Knowledge

Event horizon

Source 📝

1613: 725: 951: 3002: 55: 1180: 1496:), then indeed the observer at the bottom of the rope can touch and even cross the event horizon. But once this happens it is impossible to pull the bottom of rope back out of the event horizon, since if the rope is pulled taut, the forces along the rope increase without bound as they approach the event horizon and at some point the rope must break. Furthermore, the break must occur not at the event horizon, but at a point where the second observer can observe it. 4700: 3832: 738: 1358: 1347: 1332: 1447:
words, there is no experiment and/or measurement that can be performed within a finite-size region of spacetime and within a finite time interval that answers the question of whether or not an event horizon exists. Because of the purely theoretical nature of the event horizon, the traveling object does not necessarily experience strange effects and does, in fact, pass through the calculated boundary in a finite amount of its
1786:"VII. On the means of discovering the distance, magnitude, &c. of the fixed stars, in consequence of the diminution of the velocity of their light, in case such a diminution should be found to take place in any of them, and such other data should be procured from observations, as would be farther necessary for that purpose. By the Rev. John Michell, B.D. F.R.S. In a letter to Henry Cavendish, Esq. F.R.S. and A.S" 3842: 991:. If the expansion has certain characteristics, parts of the universe will never be observable, no matter how long the observer waits for the light from those regions to arrive. The boundary beyond which events cannot ever be observed is an event horizon, and it represents the maximum extent of the particle horizon. 1574:, according to which, in the chart of the far observer, infalling matter is thermalized at the horizon and reemitted as Hawking radiation, while in the chart of an infalling observer matter continues undisturbed through the inner region and is destroyed at the singularity. This hypothesis does not violate the 1463:
event horizons, is that they represent an immutable surface that destroys objects that approach them. In practice, all event horizons appear to be some distance away from any observer, and objects sent towards an event horizon never appear to cross it from the sending observer's point of view (as the
1446:
in nature, meaning that it is determined by future causes. More precisely, one would need to know the entire history of the universe and all the way into the infinite future to determine the presence of an event horizon, which is not possible for quasilocal observers (not even in principle). In other
1389:
of particles within the horizon) are warped so as to fall farther into the hole. Once a particle is inside the horizon, moving into the hole is as inevitable as moving forward in time – no matter in what direction the particle is travelling – and can be thought of as equivalent to doing so, depending
1435:
interstellar gas or when they happen to be aimed directly at Earth). Furthermore, a distant observer will never actually see something reach the horizon. Instead, while approaching the hole, the object will seem to go ever more slowly, while any light it emits will be further and further redshifted.
1532:
A cosmic event horizon is commonly accepted as a real event horizon, whereas the description of a local black hole event horizon given by general relativity is found to be incomplete and controversial. When the conditions under which local event horizons occur are modeled using a more comprehensive
1503:
is far inside the event horizon, or there is none, observers crossing a black hole event horizon would not actually see or feel anything special happen at that moment. In terms of visual appearance, observers who fall into the hole perceive the eventual apparent horizon as a black impermeable area
1434:
around black holes, where material moves with such speed that friction creates high-energy radiation that can be detected (similarly, some matter from these accretion disks is forced out along the axis of spin of the black hole, creating visible jets when these streams interact with matter such as
1425:
According to the fundamental gravitational collapse models, an event horizon forms before the singularity of a black hole. If all the stars in the Milky Way would gradually aggregate towards the galactic center while keeping their proportionate distances from each other, they will all fall within
1301:
In the case of a horizon perceived by a uniformly accelerating observer in empty space, the horizon seems to remain a fixed distance from the observer no matter how its surroundings move. Varying the observer's acceleration may cause the horizon to appear to move over time or may prevent an event
1242:
a 45-degree line (the path of a light ray). An event whose light cone's edge is this asymptote or is farther away than this asymptote can never be observed by the accelerating particle. In the particle's reference frame, there is a boundary behind it from which no signals can escape (an apparent
1429:
Black hole event horizons are widely misunderstood. Common, although erroneous, is the notion that black holes "vacuum up" material in their neighborhood, where in fact they are no more capable of seeking out material to consume than any other gravitational attractor. As with any mass in the
1475:
In the case of the horizon around a black hole, observers stationary with respect to a distant object will all agree on where the horizon is. While this seems to allow an observer lowered towards the hole on a rope (or rod) to contact the horizon, in practice this cannot be done. The
850:
should be used instead of an event horizon, saying, "Gravitational collapse produces apparent horizons but no event horizons." He eventually concluded that "the absence of event horizons means that there are no black holes – in the sense of regimes from which light can't escape to
986:
could reach the observer at a given time. For events that occur beyond that distance, light has not had enough time to reach our location, even if it was emitted at the time the universe began. The evolution of the particle horizon with time depends on the nature of the
1430:
universe, matter must come within its gravitational scope for the possibility to exist of capture or consolidation with any other mass. Equally common is the idea that matter can be observed falling into a black hole. This is not possible. Astronomers can detect only
841:
paradoxes, encouraging the re-examination of the concept of local event horizons and the notion of black holes. Several theories were subsequently developed, some with and some without event horizons. One of the leading developers of theories to describe black holes,
1401:
operates slightly differently). The Schwarzschild radius of an object is proportional to its mass. Theoretically, any amount of matter will become a black hole if compressed into a space that fits within its corresponding Schwarzschild radius. For the mass of the
1504:
enclosing the singularity. Other objects that had entered the horizon area along the same radial path but at an earlier time would appear below the observer as long as they are not entered inside the apparent horizon, and they could exchange messages. Increasing
1520:, which are found in centers of galaxies, spaghettification occurs inside the event horizon. A human astronaut would survive the fall through an event horizon only in a black hole with a mass of approximately 10,000 126: 1210:
If a particle is moving at a constant velocity in a non-expanding universe free of gravitational fields, any event that occurs in that Universe will eventually be observable by the particle, because the forward
1362:
Inside the event horizon all future time paths bring the particle closer to the center of the black hole. It is no longer possible for the particle to escape, no matter the direction the particle is traveling.
