6196: 6182: 6168: 6165: 6150: 6146: 6143: 6136: 6130: 6120: 6112: 6103: 6097: 6084: 6078: 6064: 6055: 6051:field extension 6043: 6033: 6030: 6024: 6013: 6007: 6001: 5996: 5992: 5986: 5980: 5974: 5969: 5965: 5959: 5941: 5935: 5929: 5923: 5913: 5907: 5889: 5883: 5872: 5866: 5856: 5850: 5844: 5838: 5832: 5826: 5820: 5814: 5811: 5787: 5776: 5771: 5769: 5768: 5748: 5744: 5743: 5739: 5734: 5720: 5718: 5715: 5714: 5699: 5698: 5683: 5682: 5676: 5670: 5654: 5653: 5641: 5640: 5636: 5622: 5616: 5600: 5599: 5590: 5580: 5574: 5559: 5550: 5537: 5531: 5525: 5515: 5509: 5499: 5493: 5481: 5471: 5463: 5457: 5447: 5436: 5435: 5426: 5416: 5407: 5404: 5393: 5386: 5375: 5369: 5340: 5336: 5328: 5310: 5306: 5300: 5296: 5290: 5279: 5273: 5270: 5269: 5252: 5246: 5244:polynomial ring 5237: 5222: 5192: 5175: 5173: 5160: 5147: 5145: 5142: 5141: 5128: 5118: 5108: 5101: 5095: 5089: 5083: 5073: 5062: 5052: 5041: 5032: 5030:integral domain 5026: 5018: 5010: 5004: 4998: 4992: 4986: 4980: 4974: 4963: 4957: 4953: 4939: 4929: 4923: 4913: 4907: 4900: 4895: 4858:Steinitz (1910) 4856:-adic numbers. 4851: 4840: 4832: 4815: 4809: 4802:Charles Hermite 4786: 4779: 4762: 4759: 4721:Évariste Galois 4712: 4697: 4689: 4677: 4667: 4640: 4634: 4616: 4609: 4599: 4592: 4585: 4575: 4568: 4561: 4555: 4540: 4527: 4524: 4516: 4510: 4499: 4495: 4491: 4485: 4482: 4476: 4470: 4460: 4457: 4451: 4444: 4438: 4432: 4422: 4416: 4410: 4407: 4399: 4384: 4374: 4373: 4364:splitting field 4353: 4344: 4330: 4323: 4317: 4307: 4301: 4295: 4287: 4281: 4275: 4262: 4249: 4232: 4221: 4208: 4194: 4188: 4177: 4174: 4168: 4161: 4151: 4145: 4139: 4118: 4109: 4103: 4091: 4081: 4077: 4073: 4067: 4063: 4059: 4048: 4044: 4041: 4035: 4032: 4026: 4016: 4010: 3999: 3996: 3988: 3982: 3976: 3970: 3957: 3951: 3950:(or the fields 3937: 3927: 3924: 3918: 3915: 3909: 3906: 3900: 3891: 3887: 3876: 3865: 3859: 3849: 3845: 3834: 3823: 3816: 3806: 3792: 3780: 3773: 3766: 3760: 3753: 3747: 3737: 3727: 3713: 3712:, that for all 3706: 3702: 3696: 3695:is a subset of 3690: 3689:. Equivalently 3684: 3678: 3677:is a subset of 3672: 3666: 3658: 3649: 3643: 3637: 3627: 3614: 3602: 3596: 3590: 3584: 3565: 3564: 3558: 3539: 3533: 3523: 3514: 3508: 3497: 3491: 3485: 3471: 3467: 3464: 3458: 3452: 3446: 3436: 3426: 3420: 3416: 3407: 3396: 3383: 3369: 3360: 3354: 3345: 3339: 3329: 3323: 3320: 3290: 3281: 3275: 3268: 3232: 3229: 3228: 3222: 3216: 3207: 3179: 3176: 3175: 3135: 3132: 3131: 3121: 3116:Similarly, the 3108: 3100: 3086: 3083: 3071: 3060: 3031: 3019: 3014: 3009: 3000: 2994: 2988:integral domain 2957: 2950: 2946: 2940: 2934: 2927: 2920: 2909: 2902: 2899: 2888: 2878: 2872: 2866: 2863: 2854: 2851: 2845: 2834: 2828: 2820: 2817: 2811: 2768: 2767: 2766:, which equals 2741: 2734: 2728: 2722: 2716: 2710: 2704: 2698: 2683: 2676: 2669: 2662: 2655: 2646: 2639: 2632: 2625: 2618: 2609: 2602: 2594: 2593: 2585: 2584: 2577: 2568: 2561: 2553: 2552: 2544: 2543: 2536: 2527: 2520: 2513: 2506: 2488: 2481: 2474: 2467: 2460: 2451: 2444: 2437: 2430: 2423: 2414: 2407: 2399: 2398: 2390: 2389: 2382: 2373: 2366: 2358: 2357: 2349: 2348: 2341: 2332: 2325: 2318: 2311: 2299:Multiplication 2289: 2283: 2256: 2251: 2249: 2246: 2245: 2236: 2230: 2212: 2204: 2201: 2200: 2194: 2188: 2178: 2174:(center at the 2169: 2159: 2153: 2147: 2137: 2118: 2105: 2098: 2088: 2077: 2004: 1995: 1988: 1978: 1964: 1953: 1944: 1942:complex numbers 1935: 1929: 1921:Main articles: 1911: 1892: 1891: 1878: 1865: 1852: 1839: 1837: 1835: 1829: 1828: 1818: 1810: 1808: 1795: 1787: 1785: 1769: 1758: 1756: 1740: 1729: 1727: 1711: 1685: 1683: 1681: 1679: 1673: 1672: 1662: 1645: 1643: 1630: 1612: 1604: 1602: 1589: 1581: 1579: 1578: 1574: 1561: 1559: 1557: 1551: 1550: 1535: 1522: 1509: 1496: 1495: 1491: 1478: 1476: 1474: 1468: 1467: 1452: 1439: 1438: 1434: 1421: 1416: 1414: 1411: 1410: 1377: 1369: 1367: 1354: 1341: 1339: 1336: 1335: 1322: 1315: 1304: 1297: 1287: 1281: 1271: 1265: 1263:Rational number 1259: 1254: 1238: 1234: 1230: 1226: 1214: 1210: 1194: 1181: 1170: 1166: 1127: 1110: 1104: 1093: 1087: 1081: 1075: 1068: 1051: 1045: 1034: 1028: 1022: 1016: 1000: 990: 984: 980: 976: 948: 930: 898: 872: 861: 853: 849: 845: 829: 823: 817: 811: 805: 799: 789: 783: 777: 771: 765: 761: 757: 743: 739: 727: 717: 711: 687: 666: 662:, by defining: 653: 643: 635: 629: 622: 615: 594: 584: 577: 569:Function fields 468:complex numbers 462:, the field of 401: 372: 371: 370: 341:Non-associative 323: 312: 311: 301: 281: 270: 269: 258:Map of lattices 254: 250:Boolean algebra 245:Heyting algebra 219: 208: 207: 201: 182:Integral domain 146: 135: 134: 128: 82: 39: 28: 23: 22: 18:Field (algebra) 15: 12: 11: 5: 13728: 13718: 13717: 13712: 13707: 13692: 13691:External links 13689: 13687: 13686: 13653:(4): 521–549, 13635: 13622: 13598: 13585: 13572: 13563: 13549: 13538: 13526: 13473: 13460: 13443: 13422: 13398: 13385: 13369: 13356: 13340: 13327: 13304: 13299: 13286: 13281: 13260:Scholze, Peter 13256: 13243: 13219: 13206: 13185: 13150: 13137: 13116: 13096: 13083: 13074:10.1.1.36.8448 13056: 13051: 13038: 13025: 13011:Lidl, Rudolf; 13008: 13003: 12979: 12966: 12953: 12917: 12904: 12890:, Birkhäuser, 12880: 12832: 12827: 12811: 12776: 12758: 12753: 12737: 12722: 12701:Fricke, Robert 12697: 12692: 12684:Addison-Wesley 12675: 12670: 12657: 12644: 12612: 12594: 12581: 12565: 12562:Academic Press 12548: 12543: 12528: 12515: 12491: 12486: 12470: 12457: 12433: 12420: 12407: 12398:) and Book 6 ( 12377:Blyth, T. S.; 12374: 12369: 12356: 12339:(4): 383–385, 12328: 12301:(2): 145–205, 12285: 12268:(2): 239–271, 12254: 12211:Schreier, Otto 12203: 12197: 12181:Artin, Michael 12177: 12172: 12159: 12154: 12140: 12138: 12135: 12133: 12132: 12121: 12110: 12099: 12088: 12076: 12065: 12053: 12041: 12030: 12019: 12008: 11996: 11984: 11972: 11956: 11944: 11932: 11920: 11908: 11905:Scholze (2014) 11897: 11886: 11874: 11862: 11860:, Theorem 1.23 11858:Prestel (1984) 11850: 11846:Prestel (1984) 11838: 11826: 11814: 11812:, p. 186, §7.1 11802: 11787: 11775: 11763: 11751: 11739: 11727: 11715: 11703: 11691: 11679: 11663: 11651: 11647:Kleiner (2007) 11635: 11617: 11605: 11593: 11589:Kiernan (1971) 11581: 11577:Kleiner (2007) 11569: 11557: 11545: 11541:Adamson (2007) 11533: 11529:Adamson (2007) 11521: 11509: 11505:Adamson (2007) 11497: 11493:Wallace (1998) 11485: 11473: 11471:, Example 1.62 11461: 11459:, Chapter 13.4 11449: 11437: 11421: 11409: 11397: 11385: 11372: 11370: 11367: 11364: 11363: 11350: 11320: 11312: 11302: 11286: 11261: 11238: 11216: 11210: 11207: 11200: 11197: 11194: 11191: 11188: 11185: 11182: 11179: 11175: 11127: 11113: 11112: 11110: 11107: 11103:division rings 11021: 11020:Division rings 11018: 10998:proper classes 10965: 10949: 10946: 10912: 10907: 10904: 10899: 10895: 10891: 10888: 10851: 10850: 10839: 10807:describes the 10772: 10741: 10724: 10723: 10636: 10624: 10595:Pierre Deligne 10561: 10550: 10521: 10518: 10398: 10391: 10316: 10315: 10304: 10298: 10295: 10292: 10289: 10284: 10281: 10278: 10275: 10237: 10236: 10185:on a suitable 10167: 10164: 10152: 10151: 10127:elliptic curve 10119: 10118: 10088: 10081: 10080: 10010: 10007: 9987:The theory of 9970:linear algebra 9957: 9954: 9949: 9946: 9942: 9938: 9935: 9912: 9911: 9885: 9882: 9880: 9877: 9866: 9852: 9831: 9813: 9812: 9801: 9798: 9793: 9790: 9785: 9781: 9777: 9774: 9771: 9766: 9762: 9758: 9755: 9751: 9747: 9744: 9741: 9736: 9731: 9727: 9704: 9703: 9692: 9688: 9684: 9681: 9678: 9675: 9672: 9669: 9666: 9663: 9660: 9657: 9654: 9651: 9648: 9645: 9642: 9639: 9636: 9632: 9627: 9621: 9617: 9613: 9610: 9607: 9602: 9598: 9594: 9591: 9588: 9585: 9580: 9575: 9571: 9558:is defined as 9552: 9549: 9548: 9547: 9541: 9486: 9473: 9472: 9454: 9445: 9422: 9409: 9382: 9352: 9349: 9326: 9325: 9313: 9305: 9299: 9291: 9277: 9276: 9265: 9261: 9257: 9252: 9246: 9242: 9235: 9230: 9227: 9224: 9220: 9197: 9182: 9175: 9174: 9167: 9158: 9140: 9113: 9047: 9046: 9039:has a zero in 8956:, a branch of 8949: 8946: 8928: 8919: 8867: 8864: 8856: 8855: 8841: 8804: 8803: 8783: 8770: 8763: 8744: 8729: 8709: 8659: 8639: 8613:abelian groups 8480: 8479: 8408:Main article: 8405: 8402: 8371: 8368: 8367: 8366: 8355: 8351: 8346: 8339: 8335: 8330: 8326: 8322: 8318: 8314: 8311: 8308: 8305: 8302: 8297: 8292: 8286: 8282: 8279: 8276: 8272: 8267: 8260: 8256: 8251: 8247: 8243: 8239: 8233: 8228: 8222: 8218: 8215: 8191: 8174: 8155: 8149: 8142: 8122: 8111: 8087: 8078:is done using 8072: 8061: 8041: 8026: 8015: 8014: 8001: 7985: 7978: 7971: 7953: 7950: 7942: 7923: 7912: 7903:-adic analysis 7890: 7881: 7880: 7873: 7861: 7852: 7831: 7830: 7823: 7807: 7801: 7786: 7778: 