Knowledge

Fibonacci cube

Source 📝

308:. More specifically, there exists a path that obeys the partition described above: it visits the nodes with first bit 0 and the nodes with first bit 1 in two contiguous subsequences. Within these two subsequences, the path can be constructed recursively by the same rule, linking the two subsequences at the ends of the subsequences at which the second bit is 0. Thus, e.g., in the Fibonacci cube of order 4, the sequence constructed in this way is (0100-0101-0001-0000-0010)-(1010-1000-1001), where the parentheses demark the subsequences within the two subgraphs of the partition. Fibonacci cubes with an even number of nodes greater than two have a 184: 159: 280:
may be given a partial order in which one independent set is less than another if they differ by removing elements from one side of the bipartition and adding elements to the other side of the bipartition; with this order, the independent sets form a distributive lattice, and applying this
322:
of Fibonacci cubes. Because these graphs are bipartite and have Hamiltonian paths, their maximum independent sets have a number of vertices that is equal to half of the number of vertices in the whole graph, rounded up to the nearest integer. The diameter of a Fibonacci cube of order
372:, both proportional to the logarithm of the number of vertices, and the ability of the network to be partitioned into smaller networks of the same type allows it to be split among multiple parallel computation tasks. Fibonacci cubes also support efficient protocols for 110:, in such a way that two vertices are adjacent whenever their labels differ in a single bit. However, in a Fibonacci cube, the only labels that are allowed are bitstrings with no two consecutive 1 bits. If the labels of the hypercube are interpreted as 220:
in the path itself; two Fibonacci cube vertices are adjacent if the cliques or independent sets that they represent differ by the addition or removal of a single element. Therefore, like other simplex graphs, Fibonacci cubes are
852: 433:
show, hydrocarbons formed by chains of hexagons, linked edge-to-edge with no three adjacent hexagons in a line, have resonance graphs that are exactly the Fibonacci graphs. More generally
664: 364:. As a communications network, the Fibonacci cube has beneficial properties similar to those of the hypercube: the number of incident edges per vertex is at most 429:
may be described as subgraphs of a hexagonal tiling of the plane, and the resonance graph describes possible double-bond structures of these molecules. As
918: 449:
based on the k-th order Fibonacci numbers, which were later further extended to a larger class of networks called the Linear Recursive Networks by
458: 1040: 1162: 662:
Cong, B.; Zheng, S. Q.; Sharma, S. (1993), "On simulations of linear arrays, rings and 2D meshes on Fibonacci cube networks",
63:
in the context of interconnection topologies for connecting parallel or distributed systems. They have also been applied in
241: 465:
of vertices defined from the Fibonacci cube by forbidding a 1 bit in both the first and last positions of each bitstring;
699:
Dedó, Ernesto; Torri, Damiano; Salvi, Norma Zagaglia (2002), "The observability of the Fibonacci and the Lucas cubes",
850:
Hsu, W.-J.; Chung, M. J.; Das, A. (1997), "Linear recursive networks and their applications in distributed systems",
816: 681: 233:
of the three labels; if each of the three labels has no two consecutive 1 bits, the same is true of their majority.
276:> ... There is also an alternative graph-theoretic description of the same lattice: the independent sets of any 941:
Munarini, Emanuele; Salvi, Norma Zagaglia (2002), "Structural and enumerative properties of the Fibonacci cubes",
426: 701: 457:
modified the second order Fibonacci cubes based on different initial conditions. Another related graph is the
217: 79: 932: 341:
showed that it is possible to test whether a graph is a Fibonacci cube in time near-linear in its size.
1167: 1005: 1172: 377: 177: 437:
described the class of planar bipartite graphs that have Fibonacci cubes as their resonance graphs.
1003:
Salvi, Rodolfo; Salvi, Norma Zagaglia (2008), "Alternating unimodal sequences of Whitney numbers",
297: − 1 (the nodes with labels beginning with a 0 bit) and a Fibonacci cube of order 834:
Hsu, W.-J.; Page, C. V.; Liu, J.-S. (1993), "Fibonacci cubes: a class of self-similar graphs",
530:
calls the fact that this lattice has a Fibonacci number of elements a “well known fact,” while
873:
Klavžar, Sandi (2005), "On median nature and enumerative properties of Fibonacci-like cubes",
402: 387: 249: 229:. The median of any three vertices in a Fibonacci cube may be found by computing the bitwise 213: 64: 56: 1144: 1018: 770: 747: 654: 418: 237: 87: 8: 1055: 923: 836: 757: 641: 319: 281:
construction to a path graph results in the lattice associated with the Fibonacci cube.