1426:
their joint Schwarzschild radius long before they are forced to collide. Up to the collapse in the far future, observers in a galaxy surrounded by an event horizon would proceed with their lives normally.
1085: 1293:, for example), a true event horizon is never present, as this requires the particle to be accelerated indefinitely (requiring arbitrarily large amounts of energy and an arbitrarily large apparatus). 1472:). Attempting to make an object near the horizon remain stationary with respect to an observer requires applying a force whose magnitude increases unboundedly (becoming infinite) the closer it gets. 1369:
One of the best-known examples of an event horizon derives from general relativity's description of a black hole, a celestial object so dense that no nearby matter or radiation can escape its
1410:, it is about 9 millimeters (0.35 inches). In practice, however, neither Earth nor the Sun have the necessary mass (and, therefore, the necessary gravitational force) to overcome 1480:
to the horizon is finite, so the length of rope needed would be finite as well, but if the rope were lowered slowly (so that each point on the rope was approximately at rest in
1492:) experienced by points on the rope closer and closer to the horizon would approach infinity, so the rope would be torn apart. If the rope is lowered quickly (perhaps even in 1219:. On the other hand, if the particle is accelerating, in some situations light cones from some events never intersect the particle's world line. Under these conditions, an 3727: 1712:(the diagram is a "cartoon" version of an Eddington–Finkelstein coordinate diagram), but in other coordinates the light cones are not tilted in this way, for example in 1351:
Closer to the black hole spacetime starts to deform. In some convenient coordinate systems, there are more paths going towards the black hole than paths moving away.
1276: 1790: 4403: 496: 1302:
horizon from existing, depending on the acceleration function chosen. The observer never touches the horizon and never passes a location where it appeared to be.
955: 769: 865:
In an expanding universe, the speed of expansion reaches — and even exceeds — the speed of light, preventing signals from traveling to some regions. A
1578:
as there is a single copy of the information according to any given observer. Black hole complementarity is actually suggested by the scaling laws of
148: 2422:
Mann, Robert B.; Murk, Sebastian; Terno, Daniel R. (2022). "Black holes and their horizons in semiclassical and modified theories of gravity".
2011: 3083: 61: 3088: 353: 4450: 2709: 4685: 3807: 3464: 706: 4474: 4220: 516: 358: 3402: 3228: 3128: 1419: 1007: 762: 471: 1582:
approaching the event horizon, suggesting that in the Schwarzschild chart they stretch to cover the horizon and thermalize into a
2165: 2662: 4256: 4210: 1537:, local event horizons are expected to have properties that are different from those predicted using general relativity alone. 384: 218: 4394: 2905: 2803: 2779: 2755: 2703: 2238: 2202: 2123: 2054: 1989: 1709: 423: 3878: 1223:
is present in the particle's (accelerating) reference frame, representing a boundary beyond which events are unobservable.
994:
The criterion for determining whether a particle horizon for the universe exists is as follows. Define a comoving distance
858:
Any object approaching the horizon from the observer's side appears to slow down, never quite crossing the horizon. Due to
1567:
hypothesis, matter falling into a black hole would be burned to a crisp by a high energy "firewall" at the event horizon.
1230:
of this situation is shown in the figure to the right. As the particle accelerates, it approaches, but never reaches, the
755: 1636: 4131: 3444: 1952: 135: 4722: 4502: 4136: 3533: 161: 1589:
A complete description of local event horizons generated by gravity is expected to, at minimum, require a theory of
3528: 2528:
Murk, Sebastian (2023). "Nomen non est omen: Why it is too soon to identify ultra-compact objects as black holes".