7777: 7769: 7764: 7761:absolute value 7744: 7736: 7735: 7734:zero sequence 7732: 7729: 7726: 7689:absolute value 7602: 7601: 7531: 7528: 7483:bounded subset 7444:infinitesimals 7440: 7439: 7381: 7374: 7367: 7360: 7359: 7348: 7345: 7340: 7335: 7331: 7327: 7324: 7321: 7316: 7311: 7307: 7303: 7298: 7293: 7289: 7218:Main article: 7215: 7214:Ordered fields 7212: 7207: 7204: 7194:Puiseux series 7190:Laurent series 7155: 7144: 7038:By the above, 6999: 6998: 6958: 6957: 6943: 6934: 6924: 6914: 6901: 6888: 6870: 6867: 6704:transcendental 6690:whose zero is 6651: 6648: 6567: 6566: 6555: 6552: 6549: 6544: 6540: 6530: 6525: 6521: 6515: 6511: 6505: 6502: 6499: 6494: 6491: 6488: 6484: 6471:have the form 6344: 6343: 6307:imaginary unit 6298: 6285: 6276: 6269: 6268: 6262: 6252: 6239: 6226: 6164: 6161: 6145:are of degree 6141: 6134: 6117: 6116: 6075: 6074: 6023: 6020: 5973:of some field 5819:, and a field 5810: 5807: 5806: 5805: 5794: 5790: 5779: 5774: 5763: 5759: 5756: 5751: 5747: 5742: 5737: 5733: 5730: 5727: 5723: 5633:imaginary unit 5613: 5612: 5571: 5570: 5508:(over a field 5423:surjective map 5421:by means of a 5403: 5402:Residue fields 5400: 5366: 5365: 5354: 5351: 5348: 5343: 5339: 5335: 5331: 5327: 5324: 5321: 5313: 5309: 5303: 5299: 5293: 5288: 5285: 5282: 5278: 5264:Laurent series 5216: 5215: 5204: 5198: 5195: 5190: 5187: 5184: 5181: 5178: 5172: 5167: 5164: 5159: 5154: 5151: 5025: 5022: 5014: 4922:of an integer 4899: 4896: 4894: 4891: 4836: 4757: 4674: 4673: 4631:François Viète 4621:being a third 4613: 4612: 4607: 4597: 4590: 4573: 4566: 4559: 4539: 4536: 4520: 4480: 4455: 4403: 4396: 4395: 4291: 4172: 4136: 4135: 4129:= {0, 1, ..., 4039: 4030: 4012:Main article: 4009: 4006: 3992: 3922: 3913: 3902: 3896: 3885: 3874: 3863: 3857: 3843: 3832: 3821: 3814: 3701:that contains 3657: 3654: 3634: 3633: 3547: 3546: 3462: 3414:characteristic 3404: 3403: 3390: 3389: 3350:by a positive 3319: 3318:Characteristic 3316: 3248: 3245: 3242: 3239: 3236: 3195: 3192: 3189: 3186: 3183: 3163: 3160: 3157: 3154: 3151: 3148: 3145: 3142: 3139: 3097:additive group 3082: 3079: 3078: 3077: 3058: 3029: 3017: 3012: 2898: 2895: 2883:are arbitrary 2862: 2859: 2849: 2827:consisting of 2815: 2800: 2799: 2693: 2692: 2689: 2688: 2681: 2674: 2667: 2660: 2652: 2651: 2644: 2637: 2630: 2623: 2615: 2614: 2607: 2600: 2591: 2582: 2574: 2573: 2566: 2559: 2550: 2541: 2533: 2532: 2525: 2518: 2511: 2504: 2497: 2494: 2493: 2486: 2479: 2472: 2465: 2457: 2456: 2449: 2442: 2435: 2428: 2420: 2419: 2412: 2405: 2396: 2387: 2379: 2378: 2371: 2364: 2355: 2346: 2338: 2337: 2330: 2323: 2316: 2309: 2301: 2300: 2297: 2285:Main article: 2282: 2279: 2259: 2255: 2216: 2211: 2208: 2114:Main article: 2076: 2073: 2060: 2059: 1985:imaginary unit 1975: 1974: 1927:Complex number 1910: 1907: 1906: 1905: 1890: 1885: 1882: 1877: 1872: 1869: 1864: 1859: 1856: 1851: 1846: 1843: 1838: 1834: 1831: 1830: 1824: 1821: 1816: 1813: 1807: 1801: 1798: 1793: 1790: 1784: 1778: 1775: 1772: 1767: 1764: 1761: 1755: 1749: 1746: 1743: 1738: 1735: 1732: 1726: 1720: 1717: 1714: 1709: 1706: 1703: 1700: 1697: 1694: 1691: 1688: 1682: 1678: 1675: 1674: 1668: 1665: 1660: 1657: 1654: 1651: 1648: 1642: 1637: 1634: 1629: 1625: 1618: 1615: 1610: 1607: 1601: 1595: 1592: 1587: 1584: 1577: 1573: 1568: 1565: 1560: 1556: 1553: 1552: 1548: 1542: 1539: 1534: 1529: 1526: 1521: 1516: 1513: 1508: 1503: 1500: 1494: 1490: 1485: 1482: 1477: 1473: 1470: 1469: 1465: 1459: 1456: 1451: 1446: 1443: 1437: 1433: 1428: 1425: 1420: 1418: 1404: 1403: 1392: 1389: 1383: 1380: 1375: 1372: 1366: 1361: 1358: 1353: 1348: 1345: 1261:Main article: 1258: 1255: 1253: 1250: 1193: 1190: 1159: 1158: 1124:Distributivity 1121: 1062: 1010: 966: 924: 856:are arbitrary 736:multiplication 710: 707: 706: 705: 685: 576: 573: 557:linear algebra 429:multiplication 403: 402: 400: 399: 392: 385: 377: 374: 373: 369: 368: 363: 358: 353: 348: 343: 338: 332: 331: 330: 324: 318: 317: 314: 313: 310: 309: 306:Linear algebra 300: 299: 294: 289: 283: 282: 276: 275: 272: 271: 268: 267: 264:Lattice theory 260: 253: 252: 247: 242: 237: 232: 227: 221: 220: 214: 213: 210: 209: 200: 199: 194: 189: 184: 179: 174: 169: 164: 159: 154: 148: 147: 141: 140: 137: 136: 127: 126: 121: 116: 110: 109: 108: 103: 98: 89: 83: 77: 76: 73: 72: 26: 9: 6: 4: 3: 2: 13727: 13716: 13713: 13711: 13708: 13706: 13703: 13702: 13700: 13684: 13680: 13676: 13672: 13668: 13664: 13660: 13656: 13652: 13649:(in German), 13648: 13644: 13640: 13636: 13633: 13629: 13625: 13623:0-387-94762-0 13619: 13615: 13611: 13607: 13603: 13599: 13596: 13592: 13588: 13586:0-444-87429-1 13582: 13578: 13573: 13569: 13564: 13560: 13559: 13554: 13550: 13546: 13545: 13539: 13535: 13531: 13530:Tits, Jacques 13527: 13524: 13520: 13516: 13512: 13508: 13504: 13500: 13496: 13492: 13488: 13487: 13482: 13478: 13474: 13471: 13467: 13463: 13461:0-521-33718-6 13457: 13452: 13451: 13444: 13441: 13437: 13433: 13429: 13425: 13419: 13415: 13411: 13407: 13403: 13399: 13396: 13392: 13388: 13386:0-86720-210-6 13382: 13378: 13374: 13370: 13367: 13363: 13359: 13357:0-387-90424-7 13353: 13349: 13345: 13341: 13338: 13334: 13330: 13328:9780387900407 13324: 13319: 13318: 13315: 13309: 13305: 13302: 13296: 13292: 13287: 13284: 13278: 13274: 13273: 13265: 13261: 13257: 13254: 13250: 13246: 13244:0-387-98525-5 13240: 13236: 13232: 13228: 13224: 13220: 13217: 13213: 13209: 13207:3-540-13885-4 13203: 13199: 13195: 13191: 13186: 13183: 13179: 13174: 13169: 13165: 13161: 13160: 13155: 13151: 13148: 13144: 13140: 13138:0-387-96640-4 13134: 13130: 13126: 13122: 13117: 13114: 13110: 13106: 13102: 13097: 13094: 13090: 13086: 13080: 13075: 13070: 13065: 13064: 13057: 13054: 13048: 13044: 13039: 13036: 13032: 13028: 13022: 13018: 13017:Finite fields 13014: 13009: 13006: 13004:0-387-95385-X 13000: 12996: 12992: 12988: 12984: 12980: 12977: 12973: 12969: 12967:0-8218-0943-1 12963: 12959: 12954: 12951: 12947: 12943: 12939: 12935: 12931: 12927: 12923: 12918: 12915: 12911: 12907: 12901: 12897: 12893: 12889: 12885: 12881: 12878: 12874: 12870: 12866: 12862: 12858: 12854: 12850: 12846: 12842: 12841:Invent. Math. 12838: 12833: 12830: 12824: 12820: 12819:Basic algebra 12816: 12812: 12809: 12805: 12801: 12797: 12793: 12790:(in German), 12789: 12785: 12781: 12777: 12773: 12769: 12768: 12763: 12759: 12756: 12750: 12746: 12742: 12738: 12734: 12733:-adic numbers 12730: 12727: 12723: 12720: 12716: 12712: 12711: 12706: 12702: 12698: 12695: 12693:0-201-01984-1 12689: 12685: 12681: 12676: 12673: 12667: 12663: 12662:Galois Theory 12658: 12655: 12651: 12647: 12645:0-387-94268-8 12641: 12637: 12633: 12629: 12625: 12621: 12617: 12613: 12609: 12608: 12603: 12599: 12595: 12592: 12588: 12584: 12582:3-7643-7002-5 12578: 12574: 12570: 12566: 12563: 12559: 12558: 12553: 12549: 12546: 12540: 12536: 12535: 12529: 12526: 12522: 12518: 12516:0-521-30484-9 12512: 12508: 12504: 12500: 12496: 12492: 12489: 12487:0-387-19375-8 12483: 12479: 12475: 12471: 12468: 12464: 12460: 12458:3-540-19376-6 12454: 12450: 12446: 12442: 12438: 12434: 12431: 12427: 12423: 12421:0-521-80309-8 12417: 12413: 12408: 12405: 12404:0-521-27291-2 12401: 12397: 12396:0-521-27288-2 12393: 12388: 12384: 12380: 12375: 12372: 12370:1-57766-443-4 12366: 12362: 12357: 12354: 12350: 12346: 12342: 12338: 12334: 12329: 12326: 12322: 12318: 12314: 12309: 12304: 12300: 12296: 12295: 12290: 12289:Baez, John C. 12286: 12283: 12279: 12275: 12271: 12267: 12263: 12262:Ann. of Math. 12259: 12255: 12252: 12248: 12244: 12240: 12236: 12232: 12228: 12224: 12220: 12217:(in German), 12216: 12212: 12208: 12204: 12200: 12194: 12190: 12189:Prentice Hall 12186: 12182: 12178: 12175: 12169: 12165: 12160: 12157: 12151: 12147: 12142: 12141: 12130: 12125: 12119: 12118:Conway (1976) 12114: 12108: 12103: 12097: 12092: 12085: 12080: 12074: 12069: 12062: 12057: 12050: 12045: 12039: 12034: 12028: 12023: 12017: 12012: 12005: 12000: 11993: 11988: 11981: 11980:Gouvêa (2012) 11976: 11969: 11965: 11960: 11953: 11948: 11941: 11936: 11929: 11924: 11917: 11912: 11906: 11901: 11895: 11890: 11883: 11882:Gouvêa (1997) 11878: 11871: 11870:Warner (1989) 11866: 11859: 11854: 11847: 11842: 11835: 11834:Lorenz (2008) 11830: 11823: 11818: 11811: 11806: 11800: 11796: 11791: 11784: 11779: 11772: 11767: 11760: 11755: 11748: 11743: 11736: 11731: 11724: 11719: 11712: 11707: 11700: 11695: 11688: 11683: 11676: 11672: 11667: 11660: 11655: 11648: 11644: 11639: 11631: 11629: 11621: 11614: 11609: 11602: 11597: 11590: 11585: 11578: 11573: 11566: 11561: 11554: 11549: 11542: 11537: 11530: 11525: 11518: 11513: 11506: 11501: 11494: 11489: 11482: 11477: 