1084: 1026: 991: 973: 822: 687: 361: 176: − 1; the bitstrings corresponding to these numbers are given by their 955: 755:
Höft, Hartmut; Höft, Margret (1985), "A Fibonacci sequence of distributive lattices",
715: 812: 738: 677: 309: 230: 995: 826: 1130: 1105: 1076: 983: 964:
Propp, James (1997), "Generating random elements of finite distributive lattices",
950: 882: 861: 804: 787: 733: 710: 669: 391: 357: 305: 205: 115: 75: 52: 36: 1088: 691: 1140: 1014: 766: 743: 650: 277: 48: 724:
Gansner, Emden R. (1982), "On the lattice of order ideals of an up-down poset",
1135: 887: 71: 1080: 469:
investigated the coloring properties of both Fibonacci cubes and Lucas cubes.
1156: 897: 673: 201: 111: 44: 911:(1150), Ljubljana, Slovenia: Institute of Mathematics, Physics and Mechanics 212:-vertex path graph. That is, each vertex in the Fibonacci cube represents a 1041:"Optimal deadlock-free routing and broadcasting on Fibonacci cube networks" 462: 395: 245: 226: 222: 166:
The nodes of such a network may be assigned consecutive integers from 0 to
24: 20: 1117:
Zhang, Heping; Ou, Lifeng; Yao, Haiyuan (2009), "Fibonacci-like cubes as
808: 1067:
Taranenko, A.; Vesel, A. (2007), "Fast recognition of Fibonacci cubes",
978: 83: 1109: 865: 791: 778:
Hsu, W.-J. (1993), "Fibonacci cubes: a new interconnection topology",
394:
of certain molecular graphs. For a molecular structure described by a
98:
Like the hypercube graph, the vertices of the Fibonacci cube of order
301: − 2 (the nodes with labels beginning with a 1 bit). 103: 40: 987: 639:
Beck, István (1990), "Partial orders and the Fibonacci numbers",
373: 183: 799:
Hsu, W.-J.; Chung, M. J. (1993), "Generalized Fibonacci cubes",
801:
1993 International Conference on Parallel Processing - ICPP'93
158: 919:"Fibonacci cubes are the resonance graphs of Fibonaccenes" 417:
and whose edges connect pairs of perfect matchings whose
162:
Fibonacci cubes (drawn in red) as subgraphs of hypercubes
413:
is a graph whose vertices describe perfect matchings of
534:
asks for a description of it in an exercise. See also
252:
defined by an alternating sequence of order relations
1098:
IEEE Transactions on Parallel and Distributed Systems
853:
IEEE Transactions on Parallel and Distributed Systems
780:
IEEE Transactions on Parallel and Distributed Systems
114:, the labels in the Fibonacci cube are a subset, the 59:. Fibonacci cubes were first explicitly defined in 453:based on more general forms of linear recursions. 293:may be partitioned into a Fibonacci cube of order 216:in the path complement graph, or equivalently an 1154: 16:Family of graphs based on the Fibonacci sequence 661: 582: 335:/2 (again, rounded up to the nearest integer). 