11470: 11465: 11458: 11453: 11446: 11441: 11434: 11433:Heyting field 11430: 11425: 11418: 11413: 11406: 11401: 11394: 11389: 11382: 11377: 11373: 11360: 11354: 11345: 11341: 11335: 11330: 11324: 11315: 11310: 11305: 11297: 11290: 11283: 11282:Cassels (1986 11278: 11272: 11265: 11257: 11252: 11248: 11242: 11214: 11208: 11205: 11198: 11195: 11192: 11186: 11180: 11177: 11173: 11161: 11142: 11137: 11131: 11118: 11114: 11106: 11104: 11100: 11096: 11094: 11090: 11086: 11082: 11078: 11073: 11069: 11065: 11060: 11056: 11051: 11045: 11039: 11034: 11030: 11029: 11028:division ring 11017: 11015: 11011: 11007: 11003: 10999: 10994: 10992: 10988: 10984: 10975: 10968: 10964: 10959: 10945: 10943: 10938: 10933: 10927: 10905: 10902: 10889: 10886: 10878: 10873: 10867: 10862: 10857: 10847: 10842: 10838: 10834: 10830: 10829: 10828: 10825: 10821:extension of 10819: 10814: 10810: 10806: 10801: 10794: 10790: 10784: 10779: 10775: 10771: 10765: 10760: 10756: 10751: 10744: 10740: 10734: 10729: 10720: 10716: 10712: 10708: 10707: 10706: 10704: 10700: 10696: 10695:regular prime 10691: 10685: 10681: 10672: 10663: 10656: 10651: 10650:root of unity 10646: 10639: 10635: 10627: 10623: 10619: 10614: 10607: 10602: 10598: 10596: 10592: 10588: 10584: 10579: 10569: 10564: 10560: 10553: 10549: 10543: 10538: 10537:number fields 10534: 10530: 10526: 10525:Global fields 10517: 10515: 10511: 10506: 10500: 10495: 10491: 10487: 10482: 10476: 10469: 10465: 10460: 10454: 10450: 10445: 10441: 10437: 10433: 10428: 10425: 10420: 10415: 10409: 10401: 10397: 10390: 10386: 10380: 10376:over a field 10375: 10372:-dimensional 10370: 10365: 10360: 10356: 10351: 10348: 10343: 10339: 10334: 10330: 10325: 10319: 10302: 10293: 10287: 10279: 10273: 10263: 10262: 10261: 10259: 10255: 10252:For having a 10250: 10248: 10243: 10231: 10227: 10223: 10219: 10215: 10211: 10207: 10201: 10200: 10199: 10194:into a field 10192: 10188: 10184: 10177: 10172: 10163: 10161: 10160:combinatorics 10157: 10156:coding theory 10148: 10144: 10140: 10136: 10132: 10131: 10130: 10128: 10124: 10115: 10111: 10107: 10106: 10105: 10102: 10097: 10091: 10087: 10076: 10070: 10064: 10060: 10056: 10052: 10048: 10047: 10046: 10039: 10033: 10027: 10021: 10015: 10006: 10003: 9998: 9994: 9990: 9985: 9983: 9979: 9975: 9971: 9955: 9952: 9947: 9944: 9940: 9936: 9933: 9924: 9918: 9909: 9905: 9901: 9900: 9899: 9898: 9892: 9876: 9872: 9865: 9858: 9851: 9846: 9841: 9837: 9830: 9825: 9821: 9817: 9799: 9791: 9788: 9783: 9779: 9775: 9772: 9764: 9760: 9756: 9753: 9749: 9742: 9734: 9729: 9725: 9717: 9716: 9715: 9713: 9709: 9690: 9686: 9679: 9676: 9673: 9667: 9664: 9661: 9658: 9655: 9649: 9646: 9643: 9637: 9634: 9630: 9625: 9619: 9615: 9611: 9608: 9605: 9600: 9596: 9592: 9586: 9578: 9573: 9569: 9561: 9560: 9559: 9557: 9540: 9536: 9532: 9527: 9526: 9525: 9523: 9520: 9513: 9509: 9505: 9501: 9497: 9493: 9489: 9485: 9479: 9469: 9466: 9462: 9457: 9453: 9448: 9444: 9439: 9438: 9437: 9433: 9425: 9421: 9412: 9408: 9401: 9396: 9392: 9385: 9381: 9374: 9369: 9363: 9358: 9348: 9345: 9341: 9335: 9331: 9321: 9316: 9312: 9308: 9302: 9298: 9294: 9288: 9287: 9286: 9283: 9263: 9255: 9250: 9233: 9222: 9218: 9210: 9209: 9208: 9200: 9196: 9191: 9190:Łoś's theorem 9185: 9181: 9170: 9166: 9161: 9155: 9154: 9153: 9150: 9143: 9139: 9134: 9129: 9123: 9116: 9112: 9106: 9101: 9096: 9090: 9087: 9081: 9075: 9069: 9064: 9059: 9053: 9043: 9037: 9031: 9024: 9020: 9016: 9015: 9014: 9011: 9004: 8991: 8986: 8980: 8975: 8970: 8964: 8960:, two fields 8959: 8955: 8945: 8943: 8938: 8931: 8927: 8922: 8917: 8911: 8907: 8902: 8896: 8890: 8884: 8879: 8874: 8863: 8861: 8852: 8848: 8844: 8839: 8835: 8834: 8833: 8830: 8824: 8818: 8814: 8809: 8799: 8793: 8786: 8782: 8773: 8769: 8762: 8758: 8752: 8743: 8738: 8732: 8728: 8723: 8718: 8714: 8710: 8706: 8702: 8695: 8691: 8687: 8683: 8679: 8678: 8677: 8675: 8669: 8662: 8656: 8637: 8623: 8619: 8614: 8610: 8605: 8601: 8594: 8590: 8584: 8580: 8576: 8571: 8565: 8561: 8557: 8553: 8548: 8542: 8537: 8531: 8527: 8522: 8517: 8510: 8504: 8498: 8492: 8486: 8475: 8470: 8465: 8461: 8457: 8456: 8455: 8453: 8449: 8445: 8441: 8436: 8432: 8428: 8425: 8421: 8417: 8411: 8410:Galois theory 8404:Galois theory 8401: 8399: 8395: 8389: 8385: 8380: 8376: 8353: 8349: 8344: 8333: 8328: 8324: 8320: 8316: 8306: 8295: 8284: 8280: 8277: 8274: 8270: 8265: 8254: 8249: 8245: 8241: 8237: 8231: 8220: 8216: 8213: 8205: 8199: 8194: 8190: 8184: 8177: 8173: 8167: 8161: 8156: 8153: 8150: 8145: 8141: 8136: 8130: 8125: 8121: 8114: 8110: 8105: 8101: 8100: 8099: 8095: 8090: 8086: 8081: 8075: 8071: 8064: 8060: 8055: 8049: 8044: 8040: 8036: 8029: 8025: 8021: 8011: 8004: 8000: 7993: 7988: 7984: 7979: 7974: 7970: 7965: 7964: 7963: 7961: 7960: 7949: 7945: 7941: 7936: 7935:-adic numbers 7934: 7926: 7922: 7915: 7910: 7904: 7901: 7893: 7889: 7878: 7874: 7870: 7866: 7862: 7858: 7853: 7849: 7841: 7837: 7833: 7832: 7828: 7824: 7821: 7820:-adic numbers 7818: 7810: 7806: 7802: 7799: 7794: 7792: 7787: 7784: 7780: 7779: 7775: 7770: 7768: 7765: 7762: 7755: 7751: 7745: 7742: 7738: 7737: 7733: 7730: 7727: 7724: 7723: 7720: 7716: 7711: 7704: 7700: 7696: 7690: 7687:given by the 7685: 7681: 7675: 7669: 7665: 7659: 7646: 7640: 7636: 7631: 7625: 7620: 7615: 7612: 7607: 7598: 7594: 7590: 7586: 7582: 7581: 7580: 7579: 7575: 7571: 7566: 7562: 7556: 7552: 7547: 7542: 7537: 7527: 7525: 7519: 7515: 7510: 7508: 7503: 7497: 7489: 7484: 7480: 7479: 7474: 7470: 7466: 7457: 7453: 7450: 7445: 7437:1 + 1 + ⋯ + 1 7435: 7434: 7433: 7431: 7426: 7423: 7417: 7412: 7406: 7401: 7397: 7392: 7384: 7380: 7373: 7366: 7346: 7343: 7338: 7333: 7329: 7325: 7322: 7319: 7314: 7309: 7305: 7301: 7296: 7291: 7287: 7279: 7278: 7277: 7275: 7271: 7261: 7254: 7247: 7240: 7236: 7231: 7230:ordered field 7228:is called an 7227: 7221: 7220:Ordered field 7211: 7203: 7200: 7195: 7191: 7185: 7181: 7171: 7165: 7158: 7154: 7147: 7143: 7138: 7134: 7128: 7122: 7117: 7110: 7102: 7096: 7091: 7085: 7083: 7078: 7073: 7068: 7059: 7054: 7048: 7042: 7036: 7033: 7027: 7022: 7017: 7012: 7011: 7007:is called an 7005: 6995: 6991: 6990: 6989: 6987: 6983: 6978: 6973: 6968: 6964: 6953: 6949: 6942: 6937: 6933: 6923: 6919: 6913: 6909: 6904: 6900: 6896: 6891: 6887: 6883: 6882: 6881: 6880: 6876: 6866: 6864: 6859: 6855: 6851: 6845: 6841: 6834: 6830: 6824: 6818: 6813: 6809: 6804: 6798: 6792: 6789: 6783: 6776: 6772: 6765: 6761: 6755: 6750: 6745: 6739: 6733: 6729: 6725: 6719: 6716: 6710: 6705: 6700: 6694: 6688: 6682: 6677: 6676:indeterminate 6672: 6665: 6661: 6657: 6647: 6644: 6640: 6636: 6630: 6626: 6622: 6616: 6610: 6604: 6598: 6594: 6588: 6583: 6577: 6573: 6553: 6550: 6547: 6542: 6538: 6528: 6523: 6519: 6513: 6509: 6503: 6500: 6497: 6492: 6489: 6486: 6482: 6474: 6473: 6472: 6468: 6464: 6458: 6452: 6446: 6440: 6433: 6429: 6423: 6419: 6415: 6408: 6404: 6398: 6392: 6386: 6380: 6373: 6369: 6365:The subfield 6363: 6361: 6358:is called an 6356: 6350: 6339: 6335: 6334: 6333: 6330: 6324: 6318: 6312: 6308: 6301: 6297: 6284: 6279: 6275: 6261: 6257: 6251: 6247: 6242: 6238: 6234: 6229: 6225: 6221: 6220: 6219: 6218: 6210: 6206: 6202: 6194: 6189: 6185: 6181:. An element 6180: 6175: 6171: 6160: 6157: 6153: 6140: 6133: 6127: 6123: 6111: 6110: 6109: 6106: 6100: 6095: 6090: 6087: 6081: 6071: 6067: 6063: 6062: 6061: 6060:, denoted by 6058: 6053: 6052: 6046: 6040: 6036: 6029: 6019: 6016: 6010: 6004: 5995: 5989: 5983: 5977: 5968: 5962: 5957: 5952: 5948: 5944: 5940:, denoted by 5938: 5932: 5926: 5920: 5916: 5910: 5905: 5903: 5896: 5892: 5886: 5879: 5875: 5869: 5865:generated by 5864: 5859: 5853: 5847: 5841: 5835: 5829: 5823: 5817: 5792: 5777: 5761: 5757: 5754: 5749: 5745: 5740: 5735: 5728: 5713: 5712: 5711: 5707: 5702: 5695: 5691: 5686: 5679: 5673: 5666: 5662: 5657: 5649: 5644: 5634: 5630: 5625: 5619: 5615:For example, 5608: 5603: 5598: 5597: 5596: 5593: 5588: 5587:residue class 5583: 5577: 5567: 5562: 5557: 5553: 5549: 5548: 5547: 5545: 5540: 5534: 5528: 5523: 5518: 5512: 5506: 5502: 5496: 5492: 5487: 5484: 5479: 5478:residue field 5474: 5470: 5466: 5460: 5455: 5454:maximal ideal 5450: 5443: 5439: 5434: 5429: 5425:onto a field 5424: 5419: 5414: 5410: 5399: 5396: 5389: 5384: 5378: 5372: 5368:over a field 5349: 5346: 5341: 5337: 5333: 5325: 5322: 5311: 5307: 5301: 5297: 5286: 5283: 5280: 5276: 5268: 5267: 5266: 5265: 5259: 5255: 5249: 5245: 5240: 5235: 5229: 5225: 5219: 5202: 5196: 5193: 5188: 5185: 5182: 5179: 5176: 5170: 5165: 5162: 5157: 5152: 5149: 5140: 5139: 5138: 5135: 5131: 5125: 5121: 5115: 5111: 5104: 5098: 5092: 5086: 5080: 5076: 5069: 5065: 5060: 5055: 5048: 5044: 5040: 5035: 5031: 5021: 5017: 5013: 5007: 5001: 4995: 4989: 4983: 4977: 4971: 4969: 4960: 4951: 4947: 4942: 4936: 4932: 4926: 4921: 4916: 4910: 4905: 4890: 4888: 4884: 4880: 4876: 4872: 4868: 4864: 4863:Galois theory 4859: 4854: 4849: 4848:Hensel (1904) 4845: 4839: 4835: 4830: 4826: 4821: 4818: 4812: 4807: 4803: 4799: 4793: 4789: 4782: 4776: 4772: 4768: 4756: 4751: 4749: 4745: 4741: 4737: 4732: 4730: 4726: 4725:Galois theory 4722: 4718: 4710: 4706: 4705:Paolo Ruffini 4700: 4695: 4692: 4685: 4680: 4670: 4666: 4665: 4664: 4662: 4661: 4656: 4652: 4648: 4643: 4637: 4632: 4628: 4624: 4623:root of unity 4619: 4606: 4603: 4596: 4589: 4584: 4583: 4582: 4580: 4572: 4565: 4558: 4553: 4549: 4545: 4535: 4531: 4523: 4519: 4513: 4508: 4502: 4488: 4479: 4473: 4467: 4463: 4454: 4447: 4441: 4435: 4430: 4425: 4419: 4413: 4406: 4402: 4392: 4387: 4382: 4377: 4372: 4371: 4370: 4369: 4365: 4360: 4356: 4352:A field with 4350: 4347: 4342: 4338: 4333: 4326: 4322:is prime and 4320: 4314: 4310: 4304: 4298: 4294: 4290: 4284: 4278: 4272: 4269: 4265: 4259: 4256: 4252: 4247: 4242: 4239: 4235: 4228: 4224: 4218: 4215: 4211: 4205: 4201: 4197: 4191: 4186: 4180: 4171: 4164: 4159: 4154: 4148: 4142: 4132: 4128: 4125: 4121: 4117: 4116: 4115: 4112: 4106: 4101: 4088: 4084: 4070: 4056: 4052: 4038: 4029: 4024: 4023:Galois fields 4021:(also called 4020: 4019:Finite fields 4015: 4008:Finite fields 4005: 4002: 3995: 3991: 3985: 3979: 3973: 3968: 3963: 3960: 3954: 3949: 3945: 3940: 3935: 3930: 3921: 3912: 3905: 3899: 3894: 3884: 3880: 3873: 3869: 3862: 3856: 3852: 3842: 3838: 3831: 3827: 3820: 3813: 3809: 3803: 3799: 3795: 3790: 3786: 3783: 3777: 3770: 3763: 3756: 3750: 3744: 3740: 3734: 3730: 3724: 3720: 3716: 3710: 3699: 3693: 3687: 3681: 3675: 3669: 3665: 3664: 3653: 3646: 3640: 3630: 3625: 3621: 3617: 3613: 3612: 3611: 3610: 3609:Frobenius map 3605: 3599: 3593: 3587: 3581: 3577: 3573: 3568: 3561: 3556: 3552: 3542: 3536: 3531: 3527: 3522: 3521: 3520: 3517: 3511: 3504: 3500: 3494: 3488: 3482: 3478: 3474: 3461: 3455: 3449: 3444: 3439: 3434: 3429: 3423: 3415: 3410: 3399: 3395: 3394: 3393: 3386: 3380: 3376: 3372: 3368: 3367: 3366: 3363: 3357: 3353: 3348: 3342: 3336: 3332: 3326: 3315: 3313: 3312: 3307: 3303: 3300:Every finite 3298: 3296: 3287: 3284: 3278: 3272: 3266: 3262: 3243: 3237: 3234: 3225: 3219: 3213: 3210: 3190: 3184: 3181: 3158: 3155: 3149: 3143: 3140: 3129: 3124: 3119: 3114: 3111: 3104: 3098: 3094: 3093:abelian group 3089: 3074: 3068: 3064: 3059: 3055: 3051: 3047: 3043: 3039: 3035: 3030: 3027: 3023: 3018: 3013: 3008: 3007: 3006: 3003: 2997: 2991: 2989: 2983: 2979: 2975: 2971: 2967: 2964: 2960: 2953: 2943: 2937: 2930: 2924: 2917: 2913: 2905: 2894: 2891: 2886: 2881: 2875: 2869: 2858: 2848: 2844: 2843: 2837: 2831: 2826: 2814: 2809: 2805: 2795: 2791: 2787: 2783: 2779: 2775: 2771: 2764: 2760: 2756: 2752: 2748: 2744: 2740: 2739: 2738: 2731: 2725: 2719: 2713: 2707: 2701: 2686: 2682: 2679: 2675: 2672: 2668: 2665: 2661: 2658: 2654: 2653: 2649: 2645: 2642: 2638: 2635: 2631: 2628: 2624: 2621: 2617: 2616: 2612: 2608: 2605: 2601: 2597: 2592: 2588: 2583: 2580: 2576: 2575: 2571: 2567: 2564: 2560: 2556: 2551: 2547: 2542: 2539: 2535: 2534: 2530: 2526: 2523: 2519: 2516: 2512: 2509: 2505: 2502: 2501: 2491: 2487: 2484: 2480: 2477: 2473: 2470: 2466: 2463: 2459: 2458: 2454: 2450: 2447: 2443: 2440: 2436: 2433: 2429: 2426: 2422: 2421: 2417: 2413: 2410: 2406: 2402: 2397: 2393: 2388: 2385: 2381: 2380: 2376: 2372: 2369: 2365: 2361: 2356: 2352: 2347: 2344: 2340: 2339: 2335: 2331: 2328: 2324: 2321: 2317: 2314: 2310: 2307: 2306: 2302: 2294: 2288: 2278: 2276: 2257: 2253: 2242: 2239: 2233: 2214: 2209: 2206: 2197: 2191: 2187:line through 2186: 2185:perpendicular 2181: 2177: 2172: 2167: 2162: 2156: 2150: 2145: 2140: 2135: 2131: 2127: 2123: 2117: 2108: 2101: 2095: 2091: 2087:asserts that 2086: 2081: 2072: 2069: 2065: 2056: 2052: 2048: 2044: 2040: 2036: 2032: 2028: 2024: 2020: 2016: 2012: 2008: 2003: 2002: 2001: 1998: 1991: 1986: 1981: 1971: 1967: 1960: 1956: 1952: 1951: 1950: 1947: 1943: 1938: 1934: 1928: 1924: 1915: 1888: 1883: 1880: 1875: 1870: 1867: 1862: 1857: 1854: 1849: 1844: 1841: 1832: 1822: 1819: 1814: 1811: 1805: 1799: 1796: 1791: 1788: 1782: 1776: 1773: 1770: 1765: 1762: 1759: 1753: 1747: 1744: 1741: 1736: 1733: 1730: 1724: 1718: 1715: 1712: 1704: 1701: 1698: 1695: 1692: 1686: 1676: 1666: 1663: 1658: 1655: 1652: 1649: 1646: 1640: 1635: 1632: 1627: 1623: 1616: 1613: 1608: 1605: 1599: 1593: 1590: 1585: 1582: 1575: 1571: 1566: 1563: 1554: 1546: 1540: 1537: 1532: 1527: 1524: 1519: 1514: 1511: 1506: 1501: 1498: 1492: 1488: 1483: 1480: 1471: 1463: 1457: 1454: 1449: 1444: 1441: 1435: 1431: 1426: 1423: 1409: 1408: 1407: 1390: 1387: 1381: 1378: 1373: 1370: 1364: 1359: 1356: 1351: 1346: 1343: 1334: 1333: 1332: 1329: 1325: 1318: 1312: 1308: 1300: 1295: 1290: 1284: 1278: 1274: 1270: 1264: 1249: 1246: 1242: 1224: 1220: 1208: 1204: 1200: 1189: 1187: 1179: 1174: 1164: 1154: 1150: 1146: 1142: 1138: 1134: 1130: 1125: 1122: 1117: 1113: 1107: 1102: 1099:, called the 1097: 1090: 1086:, denoted by 1084: 1078: 1071: 1066: 1063: 1058: 1054: 1048: 1043: 1040:, called the 1038: 1031: 1025: 1019: 1014: 1011: 1007: 1003: 997: 993: 987: 974: 970: 967: 963: 959: 955: 951: 945: 941: 937: 933: 928: 927:Commutativity 925: 921: 917: 913: 909: 905: 901: 895: 891: 887: 883: 879: 875: 870: 869:Associativity 867: 866: 865: 860:of the field 859: 843: 842: 836: 832: 826: 820: 814: 808: 802: 796: 792: 786: 780: 774: 768: 754: 750: 746: 742:is a mapping 737: 733: 725: 720: 716: 702: 698: 694: 690: 686: 681: 677: 673: 669: 665: 664: 663: 660: 656: 650: 646: 641: 632: 628: 619: 614: 610: 606: 601: 597: 591: 587: 582: 572: 570: 566: 565:number theory 562: 561:Number fields 558: 554: 550: 546: 541: 539: 535: 532:that general 531: 527: 523: 522:Galois theory 519: 515: 511: 506: 504: 500: 499:finite fields 496: 492: 488: 486: 481: 477: 473: 469: 465: 461: 456: 454: 453:number theory 450: 446: 442: 438: 434: 430: 426: 422: 418: 414: 410: 398: 393: 391: 386: 384: 379: 378: 376: 375: 367: 364: 362: 359: 357: 354: 352: 349: 347: 344: 342: 339: 337: 334: 333: 329: 326: 325: 321: 316: 315: 308: 307: 303: 302: 298: 295: 293: 290: 288: 285: 284: 279: 274: 273: 266: 265: 261: 259: 256: 255: 251: 248: 246: 243: 241: 238: 236: 233: 231: 228: 226: 223: 222: 217: 212: 211: 206: 205: 198: 195: 193: 192:Division ring 190: 188: 185: 183: 180: 178: 175: 173: 170: 168: 165: 163: 160: 158: 155: 153: 150: 149: 144: 139: 138: 133: 132: 125: 122: 120: 117: 115: 114:Abelian group 112: 111: 107: 104: 102: 99: 97: 93: 90: 88: 85: 84: 80: 75: 74: 71: 68: 67: 61: 57: 53: 50: 45: 41: 37: 33: 19: 13650: 13646: 13605: 13576: 13567: 13557: 13543: 13533: 13490: 13484: 13449: 13405: 13376: 13348:Local fields 13347: 13317: 13313: 13290: 13271: 13226: 13189: 13166:(3): 73–78, 13163: 13157: 13120: 13100: 13062: 13045:, Springer, 13042: 13016: 12986: 12957: 12925: 12921: 12887: 12847:(1): 71–98, 12844: 12840: 12818: 12791: 12787: 12780:Hensel, Kurt 12765: 12744: 12732: 12729: 12709: 12679: 12664:, Springer, 12661: 12619: 12606: 12572: 12556: 12533: 12499:Local fields 12498: 12480:, Springer, 12477: 12443:, Springer, 12440: 12411: 12382: 12360: 12336: 12332: 12308:math/0105155 12298: 12292: 12265: 12261: 12218: 12214: 12184: 12163: 12145: 12124: 12113: 12102: 12096:Serre (1992) 12091: 12086:, Chapter IV 12084:Serre (1996) 12079: 12068: 12056: 12049:Artin (1991) 12044: 12038:Serre (2002) 12033: 12022: 12011: 11999: 11987: 11975: 11959: 11947: 11935: 11923: 11911: 11900: 11894:Serre (1979) 11889: 11877: 11872:, Chapter 14 11865: 11853: 11841: 11829: 11817: 11805: 11790: 11783:Artin (1991) 11778: 11766: 11759:Artin (1991) 11754: 11747:Artin (1991) 11742: 11730: 11718: 11711:Artin (1991) 11706: 11694: 11682: 11671:Corry (2004) 11666: 11654: 11638: 11627: 11620: 11613:Corry (2004) 11608: 11596: 11584: 11572: 11560: 11548: 11536: 11524: 11512: 11500: 11488: 11476: 11464: 11457:Artin (1991) 11452: 11440: 11424: 11417:Clark (1984) 11412: 11407:, p. 16 11405:McCoy (1968) 11400: 11395:, p. 10 11388: 11376: 11358: 11353: 11343: 11339: 11333: 11323: 11313: 11308: 11303: 11295: 11289: 11276: 11270: 11264: 11255: 11241: 11159: 11151:, such that 11140: 11130: 11117: 11105:are fields. 