1066: 698: 466: 445:Generalized Fibonacci cubes were presented by 368:/2 and the diameter of the network is at most 338: 70:The Fibonacci cube may be defined in terms of 940: 916: 430: 383: 315: 141:th Fibonacci number, and therefore there are 1096:Wu, Jie (1997), "Extended Fibonacci cubes", 665:Proc. 7th Int. Parallel Processing Symposium 284: 1038: 849: 622: 450: 1116: 1002: 833: 543: 434: 353: 236:The Fibonacci cube is also the graph of a 1134: 977: 954: 886: 737: 714: 47:. Mathematically they are similar to the 898:"Structure of Fibonacci cubes: a survey" 798: 754: 535: 446: 182: 157: 151:vertices in the Fibonacci cube of order 1025: 895: 872: 723: 606: 594: 567: 531: 527: 515: 511: 499: 495: 493: 484: 1155: 917:Klavžar, Sandi; Žigert, Petra (2005), 191: 43:properties derived from its origin in 963: 578: 576: 555: 356:suggested using Fibonacci cubes as a 638: 539: 490: 966:Electronic Journal of Combinatorics 777: 618: 349: 60: 13: 1095: 573: 454: 390:as a description of the family of 14: 1184: 803:, vol. 1, pp. 299–302, 440: 242:Birkhoff's representation theorem 427:Polycyclic aromatic hydrocarbons 612: 583:Cong, Zheng & Sharma (1993) 344: 600: 588: 561: 549: 521: 505: 478: 467:Dedó, Torri & Salvi (2002) 1: 1163:Parametric families of graphs 956:10.1016/S0012-365X(01)00407-1 716:10.1016/S0012-365X(01)00387-9 631: 380:in distributed computations. 187:The Fibonacci cube of order 6 93: 931:(3): 269–276, archived from 739:10.1016/0012-365X(82)90134-0 339:Taranenko & Vesel (2007) 289:The Fibonacci cube of order 196:The Fibonacci cube of order 7: 451:Hsu, Chung & Das (1997) 431:Klavžar & Žigert (2005) 384:Klavžar & Žigert (2005) 318:investigate the radius and 316:Munarini & Salvi (2002) 304:Every Fibonacci cube has a 10: 1189: 1136:10.1016/j.disc.2008.01.053 1039:Stojmenovic, Ivan (1998), 888:10.1016/j.disc.2004.02.023 435:Zhang, Ou & Yao (2009) 409:-transformation graph) of 354:Hsu, Page & Liu (1993) 178:Zeckendorf representations 1121:-transformation graphs", 1081:10.1007/s00453-007-9026-5 1054:: 159–166, archived from 1035:Exercise 3.23a, page 157. 1031:Enumerative Combinatorics 386:apply Fibonacci cubes in 285:Properties and algorithms 240:that may be obtained via 674:10.1109/IPPS.1993.262788 544:Salvi & Salvi (2008) 472: 896:Klavžar, Sandi (2011), 421:is an interior face of 128:labels possible, where 536:Höft & Höft (1985) 447:Hsu & Chung (1993) 188: 163: 388:chemical graph theory 250:partially ordered set 186: 161: 88:distributive lattices 65:chemical graph theory 1123:Discrete Mathematics 1048:Utilitas Mathematica 943:Discrete Mathematics 905:IMFM Preprint Series 875:Discrete Mathematics 809:10.1109/ICPP.1993.95 726:Discrete Mathematics 702:Discrete Mathematics 668:, pp. 748–751, 518:, Theorem 5.1, p.10. 419:symmetric difference 331:, and its radius is 238:distributive lattice 102:may be labeled with 1027:Stanley, Richard P. 924:Fibonacci Quarterly 837:Fibonacci Quarterly 758:Fibonacci Quarterly 642:Fibonacci Quarterly 320:independence number 225:and more generally 192:Algebraic structure 362:parallel computing 189: 164: 33:Fibonacci networks 1168:Fibonacci numbers 1110:10.1109/71.640012 1104:(12): 1203–1210, 1033:, Wadsworth, Inc. 866:10.1109/71.598343 792:10.1109/71.205649 461:, a graph with a 392:perfect matchings 310:Hamiltonian cycle 231:majority function 116:fibbinary numbers 37:undirected graphs 1180: 1173:Network topology 1147: 1138: 1129:(6): 1284–1293, 1112: 1091: 1062: 1060: 1045: 1034: 1021: 1006:Ars Combinatoria 998: 981: 959: 958: 949:(1–3): 317–324, 936: 912: 902: 891: 890: 881:(1–3): 145–153, 868: 845: 829: 794: 773: 750: 741: 719: 718: 694: 657: 626: 623:Stojmenovic 1998 616: 610: 604: 598: 592: 586: 580: 571: 565: 559: 553: 547: 525: 519: 509: 503: 497: 488: 482: 358:network topology 306:Hamiltonian path 206:complement graph 80:independent sets 76:Hamming distance 53:Fibonacci number 49:hypercube graphs 35:are a family of 1188: 1187: 1183: 1182: 1181: 1179: 1178: 1177: 1153: 1152: 1151: 1058: 1043: 979:math.CO/9801066 900: 819: 684: 634: 629: 617: 613: 605: 601: 593: 589: 581: 574: 570:, pp. 4–5. 566: 562: 554: 550: 526: 522: 510: 506: 498: 491: 487:, pp. 3–4. 483: 479: 475: 443: 403:resonance graph 347: 287: 278:bipartite graph 218:independent set 194: 175: 150: 136: 127: 96: 82:of vertices in 72:Fibonacci codes 29:Fibonacci cubes 17: 12: 11: 5: 1186: 1176: 1175: 1170: 1165: 1150: 1149: 1114: 1093: 1064: 1036: 1023: 1000: 961: 938: 914: 893: 870: 860:(7): 673–680, 847: 831: 817: 796: 775: 765:(3): 232–237, 752: 732:(2): 113–122, 721: 709:(1–3): 55–63, 696: 682: 659: 649:(2): 172–174, 635: 633: 630: 628: 627: 611: 607:Klavžar (2011) 599: 595:Klavžar (2011) 587: 572: 568:Klavžar (2011) 560: 548: 532:Stanley (1986) 528:Gansner (1982) 520: 516:Klavžar (2011) 512:Klavžar (2005) 504: 500:Klavžar (2011) 489: 485:Klavžar (2011) 476: 474: 471: 442: 441:Related graphs 439: 346: 343: 286: 283: 193: 190: 174: + 2 170: 149: + 2 145: 132: 126: + 2 122: 112:binary numbers 95: 92: 15: 9: 6: 4: 3: 2: 1185: 1174: 1171: 1169: 1166: 1164: 1161: 1160: 1158: 1146: 1142: 1137: 1132: 1128: 1124: 1120: 1115: 1111: 1107: 1103: 1099: 1094: 1090: 1086: 1082: 1078: 1074: 1070: 1065: 1061:on 2011-07-25 1057: 1053: 1049: 1042: 1037: 1032: 1028: 1024: 1020: 1016: 1012: 1008: 1007: 1001: 997: 993: 989: 988:10.37236/1330 985: 980: 975: 971: 967: 962: 957: 952: 948: 944: 939: 935:on 2007-02-08 934: 930: 926: 925: 920: 915: 910: 906: 899: 894: 889: 884: 880: 876: 871: 867: 863: 859: 855: 854: 848: 843: 839: 838: 832: 828: 824: 820: 818:0-8493-8983-6 814: 810: 806: 802: 797: 793: 789: 785: 781: 776: 772: 768: 764: 760: 759: 753: 749: 745: 740: 735: 731: 727: 722: 717: 712: 708: 704: 703: 697: 693: 689: 685: 683:0-8186-3442-1 679: 675: 671: 667: 666: 660: 656: 652: 648: 644: 643: 637: 636: 624: 620: 615: 608: 603: 596: 591: 584: 579: 577: 569: 564: 557: 552: 545: 541: 537: 533: 529: 524: 517: 513: 508: 501: 496: 494: 486: 481: 477: 470: 468: 464: 460: 456: 452: 448: 438: 436: 432: 428: 424: 420: 416: 412: 408: 404: 400: 397: 393: 389: 385: 381: 379: 375: 371: 367: 363: 359: 355: 351: 342: 340: 336: 334: 330: 326: 321: 317: 313: 311: 307: 302: 300: 296: 292: 282: 279: 275: 271: 267: 263: 259: 255: 251: 247: 243: 239: 234: 232: 228: 227:partial cubes 224: 223:median graphs 219: 215: 211: 207: 203: 202:simplex graph 199: 185: 181: 179: 173: 169: 160: 156: 154: 148: 144: 140: 135: 131: 125: 121: 117: 113: 109: 105: 101: 91: 89: 85: 81: 77: 73: 68: 66: 62: 58: 54: 51:, but with a 50: 