11097: 11071: 11058: 11049: 11043: 11037: 11032: 11026: 11023: 11001: 10995: 10973: 10966: 10962: 10951: 10936: 10925: 10871: 10865: 10855: 10852: 10845: 10840: 10836: 10832: 10823: 10817: 10799: 10792: 10788: 10780: 10773: 10769: 10763: 10749: 10742: 10738: 10732: 10725: 10718: 10714: 10710: 10689: 10683: 10679: 10670: 10661: 10654: 10644: 10637: 10633: 10625: 10621: 10617: 10611: 10567: 10562: 10558: 10551: 10547: 10541: 10523: 10504: 10498: 10480: 10474: 10467: 10463: 10452: 10448: 10429: 10423: 10413: 10407: 10399: 10395: 10388: 10384: 10378: 10368: 10358: 10352: 10346: 10332: 10323: 10320: 10317: 10253: 10251: 10241: 10238: 10229: 10225: 10221: 10217: 10213: 10209: 10205: 10190: 10181: 10153: 10146: 10142: 10138: 10134: 10120: 10113: 10109: 10100: 10089: 10085: 10082: 10074: 10068: 10062: 10058: 10054: 10050: 10044: 10037: 10031: 10025: 10019: 10001: 9986: 9978:vector space 9922: 9916: 9913: 9907: 9903: 9890: 9887: 9879:Applications 9870: 9863: 9861:agrees with 9856: 9849: 9839: 9835: 9828: 9814: 9705: 9554: 9538: 9534: 9530: 9518: 9512:Brauer group 9494: 9487: 9483: 9477: 9474: 9467: 9464: 9460: 9455: 9451: 9446: 9442: 9431: 9423: 9419: 9410: 9406: 9399: 9391:Prüfer group 9383: 9379: 9372: 9367: 9361: 9354: 9343: 9339: 9327: 9319: 9314: 9310: 9306: 9300: 9296: 9292: 9281: 9278: 9198: 9194: 9183: 9179: 9176: 9168: 9164: 9159: 9148: 9141: 9137: 9133:ultraproduct 9127: 9121: 9114: 9110: 9104: 9094: 9091: 9085: 9079: 9073: 9067: 9065:states that 9057: 9051: 9048: 9041: 9035: 9029: 9022: 9018: 9009: 9002: 8984: 8978: 8968: 8962: 8954:model theory 8951: 8941: 8936: 8929: 8925: 8920: 8915: 8900: 8894: 8888: 8882: 8872: 8869: 8857: 8850: 8846: 8842: 8837: 8828: 8822: 8816: 8812: 8805: 8797: 8791: 8784: 8780: 8771: 8767: 8760: 8756: 8750: 8741: 8736: 8730: 8726: 8721: 8716: 8712: 8704: 8700: 8693: 8689: 8685: 8681: 8667: 8660: 8621: 8617: 8603: 8599: 8592: 8588: 8569: 8563: 8559: 8555: 8546: 8540: 8529: 8525: 8521:Galois group 8518: 8508: 8502: 8496: 8490: 8484: 8481: 8473: 8468: 8463: 8459: 8434: 8430: 8413: 8387: 8383: 8373: 8197: 8192: 8188: 8182: 8175: 8171: 8165: 8159: 8143: 8139: 8128: 8123: 8119: 8112: 8108: 8093: 8088: 8084: 8073: 8069: 8062: 8058: 8047: 8042: 8038: 8034: 8027: 8023: 8019: 8016: 8009: 8002: 7998: 7991: 7986: 7982: 7972: 7968: 7959:local fields 7957: 7955: 7952:Local fields 7943: 7939: 7932: 7924: 7920: 7913: 7908: 7899: 7891: 7887: 7884: 7876: 7868: 7864: 7856: 7847: 7839: 7835: 7826: 7816: 7808: 7804: 7797: 7790: 7782: 7773: 7766: 7753: 7749: 7740: 7714: 7702: 7698: 7694: 7683: 7679: 7673: 7667: 7663: 7657: 7644: 7638: 7629: 7623: 7616: 7610: 7605: 7603: 7596: 7592: 7588: 7584: 7564: 7560: 7554: 7550: 7540: 7533: 7517: 7511: 7501: 7498: 7487: 7478:Dedekind cut 7476: 7473:lower bounds 7469:upper bounds 7462: 7448: 7441: 7427: 7421: 7415: 7404: 7390: 7382: 7378: 7371: 7364: 7361: 7259: 7252: 7245: 7238: 7234: 7229: 7225: 7223: 7209: 7198: 7183: 7179: 7169: 7163: 7156: 7152: 7145: 7141: 7126: 7123:. The field 7115: 7108: 7100: 7094: 7089: 7086: 7076: 7066: 7052: 7046: 7040: 7037: 7031: 7025: 7015: 7008: 7003: 7000: 6993: 6985: 6981: 6976: 6966: 6962: 6959: 6951: 6947: 6940: 6935: 6931: 6921: 6917: 6911: 6907: 6902: 6898: 6894: 6889: 6885: 6872: 6857: 6853: 6849: 6843: 6839: 6832: 6828: 6822: 6816: 6802: 6796: 6793: 6787: 6781: 6774: 6770: 6763: 6759: 6753: 6743: 6737: 6731: 6727: 6723: 6720: 6714: 6708: 6698: 6692: 6686: 6680: 6670: 6663: 6659: 6653: 6642: 6638: 6634: 6628: 6624: 6620: 6614: 6608: 6602: 6596: 6592: 6586: 6575: 6571: 6568: 6466: 6462: 6456: 6450: 6444: 6438: 6431: 6427: 6421: 6417: 6413: 6406: 6402: 6396: 6390: 6384: 6378: 6371: 6367: 6364: 6354: 6348: 6345: 6337: 6328: 6322: 6316: 6310: 6299: 6295: 6282: 6277: 6273: 6270: 6259: 6255: 6249: 6245: 6240: 6236: 6232: 6227: 6223: 6209:coefficients 6192: 6187: 6183: 6173: 6169: 6166: 6155: 6151: 6138: 6131: 6125: 6121: 6118: 6104: 6098: 6091: 6085: 6079: 6076: 6069: 6065: 6056: 6049: 6044: 6038: 6034: 6031: 6014: 6008: 6002: 5993: 5987: 5981: 5975: 5966: 5960: 5953: 5946: 5942: 5936: 5930: 5924: 5918: 5914: 5908: 5900: 5894: 5890: 5884: 5877: 5873: 5871:and denoted 5867: 5862: 5857: 5851: 5845: 5839: 5833: 5827: 5821: 5815: 5812: 5705: 5700: 5693: 5689: 5684: 5677: 5671: 5669:. Moreover, 5664: 5660: 5655: 5647: 5642: 5623: 5617: 5614: 5606: 5601: 5591: 5585:(namely the 5581: 5575: 5572: 5565: 5560: 5555: 5551: 5538: 5532: 5526: 5516: 5510: 5504: 5500: 5494: 5488: 5482: 5472: 5464: 5458: 5448: 5441: 5437: 5427: 5417: 5408: 5405: 5394: 5387: 5376: 5370: 5367: 5257: 5253: 5251:. The field 5247: 5238: 5227: 5223: 5220: 5217: 5133: 5129: 5123: 5119: 5113: 5109: 5102: 5096: 5090: 5084: 5078: 5074: 5067: 5063: 5058: 5053: 5046: 5042: 5033: 5027: 5015: 5011: 5005: 4999: 4993: 4987: 4981: 4975: 4972: 4966:is the only 4958: 4940: 4937: 4930: 4924: 4914: 4908: 4901: 4852: 4837: 4833: 4825:Weber (1893) 4822: 4816: 4810: 4791: 4787: 4780: 4770: 4764: 4753: 4748:Moore (1893) 4743: 4733: 4698: 4690: 4684:Galois group 4678: 4676:for a prime 4675: 4668: 4658: 4641: 4635: 4617: 4614: 4604: 4601: 4594: 4587: 4570: 4563: 4556: 4541: 4529: 4521: 4517: 4511: 4506: 4500: 4486: 4477: 4471: 4465: 4461: 4452: 4445: 4439: 4433: 4423: 4417: 4411: 4404: 4400: 4397: 4390: 4385: 4380: 4375: 4358: 4354: 4351: 4345: 4337:vector space 4331: 4324: 4318: 4312: 4308: 4302: 4299: 4292: 4288: 4282: 4276: 4270: 4267: 4263: 4257: 4254: 4250: 4240: 4237: 4233: 4226: 4222: 4216: 4213: 4209: 4203: 4199: 4195: 4189: 4178: 4169: 4162: 4158:prime number 4152: 4146: 4140: 4137: 4130: 4126: 4123: 4119: 4110: 4104: 4097: 4086: 4082: 4068: 4036: 4027: 4022: 4018: 4017: 4014:Finite field 4000: 3993: 3989: 3983: 3977: 3971: 3964: 3958: 3952: 3938: 3928: 3919: 3910: 3903: 3897: 3892: 3882: 3878: 3871: 3867: 3860: 3854: 3850: 3840: 3836: 3829: 3825: 3818: 3811: 3807: 3801: 3797: 3793: 3787: 3781: 3775: 3768: 3761: 3754: 3748: 3742: 3738: 3732: 3728: 3722: 3718: 3714: 3708: 3697: 3691: 3685: 3679: 3673: 3667: 3661: 3659: 3644: 3638: 3635: 3628: 3623: 3619: 3615: 3603: 3597: 3591: 3585: 3579: 3575: 3571: 3566: 3559: 3548: 3540: 3534: 3529: 3525: 3515: 3509: 3502: 3498: 3492: 3486: 3483: 3476: 3472: 3459: 3453: 3447: 3443:prime number 3437: 3432: 3427: 3421: 3408: 3405: 3397: 3391: 3384: 3378: 3374: 3370: 3361: 3355: 3346: 3340: 3334: 3330: 3324: 3321: 3309: 3299: 3295:trivial ring 3288: 3282: 3276: 3270: 3261:distributive 3223: 3217: 3214: 3208: 3122: 3120:elements of 3117: 3115: 3109: 3102: 3087: 3084: 3072: 3066: 3062: 3053: 3049: 3045: 3041: 3037: 3033: 3025: 3021: 3001: 2995: 2992: 2981: 2977: 2973: 2969: 2965: 2962: 2958: 2951: 2949:, since, if 2941: 2935: 2928: 2925: 2915: 2911: 2903: 2900: 2889: 2879: 2873: 2867: 2864: 2846: 2842:binary field 2840: 2835: 2829: 2812: 2808:Galois field 2807: 2804:finite field 2801: 2793: 2789: 2785: 2781: 2777: 2773: 2769: 2762: 2758: 2754: 2750: 2746: 2742: 2729: 2723: 2717: 2711: 2705: 2699: 2696: 2684: 2677: 2670: 2663: 2656: 2647: 2640: 2633: 2626: 2619: 2610: 2603: 2595: 2586: 2578: 2569: 2562: 2554: 2545: 2537: 2528: 2521: 2514: 2507: 2489: 2482: 2475: 2468: 2461: 2452: 2445: 2438: 2431: 2424: 2415: 2408: 2400: 2391: 2383: 2374: 2367: 2359: 2350: 2342: 2333: 2326: 2319: 2312: 2243: 2237: 2231: 2195: 2189: 2179: 2170: 2160: 2154: 2148: 2144:square roots 2138: 2134:straightedge 2119: 2106: 2099: 2093: 2089: 2061: 2054: 2050: 2046: 2042: 2038: 2034: 2030: 2026: 2022: 2018: 2014: 2010: 2006: 1996: 1989: 1979: 1976: 1969: 1965: 1958: 1954: 1945: 1936: 1933:real numbers 1930: 1405: 1327: 1323: 1316: 1310: 1306: 1298: 1288: 1282: 1276: 1272: 1266: 1244: 1240: 1235:0 = 1 + (−1) 1195: 1175: 1160: 1152: 1148: 1144: 1140: 1136: 1132: 1128: 1115: 1111: 1109:, such that 1105: 1100: 1095: 1088: 1082: 1076: 1069: 1067:: for every 1056: 1052: 1050:, such that 1046: 1041: 1036: 1029: 1023: 1017: 1015:: for every 1005: 1001: 995: 991: 985: 961: 957: 953: 949: 943: 939: 935: 931: 919: 915: 911: 907: 903: 899: 893: 889: 885: 881: 877: 873: 841:field axioms 839: 834: 830: 824: 818: 812: 806: 800: 794: 790: 784: 778: 772: 766: 752: 748: 744: 735: 731: 718: 712: 700: 696: 692: 688: 679: 675: 671: 667: 658: 654: 648: 644: 639: 630: 617: 609:real numbers 599: 595: 589: 585: 578: 553:vector space 542: 507: 487:-adic fields 484: 464:real numbers 457: 441:real numbers 412: 406: 366:Hopf algebra 304: 297:Vector space 262: 202: 186: 131:Group theory 129: 94: / 40: 32:Vector field 13410:Patrick Ion 12983:Lang, Serge 12221:: 225–231, 12207:Artin, Emil 12129:Baez (2002) 12107:Tits (1957) 11966:. See also 11952:Lang (2002) 11940:Lang (2002) 11928:Lang (2002) 11699:Lang (2002) 11603:, pp. 75–76 11419:, Chapter 3 11093:John Milnor 11083:in 1958 by 11077:alternative 11055:quaternions 11014:game theory 10987:near-fields 10983:quasifields 10432:isomorphism 9920:in a field 9895:, then the 9847:shows that 9824:determinant 9338:exp : 9100:ultrafilter 8990:first-order 8972:are called 8910:cardinality 8906:uncountable 8550:(i.e., the 8104:first-order 8054:uniformizer 7851:any field) 7719:) is zero. 6873:A field is 6800:of a field 6600:where both 6199:if it is a 5928:containing 5849:containing 5825:containing 5573:This field 5542:of smaller 5530:, i.e., if 5522:irreducible 5413:injectively 5057:exactly as 4968:prime ideal 4804:(1873) and 4651:Vandermonde 4248:, prevents 4080:. However, 3967:prime field 3948:isomorphism 3671:of a field 2193:in a point 2097:. Choosing 1923:Real number 625:, and of a 425:subtraction 409:mathematics 351:Lie algebra 336:Associative 240:Total order 230:Semilattice 204:Ring theory 13699:Categories 13675:25.0137.01 13595:0683.12014 13515:41.0445.03 13470:0674.13008 13440:1004.12003 13395:0746.12001 13337:0432.10001 13103:, Boston: 13035:1139.11053 12808:35.0227.01 12719:50.0042.03 12591:1044.01008 12569:Corry, Leo 12430:0978.12004 12353:0739.03027 12243:53.0144.01 12137:References 11089:Raoul Bott 11033:skew field 10991:semifields 10934:describes 9500:Weil group 8832:-algebras 8820:of degree 8552:bijections 8379:derivation 7885:The field 7731:Completion 7642:, such as 7619:completion 7576:, i.e., a 7514:hyperreals 7087:Any field 6205:polynomial 6149:, whereas 6077:and read " 5956:compositum 5904:an element 5385:(in which 5221:The field 4920:reciprocal 4883:Emil Artin 4368:polynomial 4280:elements ( 4064:9 + 4 = 13 3944:surjective 3365:-fold sum 3359:to be the 2166:semicircle 1186:invertible 1033:, denoted 989:such that 581:operations 575:Definition 536:cannot be 13683:120528969 13667:0025-5831 13523:120807300 13507:0075-4102 13310:(1996) , 13069:CiteSeerX 12950:121442989 12877:119378923 12800:0075-4102 12772:EMS Press 12258:Ax, James 12251:121547404 12235:0025-5858 11369:Citations 11206:− 11196:⋅ 11181:∖ 11068:octonions 10977:tends to 10903:− 10444:dimension 10183:Functions 9945:− 9926:, namely 9789:⊗ 9780:μ 9668:∖ 9662:∈ 9656:∣ 9647:− 9638:⊗ 9620:× 9612:⊗ 9609:⋯ 9606:⊗ 9601:× 9522:-algebras 9256:≅ 9245:¯ 9234:⁡ 9229:∞ 9226:→ 9102:on a set 9083:holds in 8583:subgroups 8500:and that 8440:separable 8338:∞ 8281:⁡ 8275:≅ 8259:∞ 8217:⁡ 7400:Witt ring 7398:from the 7323:⋯ 7250:whenever 7021:algebraic 7019:if it is 6970:. By the 6810:if it is 6794:A subset 6747:is not a 6548:∈ 6501:− 6483:∑ 6193:algebraic 5902:adjoining 5778:≅ 5773:⟶ 5629:adjoining 5347:∈ 5326:∈ 5292:∞ 5277:∑ 5028:Given an 4719:in 1824. 4657:, in his 4341:dimension 4060:9 + 4 = 1 3934:injective 3791:are maps 3570: := 3238:∖ 3185:∖ 3159:⋅ 3144:∖ 2914:= (−1) ⋅ 2296:Addition 1876:⋅ 1850:⋅ 1641:⋅ 1572:⋅ 1533:⋅ 1507:⋅ 1489:⋅ 1432:⋅ 1352:⋅ 1269:fractions 1223:computing 695: := 674: := 419:on which 361:Bialgebra 167:Near-ring 124:Lie group 92:Semigroup 13641:(1893), 13604:(1997), 13555:(1857), 13479:(1910), 13404:(2002), 13375:(1992), 13346:(1979), 13262:(2014), 13225:(1999), 13113:68015225 13015:(2008), 12985:(2002), 12817:(2009), 12794:: 1–32, 12782:(1904), 12743:(2012), 12728:(1997), 12707:(1924), 12618:(1995), 12600:(1871), 12571:(2004), 12554:(1976), 12497:(1986), 12476:(1988), 12439:(1994), 12381:(1985), 12183:(1991), 11737:, p. 213 11519:, 14.4.2 11215:⟩ 11174:⟨ 11158:⟨ 11145:of type 11047:itself, 10693:being a 10676:for all 10631:, where 9897:equation 9687:⟩ 9631:⟨ 9551:K-theory 8609:solvable 8558: : 8420:symmetry 8080:carrying 7931:complex 7710:sequence 7606:distance 7587: : 7578:function 7507:calculus 7224:A field 6757:), then 6668:, where 6048:being a 5652:, where 5446:, where 5433:quotient 4765:In 1881 4758:—  4734:In 1871 4688:regular 3942:is also 3908:, where 3877:)  3663:subfield 3622: : 3563:. Here, 3507:for all 3377:+ ... + 3302:subgroup 3174:or just 2945:must be 2901:One has 2885:elements 2176:midpoint 2164:, and a 1294:integers 1280:, where 1252:Examples 1233:, since 969:Additive 858:elements 732:addition 503:elements 497:rely on 437:rational 433:division 421:addition 197:Lie ring 162:Semiring 52:heptagon 13632:1421575 13432:1867431 13366:0554237 13253:1677964 13216:0769847 13182:1557275 13147:0919949 13093:2215060 12987:Algebra 12976:1760173 12942:1554154 12914:2347309 12869:0679774 12849:Bibcode 12774:, 2001 12762:"Field" 12654:1322960 12604:(ed.), 12525:0861410 12467:1290116 12282:1970573 12185:Algebra 11942:, §VI.1 11785:, §13.9 11725:, p. 60 11713:, §10.6 11701:, §II.1 11689:, p. 92 11661:, p. 81 11649:, p. 66 11615:, p. 24 11591:, p. 50 11579:, p. 63 11543:, p. 12 11495:, Th. 2 11253:within 11010:nimbers 10678:0 < 10494:compact 10394:, ..., 9989:modules 9135:of the 8766:, ..., 8748:(where 7759:(usual 7649:√ 7467:if all 6996:+ 1 = 0 6939:, ..., 6893:  6820:and if 6340:+ 1 = 0 6281:, ..., 6231:  5635:symbol 5232:of the 5094:are in 4755:system. 4701:= 2 + 1 4538:History 4448:= 2 = 4 4366:of the 3779:are in 3765:, both 3746:are in 3496:, then 3400:⋅ 1 = 0 3352:integer 3118:nonzero 2984:⋅ 0 = 0 2956:, then 2906:⋅ 0 = 0 2130:compass 2066:, with 1983:is the 1207:nullary 730:called 640:inverse 549:scalars 493:. Most 449:algebra 328:Algebra 320:Algebra 225:Lattice 216:Lattice 49:regular 13681:  13673:  13665:  13630:  13620:  13593:  13583:  13521:  13513:  13505:  13468:  13458:  13438:  13430:  13420:  13393:  13383:  13364:  13354:  13335:  13325:  13297:  13279:  13251:  13241:  13214:  13204:  13180:  13145:  13135:  13111:  13091:  13081:  13071:  13049:  13033:  13023:  13001:  12974:  12964:  12948:  12940:  12912:  12902:  12875:  12867:  12825:  12806:  12798:  12751:  12717:  12690:  12668:  12652:  12642:  12589:  12579:  12541:  12523:  12513:  12484:  12465:  12455:  12428:  12418:  12402:  12394:  12367:  12351:  12325:586512 12323:  12280:  12249:  12241:  12233:  12195:  12170:  12152:  12051:, §3.3 11884:, §5.7 11531:, §I.3 11091:, and 11066:. The 10940:using 10928:> 0 10875:. For 10699:Kummer 10687:. For 10512:. The 10490:proper 10486:smooth 10459:curves 10061:⋅ ⋯ ⋅ 10029:, and 9980:has a 9533:) = H( 9434:> 0 9393:, the 9304:≅ ulim 9131:, the 9108:, and 9098:is an 9005:> 0 8740:+ ⋯ + 8634:  8622:cannot 8482:where 8452:simple 8446:. The 8444:normal 8424:finite 7757:| 7747:| 7728:Metric 7706:| 7692:| 7574:metric 7568:) are 7377:= ⋯ = 7268:. The 7064:, and 6954:> 0 6910:+ ⋯ + 6674:is an 6535:  6532:  6436:as an 6293:, and 6248:+ ⋯ + 6102:as an 6094:degree 5785:  5766:  5544:degree 5317:  5100:, and 5082:where 5037:, its 4950:ideals 4744:Körper 4740:German 4615:(with 4546:, and 4498:), so 4443:. For 4429:degree 4176:. For 4062:since 3890:, and 3578:⋅ ⋯ ⋅ 3306:cyclic 3265:groups 3048:) = −( 3010:−0 = 0 2825:subset 2823:. The 2715:, and 1977:where 1296:, and 1243:= (−1) 1180:where 1004:⋅ 1 = 994:+ 0 = 947:, and 897:, and 852:, and 551:for a 482:, and 431:, and 356:Graded 287:Module 278:Module 177:Domain 96:Monoid 13679:S2CID 13519:S2CID 13267:(PDF) 12946:S2CID 12873:S2CID 12321:S2CID 12303:arXiv 12278:JSTOR 12264:, 2, 12247:S2CID 11293:Both 11109:Notes 11002:Field 10971:, as 10954:0 ≠ 1 10682:< 10478:: if 10374:space 10327:is a 10254:field 10176:genus 9993:rings 9982:basis 8698:(and 7725:Field 7544:is a 7475:(see 7419:, to 7413:over 7023:over 6806:is a 6271:with 6207:with 6203:of a 6195:over 6083:over 5650:) = 0 5609:) = 0 5462:. If 5452:is a 4742:word 4577:of a 4274:with 4246:above 4156:is a 4133:− 1}. 3936:. If 3901:) = 1 3726:both 3406:then 3308:(see 3291:1 ≠ 0 3206:, or 3024:)) = 3015:1 = 1 2980:) = 2933:then 2855:GF(2) 2821:GF(4) 2235:when 2229:from 2168:over 2064:plane 2045:) + ( 1973:real, 1963:with 1321:) is 1182:0 ≠ 1 1163:group 1147:) + ( 1139:) = ( 1059:) = 0 910:) = ( 884:) = ( 415:is a 413:field 322:-like 280:-like 218:-like 187:Field 145:-like 119:Magma 87:Group 81:-like 79:Group 13663:ISSN 13618:ISBN 13581:ISBN 13503:ISSN 13491:1910 13456:ISBN 13418:ISBN 13381:ISBN 13352:ISBN 13323:ISBN 13295:ISBN 13277:ISBN 13239:ISBN 13202:ISBN 13133:ISBN 13109:LCCN 13079:ISBN 13047:ISBN 13021:ISBN 12999:ISBN 12962:ISBN 12900:ISBN 12823:ISBN 12796:ISSN 12749:ISBN 12688:ISBN 12666:ISBN 12640:ISBN 12577:ISBN 12539:ISBN 12511:ISBN 12482:ISBN 12453:ISBN 12416:ISBN 12400:ISBN 12392:ISBN 12365:ISBN 12231:ISSN 12193:ISBN 12168:ISBN 12150:ISBN 12006:, §2 11918:, §1 11301:ulim 11299:and 11274:and 11165:and 10989:and 10848:≥ 2) 10787:Gal( 10767:and 10747:and 10667:and 10531:and 10488:and 10434:and 10419:open 10353:The 10224:) ⋅ 10216:) = 10158:and 9838:) = 9706:The 9459:) = 9441:Gal( 9429:for 9418:Gal( 9405:Gal( 9378:Gal( 9360:Gal( 9290:ulim 9219:ulim 9157:ulim 8966:and 8934:and 8898:and 8806:The 8719:) = 8688:) = 8587:Gal( 8524:Gal( 8442:and 8186:(in 8169:(in 8102:Any 8032:and 7677:and 7617:The 7558:and 7512:The 7257:and 7243:and 6856:) / 6749:root 6730:) / 6606:and 6420:) / 6201:root 6177:are 6129:and 5991:and 5964:and 5954:The 5934:and 5855:and 5692:) ∊ 5663:) = 5631:the 5489:The 5117:and 5088:and 4956:and 4946:unit 4933:= ±1 4869:and 4814:and 4694:-gon 4629:and 4494:and 4415:has 4383:) = 4306:has 4047:and 3956:and 3917:and 3866:) = 3835:) + 3824:) = 3772:and 3736:and 3707:1 ∊ 3532:) = 3274:and 3105:, +) 3065:) = 3044:⋅ (− 3036:) ⋅ 3020:(−(− 2999:and 2908:and 2877:and 2833:and 2753:) = 2132:and 2083:The 2021:) = 1992:= −1 1931:The 1925:and 1292:are 1286:and 1237:and 1229:and 1221:and 1213:and 1055:+ (− 999:and 979:and 971:and 918:) ⋅ 892:) + 816:and 804:and 782:and 770:and 734:and 678:+ (− 607:and 512:and 439:and 411:, a 152:Ring 143:Ring 47:The 13671:JFM 13655:doi 13610:doi 13591:Zbl 13511:JFM 13495:doi 13466:Zbl 13436:Zbl 13391:Zbl 13333:Zbl 13231:doi 13194:doi 13168:doi 13125:doi 13031:Zbl 12991:doi 12930:doi 12892:doi 12857:doi 12804:JFM 12792:128 12715:JFM 12632:doi 12587:Zbl 12503:doi 12445:doi 12426:Zbl 12349:Zbl 12341:doi 12313:doi 12270:doi 12239:JFM 12223:doi 11095:. 