46: 45:number theory 42: 38: 34: 30: 26: 22: 1126: 1122: 1118: 1101: 1097: 1075:(2): 81–93, 1072: 1069:Algorithmica 1068: 1056:the original 1051: 1047: 1030: 1010: 1004: 969: 965: 946: 942: 933:the original 928: 922: 908: 904: 878: 874: 857: 851: 841: 835: 800: 783: 779: 762: 756: 729: 725: 706: 700: 663: 646: 640: 614: 602: 590: 563: 556:Propp (1997) 551: 523: 507: 480: 463:Lucas number 444: 422: 414: 410: 406: 398: 396:planar graph 382: 378:broadcasting 369: 365: 348: 345:Applications 337: 332: 328: 324: 314: 303: 298: 294: 290: 288: 273: 269: 265: 261: 257: 253: 246:zigzag poset 235: 209: 197: 195: 171: 167: 165: 152: 146: 142: 138: 137:denotes the 133: 129: 123: 119: 118:. There are 107: 99: 97: 69: 32: 28: 25:graph theory 21:mathematical 18: 1013:: 105–117, 786:(1): 3–12, 540:Beck (1990) 84:path graphs 1157:Categories 972:(2): R15, 844:(1): 65–72 632:References 619:Hsu (1993) 459:Lucas cube 350:Hsu (1993) 106:of length 104:bitstrings 94:Definition 61:Hsu (1993) 39:with rich 455:Wu (1997) 86:, or via 41:recursive 23:field of 1029:(1986), 996:13313188 827:15982621 57:vertices 1145:2510538 1019:2414008 771:0806293 748:0675856 655:1051291 374:routing 244:from a 204:of the 200:is the 19:In the 1143:  1089:993779 1087:  1017:  994:  825:  815:  769:  746:  692:621063 690:  680:  653:  609:, p.9. 597:, p.6. 542:, and 502:, p.3. 401:, the 214:clique 208:of an 27:, the 1085:S2CID 1059:(PDF) 1044:(PDF) 992:S2CID 974:arXiv 901:(PDF) 823:S2CID 688:S2CID 473:Notes 272:< 268:> 264:< 260:> 256:< 813:ISBN 678:ISBN 405:or ( 376:and 352:and 248:, a 74:and 1131:doi 1127:309 1106:doi 1077:doi 984:doi 951:doi 947:255 883:doi 879:299 862:doi 805:doi 788:doi 734:doi 711:doi 707:255 670:doi 360:in 327:is 67:. 55:of 31:or 1159:: 1141:MR 1139:, 1125:, 1100:, 1083:, 1073:49 1071:, 1052:53 1050:, 1046:, 1015:MR 1011:87 1009:, 990:, 982:, 968:, 945:, 929:43 927:, 921:, 909:49 907:, 903:, 877:, 856:, 842:31 840:, 821:, 811:, 782:, 767:MR 763:23 761:, 744:MR 742:, 730:39 728:, 705:, 686:, 676:, 651:MR 647:28 645:, 621:; 575:^ 538:, 514:; 492:^ 425:. 312:. 180:. 155:. 90:. 78:, 1148:. 1133:: 1119:Z 1113:. 1108:: 1102:8 1092:. 1079:: 1063:. 1022:. 999:. 986:: 976:: 970:4 960:. 953:: 937:. 913:. 892:. 885:: 869:. 864:: 858:8 846:. 830:. 807:: 795:. 790:: 784:4 774:. 751:. 736:: 720:. 713:: 695:. 672:: 658:. 625:. 585:. 558:. 546:. 423:G 415:G 411:G 407:Z 399:G 370:n 366:n 333:n 329:n 325:n 299:n 295:n 291:n 274:f 270:e 266:d 262:c 258:b 254:a 210:n 198:n 172:n 168:F 153:n 147:n 143:F 139:n 134:n 130:F 124:n 120:F 108:n 100:n

Index

mathematical
graph theory
undirected graphs
recursive
number theory
hypercube graphs
Fibonacci number
vertices
Hsu (1993)
chemical graph theory
Fibonacci codes
Hamming distance
independent sets
path graphs
distributive lattices
bitstrings
binary numbers
fibbinary numbers

Zeckendorf representations

simplex graph
complement graph
clique
independent set
median graphs
partial cubes
majority function
distributive lattice
Birkhoff's representation theorem

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.