11031:or 10674:≠ 1 10665:= 1 10648:th 10597:). 10496:), 10484:is 10382:is 10344:on 10121:In 10077:≥ 1 9893:≠ 0 9888:If 9529:Br( 9492:). 9397:of 9368:all 9347:). 9332:or 9125:in 9092:If 9033:in 8952:In 8942:not 8880:of 8800:≥ 5 8696:+ 2 8692:− 4 8670:≥ 5 8585:of 8538:of 8278:Gal 8214:Gal 7717:→ ∞ 7621:of 7553:↦ − 7485:of 7428:An 7409:of 7386:= 0 7262:≥ 0 7255:≥ 0 7248:≥ 0 7241:≥ 0 7188:of 7113:of 7095:the 7074:to 7070:is 7013:of 6986:not 6982:any 6927:= 0 6785:to 6580:of 6314:in 6303:≠ 0 6289:in 6265:= 0 6211:in 6191:is 6113:= 6089:". 5906:to 5888:to 5837:of 5697:to 5667:+ 1 5627:by 5589:of 5568:)). 5558:/ ( 5524:in 5520:is 5480:of 5456:of 5390:≥ 0 5381:of 5262:of 5105:≠ 0 4997:is 4964:(0) 4954:(0) 4783:(π) 4671:= 1 4528:GF( 4526:or 4507:the 4437:is 4431:of 4327:≥ 1 4231:in 4229:= 0 4181:= 4 4165:= 2 4085:/12 4066:in 3981:is 3759:in 3757:≠ 0 3513:in 3505:= 0 3484:If 3479:= O 3344:of 3314:). 3075:≠ 0 3070:if 2961:= ( 2954:≠ 0 2939:or 2931:= 0 2926:If 2887:of 2853:or 2819:or 2806:or 2745:⋅ ( 2102:= 1 2037:= ( 2035:bdi 2031:adi 2027:bci 1319:≠ 0 1301:≠ 0 1131:⋅ ( 1118:= 1 1103:of 1092:or 1074:in 1072:≠ 0 1044:of 1021:in 983:in 902:⋅ ( 876:+ ( 864:): 828:or 726:on 715:set 520:. 417:set 407:In 157:Rng 13701:: 13677:, 13669:, 13661:, 13651:43 13645:, 13628:MR 13626:, 13616:, 13589:, 13517:, 13509:, 13501:, 13489:, 13464:, 13434:, 13428:MR 13426:, 13416:, 13389:, 13362:MR 13360:, 13331:, 13269:, 13249:MR 13247:, 13237:, 13212:MR 13210:, 13200:, 13178:MR 13176:, 13162:, 13143:MR 13141:, 13131:, 13107:, 13089:MR 13087:, 13077:, 13029:, 12997:, 12972:MR 12970:, 12944:, 12938:MR 12936:, 12924:, 12910:MR 12908:, 12898:, 12871:, 12865:MR 12863:, 12855:, 12845:70 12843:, 12839:, 12802:, 12786:, 12770:, 12764:, 12703:; 12686:, 12650:MR 12648:, 12638:, 12630:, 12622:, 12585:, 12560:, 12521:MR 12519:, 12509:, 12463:MR 12461:, 12451:, 12424:, 12406:). 12385:, 12347:, 12337:38 12335:, 12319:, 12311:, 12299:39 12297:, 12276:, 12266:88 12245:, 12237:, 12229:, 12209:; 12191:, 12187:, 11797:. 11087:, 10993:. 10985:, 10923:, 10879:, 10844:, 10803:. 10717:= 10713:+ 10697:, 10350:. 10249:. 10212:)( 10208:⋅ 10162:. 10145:+ 10143:ax 10141:+ 10137:= 10112:= 10057:⋅ 10053:= 10023:, 9984:. 9906:= 9904:ax 9843:. 9537:, 9450:/ 9342:→ 9322:)) 9318:(( 9285:) 9188:: 9162:→∞ 9007:, 8996:, 8924:, 8849:≅ 8815:/ 8802:). 8789:, 8774:−1 8733:−1 8725:+ 8708:), 8703:= 8676:: 8562:→ 8516:. 8466:/ 8462:= 8433:/ 8400:. 8200:)) 8196:(( 8131:)) 8127:(( 8096:)) 8092:(( 8050:)) 8046:(( 8037:∈ 8022:∈ 8013:). 7994:)) 7990:(( 7962:: 7948:. 7871:)) 7867:(( 7822:) 7772:1/ 7752:− 7697:− 7647:= 7614:. 7595:→ 7591:× 7563:↦ 7526:. 7471:, 7452:. 7425:. 7403:W( 7370:= 7246:xy 7237:+ 7202:. 7186:)) 7182:(( 7084:. 6974:, 6965:∊ 6950:, 6946:∈ 6920:+ 6905:−1 6897:+ 6842:/ 6646:. 6643:bi 6641:+ 6637:− 6629:ci 6627:+ 6625:bi 6623:+ 6597:bi 6595:+ 6258:+ 6243:−1 6235:+ 6186:∈ 6172:/ 6154:/ 6137:/ 6124:/ 6068:/ 6037:⊂ 6018:. 5951:. 5917:⊂ 5554:= 5503:= 5486:. 5440:/ 5260:)) 5256:(( 5134:bc 5132:= 5130:ad 5020:. 4970:. 4952:, 4935:. 4902:A 4889:. 4865:, 4842:. 4750:. 4600:+ 4595:ωx 4593:+ 4569:, 4562:, 4534:. 4484:, 4464:= 4389:− 4357:= 4311:= 4297:. 4225:⋅ 4202:⋅ 4198:= 4092:12 4074:12 4051:. 4004:. 3895:(1 3848:, 3817:+ 3800:→ 3796:: 3785:. 3774:1/ 3741:⋅ 3731:+ 3721:∊ 3717:, 3660:A 3652:. 3626:↦ 3618:→ 3574:⋅ 3538:+ 3528:+ 3501:⋅ 3481:. 3475:+ 3433:is 3388:.) 3373:+ 3333:⋅ 3286:. 3212:. 3052:⋅ 3040:= 3032:(− 3005:: 2990:. 2978:ab 2972:= 2929:ab 2923:. 2921:−1 2893:. 2857:. 2792:= 2788:+ 2784:= 2780:⋅ 2776:+ 2772:⋅ 2761:= 2757:⋅ 2749:+ 2709:, 2703:, 2238:BD 2171:AD 2161:BD 2158:, 2155:AB 2094:pq 2092:= 2051:ad 2049:+ 2047:bc 2043:bd 2041:− 2039:ac 2033:+ 2029:+ 2025:+ 2023:ac 2019:di 2017:+ 2013:)( 2011:bi 2009:+ 1968:, 1959:bi 1957:+ 1391:1. 1248:. 1231:−1 1151:⋅ 1143:⋅ 1135:+ 1114:⋅ 1094:1/ 960:⋅ 956:= 952:⋅ 942:+ 938:= 934:+ 914:⋅ 906:⋅ 888:+ 880:+ 848:, 833:⋅ 825:ab 793:+ 751:→ 747:× 699:⋅ 691:/ 670:− 657:/ 647:− 598:⋅ 588:+ 567:. 559:. 540:. 505:. 478:, 474:, 451:, 427:, 423:, 13657:: 13612:: 13497:: 13233:: 13196:: 13170:: 13164:3 13127:: 12993:: 12932:: 12926:8 12894:: 12859:: 12851:: 12731:p 12634:: 12505:: 12447:: 12343:: 12315:: 12305:: 12272:: 12225:: 12219:5 11970:. 11677:. 11632:. 11630:" 11626:" 11435:. 11361:. 11348:. 11346:) 11344:T 11342:( 11340:F 11334:F 11314:p 11309:F 11304:p 11296:C 11277:C 11271:R 11259:. 11256:F 11236:. 11234:+ 11230:⋅ 11209:1 11199:, 11193:, 11190:} 11187:0 11184:{ 11178:F 11160:F 11153:0 11141:F 11139:⟨ 11123:− 11072:O 11059:H 11050:C 11044:R 11038:R 10979:1 10974:p 10967:p 10963:F 10937:F 10926:d 10911:) 10906:d 10898:( 10894:Q 10890:= 10887:F 10872:F 10866:F 10856:n 10846:n 10841:n 10837:ζ 10835:( 10833:Q 10824:Q 10818:Q 10800:F 10795:) 10793:Q 10791:/ 10789:F 10774:p 10770:Q 10764:R 10750:R 10743:p 10739:Q 10733:Q 10722:. 10719:z 10715:y 10711:x 10690:n 10684:n 10680:m 10671:ζ 10662:ζ 10655:ζ 10645:n 10638:n 10634:ζ 10629:) 10626:n 10622:ζ 10620:( 10618:Q 10608:. 10574:0 10570:) 10568:t 10566:( 10563:q 10559:F 10552:q 10548:F 10542:Q 10505:X 10499:X 10481:X 10475:X 10470:) 10468:X 10466:( 10464:F 10455:) 10453:X 10451:( 10449:F 10424:X 10414:X 10408:n 10403:) 10400:n 10396:x 10392:1 10389:x 10387:( 10385:F 10379:F 10369:n 10359:X 10347:X 10333:X 10324:X 10303:, 10297:) 10294:x 10291:( 10288:g 10283:) 10280:x 10277:( 10274:f 10245:- 10242:F 10235:. 10232:) 10230:x 10228:( 10226:g 10222:x 10220:( 10218:f 10214:x 10210:g 10206:f 10204:( 10196:F 10191:X 10150:. 10147:b 10139:x 10135:y 10117:. 10114:b 10110:a 10101:n 10090:q 10086:F 10079:) 10075:n 10069:n 10066:( 10063:a 10059:a 10055:a 10051:a 10038:E 10032:R 10026:Q 10020:P 10002:Z 9956:. 9953:b 9948:1 9941:a 9937:= 9934:x 9923:F 9917:x 9908:b 9891:a 9873:) 9871:F 9869:( 9867:2 9864:K 9859:) 9857:F 9855:( 9853:2 9850:K 9840:F 9836:F 9834:( 9832:1 9829:K 9800:. 9797:) 9792:n 9784:l 9776:, 9773:F 9770:( 9765:n 9761:H 9757:= 9754:p 9750:/ 9746:) 9743:F 9740:( 9735:M 9730:n 9726:K 9691:. 9683:} 9680:1 9677:, 9674:0 9671:{ 9665:F 9659:x 9653:) 9650:x 9644:1 9641:( 9635:x 9626:/ 9616:F 9597:F 9593:= 9590:) 9587:F 9584:( 9579:M 9574:n 9570:K 9546:. 9544:) 9542:m 9539:G 9535:F 9531:F 9519:F 9488:p 9484:Q 9478:p 9471:. 9468:Z 9465:n 9463:/ 9461:Z 9456:q 9452:F 9447:q 9443:F 9432:n 9427:) 9424:q 9420:F 9414:) 9411:q 9407:F 9400:Z 9387:) 9384:q 9380:F 9373:F 9364:) 9362:F 9344:F 9340:F 9324:. 9320:t 9315:p 9311:F 9307:p 9301:p 9297:Q 9293:p 9282:p 9264:. 9260:C 9251:p 9241:F 9223:p 9205:φ 9199:i 9195:F 9184:i 9180:F 9173:, 9169:i 9165:F 9160:i 9149:U 9142:i 9138:F 9128:I 9122:i 9115:i 9111:F 9105:I 9095:U 9086:C 9080:φ 9074:F 9068:C 9058:E 9052:n 9045:" 9042:E 9036:E 9030:n 9025:) 9023:E 9021:( 9019:φ 9010:n 9003:n 8998:1 8994:0 8985:F 8979:E 8969:F 8963:E 8937:C 8930:p 8926:C 8921:p 8916:Q 8901:F 8895:E 8889:F 8883:F 8873:F 8854:. 8851:F 8847:F 8843:E 8840:⊗ 8838:F 8829:F 8823:n 8817:E 8813:F 8798:n 8792:E 8785:i 8781:a 8776:) 8772:n 8768:a 8764:0 8761:a 8759:( 8757:E 8751:f 8745:0 8742:a 8737:X 8731:n 8727:a 8722:X 8717:X 8715:( 8713:f 8705:Q 8701:E 8694:X 8690:X 8686:X 8684:( 8682:f 8668:n 8661:n 8658:S 8638:n 8618:f 8604:E 8602:/ 8600:F 8595:) 8593:E 8591:/ 8589:F 8570:E 8564:F 8560:F 8556:σ 8547:E 8541:F 8532:) 8530:E 8528:/ 8526:F 8514:0 8509:E 8503:f 8497:F 8491:f 8485:f 8478:, 8476:) 8474:X 8472:( 8469:f 8464:E 8460:F 8435:E 8431:F 8390:) 8388:X 8386:( 8384:R 8354:. 8350:) 8345:) 8334:p 8329:/ 8325:1 8321:t 8317:( 8313:) 8310:) 8307:t 8304:( 8301:( 8296:p 8291:F 8285:( 8271:) 8266:) 8255:p 8250:/ 8246:1 8242:p 8238:( 8232:p 8227:Q 8221:( 8198:t 8193:p 8189:F 8183:t 8176:p 8172:Q 8166:p 8160:p 8148:. 8144:p 8140:Q 8129:t 8124:p 8120:F 8113:p 8109:Q 8094:t 8089:p 8085:F 8074:p 8070:Q 8063:p 8059:F 8048:t 8043:p 8039:F 8035:t 8028:p 8024:Q 8020:p 8010:p 8003:p 7999:F 7992:t 7987:p 7983:F 7973:p 7969:Q 7944:p 7940:C 7933:p 7925:p 7921:Q 7914:p 7909:Q 7900:p 7892:p 7888:Q 7877:t 7869:t 7865:F 7857:t 7848:F 7845:( 7842:) 7840:t 7838:( 7836:F 7827:p 7817:p 7813:( 7809:p 7805:Q 7798:p 7791:p 7783:Q 7774:n 7767:R 7763:) 7754:y 7750:x 7741:Q 7715:n 7703:q 7701:/ 7699:p 7695:x 7684:q 7682:/ 7680:p 7674:x 7668:q 7666:/ 7664:p 7658:Q 7651:2 7645:x 7639:x 7630:F 7624:F 7611:F 7599:, 7597:R 7593:F 7589:F 7585:d 7565:a 7561:a 7555:a 7551:a 7541:F 7518:R 7502:R 7488:F 7449:R 7422:Z 7416:F 7407:) 7405:F 7391:F 7383:n 7379:x 7375:2 7372:x 7368:1 7365:x 7347:0 7344:= 7339:2 7334:n 7330:x 7326:+ 7320:+ 7315:2 7310:2 7306:x 7302:+ 7297:2 7292:1 7288:x 7266:≥ 7260:y 7253:x 7239:y 7235:x 7226:F 7199:t 7184:t 7180:F 7175:0 7170:F 7164:q 7157:q 7153:F 7146:q 7142:F 7127:F 7116:Q 7109:Q 7101:F 7090:F 7077:R 7067:F 7062:2 7053:F 7047:R 7041:C 7032:F 7026:F 7016:F 7004:F 6994:x 6977:C 6967:F 6963:x 6956:, 6952:n 6948:F 6944:0 6941:f 6936:n 6932:f 6925:0 6922:f 6918:x 6915:1 6912:f 6908:x 6903:n 6899:f 6895:x 6890:n 6886:f 6861:( 6858:E 6854:S 6852:( 6850:E 6844:E 6840:F 6835:) 6833:S 6831:( 6829:E 6823:F 6817:E 6803:F 6797:S 6788:X 6782:x 6777:) 6775:X 6773:( 6771:E 6766:) 6764:x 6762:( 6760:E 6754:E 6744:x 6738:x 6732:E 6728:x 6726:( 6724:E 6715:E 6709:X 6699:X 6693:X 6687:E 6681:E 6671:X 6666:) 6664:X 6662:( 6660:E 6639:c 6635:a 6621:a 6615:i 6609:b 6603:a 6593:a 6587:C 6578:) 6576:i 6574:( 6572:Q 6554:. 6551:E 6543:k 6539:a 6529:, 6524:k 6520:x 6514:k 6510:a 6504:1 6498:n 6493:0 6490:= 6487:k 6469:) 6467:x 6465:( 6463:E 6457:n 6451:x 6445:n 6439:E 6434:) 6432:x 6430:( 6428:E 6422:E 6418:x 6416:( 6414:E 6409:) 6407:x 6405:( 6403:E 6397:x 6391:x 6385:E 6379:x 6374:) 6372:x 6370:( 6368:E 6355:E 6349:F 6342:. 6338:i 6329:Q 6323:R 6317:C 6311:i 6300:n 6296:e 6291:E 6286:0 6283:e 6278:n 6274:e 6267:, 6263:0 6260:e 6256:x 6253:1 6250:e 6246:x 6241:n 6237:e 6233:x 6228:n 6224:e 6213:E 6197:E 6188:F 6184:x 6174:E 6170:F 6156:Q 6152:R 6147:2 6142:2 6139:F 6135:4 6132:F 6126:R 6122:C 6115:. 6105:E 6099:F 6086:E 6080:F 6073:, 6070:E 6066:F 6057:E 6045:F 6039:F 6035:E 6015:E 6009:F 6003:F 5997:′ 5994:E 5988:E 5982:F 5976:F 5970:′ 5967:E 5961:E 5949:) 5947:S 5945:( 5943:E 5937:S 5931:E 5925:F 5919:F 5915:S 5909:E 5897:) 5895:x 5893:( 5891:E 5885:E 5880:) 5878:x 5876:( 5874:E 5868:x 5863:F 5858:x 5852:E 5846:F 5840:F 5834:x 5828:E 5822:F 5816:E 5793:. 5789:C 5762:) 5758:1 5755:+ 5750:2 5746:X 5741:( 5736:/ 5732:] 5729:X 5726:[ 5722:R 5708:) 5706:i 5704:( 5701:f 5694:R 5690:X 5688:( 5685:f 5678:R 5672:f 5665:X 5661:X 5659:( 5656:f 5648:i 5646:( 5643:f 5637:i 5624:R 5618:C 5611:. 5607:x 5605:( 5602:f 5592:X 5582:x 5576:F 5566:X 5564:( 5561:f 5556:E 5552:F 5539:E 5533:f 5527:E 5517:f 5511:E 5505:E 5501:R 5495:f 5483:R 5473:m 5465:R 5459:R 5449:m 5442:m 5438:R 5428:F 5418:R 5409:R 5395:x 5388:k 5379:] 5377:F 5371:F 5353:) 5350:F 5342:i 5338:a 5334:, 5330:Z 5323:k 5320:( 5312:i 5308:x 5302:i 5298:a 5287:k 5284:= 5281:i 5258:x 5254:F 5248:F 5239:F 5230:) 5228:x 5226:( 5224:F 5203:. 5197:d 5194:b 5189:c 5186:b 5183:+ 5180:d 5177:a 5171:= 5166:d 5163:c 5158:+ 5153:b 5150:a 5124:d 5122:/ 5120:c 5114:b 5112:/ 5110:a 5103:b 5097:R 5091:b 5085:a 5079:b 5077:/ 5075:a 5070:) 5068:R 5066:( 5064:Q 5059:Q 5054:R 5049:) 5047:R 5045:( 5043:Q 5034:R 5016:p 5012:F 5006:Z 5000:Q 4994:Z 4988:R 4982:R 4976:R 4959:R 4941:R 4931:n 4925:n 4915:Z 4909:a 4853:p 4838:p 4834:F 4817:π 4811:e 4794:) 4792:X 4790:( 4788:Q 4781:Q 4713:5 4699:p 4691:p 4679:p 4669:x 4642:x 4636:x 4618:ω 4610:) 4608:3 4605:x 4602:ω 4598:2 4591:1 4588:x 4586:( 4574:3 4571:x 4567:2 4564:x 4560:1 4557:x 4532:) 4530:q 4522:q 4518:F 4512:q 4501:f 4496:1 4492:0 4487:f 4481:2 4478:F 4472:f 4466:x 4462:x 4456:4 4453:F 4446:q 4440:q 4434:f 4424:f 4418:q 4412:f 4405:p 4401:F 4394:. 4391:x 4386:x 4381:x 4379:( 4376:f 4359:p 4355:q 4346:n 4332:F 4325:n 4319:p 4313:p 4309:q 4303:F 4293:p 4289:F 4283:p 4277:p 4271:Z 4268:p 4266:/ 4264:Z 4258:Z 4255:n 4253:/ 4251:Z 4241:Z 4238:n 4236:/ 4234:Z 4227:s 4223:r 4217:Z 4214:n 4212:/ 4210:Z 4204:s 4200:r 4196:n 4190:n 4179:n 4173:2 4170:F 4163:n 4153:n 4147:n 4141:Z 4131:n 4127:Z 4124:n 4122:/ 4120:Z 4111:n 4105:n 4087:Z 4083:Z 4078:1 4069:Z 4049:1 4045:0 4040:2 4037:F 4031:4 4028:F 4001:Q 3994:p 3990:F 3984:p 3978:F 3972:F 3959:F 3953:E 3939:φ 3929:E 3923:2 3920:e 3914:1 3911:e 3904:F 3898:E 3893:φ 3888:) 3886:2 3883:e 3881:( 3879:φ 3875:1 3872:e 3870:( 3868:φ 3864:2 3861:e 3858:1 3855:e 3853:( 3851:φ 3846:) 3844:2 3841:e 3839:( 3837:φ 3833:1 3830:e 3828:( 3826:φ 3822:2 3819:e 3815:1 3812:e 3810:( 3808:φ 3802:F 3798:E 3794:φ 3782:E 3776:a 3769:a 3767:− 3762:E 3755:a 3749:E 3743:b 3739:a 3733:b 3729:a 3723:E 3719:b 3715:a 3709:E 3703:1 3698:F 3692:E 3686:F 3680:F 3674:F 3668:E 3650:0 3645:p 3639:F 3629:x 3624:x 3620:F 3616:F 3604:a 3598:p 3592:p 3586:p 3583:( 3580:a 3576:a 3572:a 3567:a 3560:p 3545:, 3541:b 3535:a 3530:b 3526:a 3524:( 3516:F 3510:a 3503:a 3499:p 3493:p 3487:F 3477:I 3473:I 3468:2 3463:4 3460:F 3454:p 3448:p 3438:n 3428:n 3422:Q 3417:0 3409:F 3402:, 3398:n 3385:F 3379:a 3375:a 3371:a 3362:n 3356:n 3347:F 3341:a 3335:a 3331:n 3325:F 3283:a 3277:a 3271:a 3269:− 3247:} 3244:0 3241:{ 3235:F 3224:F 3218:F 3209:F 3194:} 3191:0 3188:{ 3182:F 3162:) 3156:, 3153:} 3150:0 3147:{ 3141:F 3138:( 3123:F 3110:F 3103:F 3101:( 3088:F 3073:a 3067:a 3063:a 3061:( 3056:) 3054:b 3050:a 3046:b 3042:a 3038:b 3034:a 3026:a 3022:a 3002:b 2996:a 2982:a 2976:( 2974:a 2970:b 2968:) 2966:a 2963:a 2959:b 2952:a 2947:0 2942:b 2936:a 2916:a 2912:a 2910:− 2904:a 2890:F 2880:b 2874:a 2868:F 2850:2 2847:F 2836:I 2830:O 2816:4 2813:F 2794:A 2790:B 2786:I 2782:A 2778:A 2774:B 2770:A 2763:A 2759:I 2755:A 2751:A 2747:B 2743:A 2735:1 2730:I 2724:O 2718:B 2712:A 2706:I 2700:O 2685:A 2678:I 2671:B 2664:O 2657:B 2648:I 2641:B 2634:A 2627:O 2620:A 2611:B 2604:A 2596:I 2587:O 2579:I 2570:O 2563:O 2555:O 2546:O 2538:O 2529:B 2522:A 2515:I 2508:O 2503:⋅ 2490:O 2483:I 2476:A 2469:B 2462:B 2453:I 2446:O 2439:B 2432:A 2425:A 2416:A 2409:B 2401:O 2392:I 2384:I 2375:B 2368:A 2360:I 2351:O 2343:O 2334:B 2327:A 2320:I 2313:O 2308:+ 2258:3 2254:2 2232:B 2215:p 2210:= 2207:h 2196:F 2190:B 2180:C 2149:Q 2139:Q 2110:. 2107:p 2100:q 2090:h 2057:. 2055:i 2053:) 2015:c 2007:a 2005:( 1997:C 1990:i 1980:i 1970:b 1966:a 1961:, 1955:a 1946:C 1937:R 1889:. 1884:f 1881:e 1871:b 1868:a 1863:+ 1858:d 1855:c 1845:b 1842:a 1833:= 1823:f 1820:b 1815:e 1812:a 1806:+ 1800:d 1797:b 1792:c 1789:a 1783:= 1777:f 1774:d 1771:b 1766:d 1763:e 1760:a 1754:+ 1748:f 1745:d 1742:b 1737:f 1734:c 1731:a 1725:= 1719:f 1716:d 1713:b 1708:) 1705:d 1702:e 1699:+ 1696:f 1693:c 1690:( 1687:a 1677:= 1667:f 1664:d 1659:d 1656:e 1653:+ 1650:f 1647:c 1636:b 1633:a 1628:= 1624:) 1617:d 1614:f 1609:d 1606:e 1600:+ 1594:f 1591:d 1586:f 1583:c 1576:( 1567:b 1564:a 1555:= 1547:) 1541:d 1538:d 1528:f 1525:e 1520:+ 1515:f 1512:f 1502:d 1499:c 1493:( 1484:b 1481:a 1472:= 1464:) 1458:f 1455:e 1450:+ 1445:d 1442:c 1436:( 1427:b 1424:a 1388:= 1382:b 1379:a 1374:a 1371:b 1365:= 1360:b 1357:a 1347:a 1344:b 1328:a 1326:/ 1324:b 1317:a 1311:b 1309:/ 1307:a 1305:− 1299:b 1289:b 1283:a 1277:b 1275:/ 1273:a 1245:a 1241:a 1239:− 1227:1 1215:1 1211:0 1171:1 1167:0 1157:. 1155:) 1153:c 1149:a 1145:b 1141:a 1137:c 1133:b 1129:a 1120:. 1116:a 1112:a 1106:a 1096:a 1089:a 1083:F 1077:F 1070:a 1061:. 1057:a 1053:a 1047:a 1037:a 1035:− 1030:F 1024:F 1018:a 1009:. 1006:a 1002:a 996:a 992:a 986:F 981:1 977:0 965:. 962:a 958:b 954:b 950:a 944:a 940:b 936:b 932:a 923:. 920:c 916:b 912:a 908:c 904:b 900:a 894:c 890:b 886:a 882:c 878:b 874:a 862:F 854:c 850:b 846:a 835:b 831:a 819:b 813:a 807:b 801:a 795:b 791:a 785:b 779:a 773:b 767:a 762:F 758:F 753:F 749:F 745:F 740:F 728:F 719:F 704:. 701:b 697:a 693:b 689:a 684:, 682:) 680:b 676:a 672:b 668:a 659:b 655:a 649:b 645:a 636:b 631:b 623:a 618:a 616:− 600:b 596:a 590:b 586:a 485:p 396:e 389:t 382:v 62:. 38:. 20:)

Index

Field (algebra)
Vector field
Field (disambiguation) § Mathematics

regular
heptagon
straightedge and compass construction
constructible numbers
Algebraic structures
Group
Group
Semigroup
Monoid
Rack and quandle
Quasigroup and loop
Abelian group
Magma
Lie group
Group theory
Ring
Ring
Rng
Semiring
Near-ring
Commutative ring
Domain
Integral domain
Field
Division ring
Lie ring

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.