1717: 4456: 3413: 1612: 724: 441: 54: 4169: 3449: 3245: 2585: 806: 348: 4272: 3671: 3352: 2991: 1174: 31: 17: 4703: 4445: 4350: 4280: 3439: 3314: 1162: 435: 143: 4413: 481: 4267: 3845: 3357: 3260: 3048: 1651: 1411: 1161:
cosmological model, approximating the Universe as composed of non-interacting constituents, each one being
826: 501: 35: 3367: 833:
event horizon as a boundary beyond which events of any kind cannot affect an outside observer, leading to
4737: 4732: 4308: 4042: 4027: 3661: 3626: 3616: 2194: 1415: 1310: 810: 742: 233: 153: 1157:
A calculation of the speeds of the cosmological event and particle horizons was given in a paper on the
4595: 4037: 3990: 3347: 3299: 3282: 2981: 2793: 2769: 2171: 1571: 646: 194: 4625: 4251: 3932: 3802: 3304: 3218: 2966: 2898: 2078:"Evolution of the cosmological horizons in a universe with countably infinitely many state equations" 1940: 1713: 1671: 1626: 1553: 1481: 988: 446: 258: 950: 4650: 4200: 3960: 3871: 3479: 2581: 681: 671: 521: 338: 4379: 4301: 3921: 3912: 3656: 3192: 3155: 3058: 3053: 2971: 2263: 1661: 1517: 1095: 666: 400: 1552:, and the larger question of how the black hole possesses a temperature is part of the topic of 801:
proposed that gravity can be strong enough in the vicinity of massive compact objects that even
4605: 4468: 4374: 4332: 4006: 3970: 3686: 3574: 3559: 3418: 3111: 2925: 2741: 1508:
are also locally noticeable effects, as a function of the mass of the black hole. In realistic
859: 636: 621: 466: 228: 2693: 2689: 1944: 1933: 4610: 4215: 4154: 3564: 3377: 3121: 2976: 1246: 1147: 611: 179: 1125:(i.e., points arbitrarily as far away as can be observed), then no event horizon exists. If 821:, then light originating inside or from it can escape temporarily but will return. In 1958, 4727: 4515: 4441: 4285: 3887: 3835: 3543: 3515: 3398: 3326: 3294: 3138: 2946: 2891: 2836: 2607: 2547: 2494: 2441: 2396: 2323: 2272: 2099: 2030: 1894: 1799: 1598: 1560:, which causes space around the particle to appear to be filled with matter and radiation. 1516:
occurs early: tidal forces tear materials apart well before the event horizon. However, in
1442:
as the past null cone of future conformal timelike infinity. A black hole event horizon is
1394: 1290: 945: 918: 866: 431: 1146:. An example of a cosmological model with an event horizon is a universe dominated by the 8: 4590: 4585: 4575: 4407: 4356: 4174: 4159: 3985: 3916: 3864: 3666: 3641: 3611: 3569: 3523: 3160: 3026: 3021: 2951: 2619: 1681: 1646: 1641: 1485: 1398: 1397:
acts as an event horizon in a non-rotating body that fits inside this radius (although a
1370: 1283: 1121: 967: 870: 626: 596: 591: 343: 4580: 2840: 2611: 2551: 2498: 2445: 2400: 2327: 2276: 2111: 2103: 2042: 2034: 1898: 1803: 1544:
mechanism that the primary impact of quantum effects is for event horizons to possess a
606: 576: 4655: 4555: 4479: 4337: 4318: 4312: 4263: 4205: 4114: 4032: 3950: 3927: 3895: 3500: 3372: 3277: 3068: 3036: 3001: 2961: 2956: 2867: 2826: 2814: 2745: 2623: 2597: 2563: 2537: 2510: 2484: 2457: 2431: 2386: 2359: 2346: 2313: 2301: 2187: 2161: 2115: 2089: 2046: 2020: 1910: 1884: 1850: 1825: 1575: 1564: 1509: 1306: 1151: 838: 834: 676: 561: 486: 333: 238: 223: 184: 46: 1234:
with respect to its original reference frame. On the spacetime diagram, its path is a
4665: 4497: 4489: 4090: 4047: 3646: 3636: 3631: 3331: 3319: 3272: 3213: 3182: 3172: 3106: 2872: 2854: 2799: 2775: 2751: 2733: 2699: 2685: 2627: 2567: 2514: 2461: 2351: 2234: 2198: 2119: 2050: 1985: 1981: 1948: 1914: 1817: 1766: 1666: 1656: 1549: 1541: 1534: 1513: 1340:, a particle can move in any direction. It is only restricted by the speed of light. 1227: 1183: 971: 932: 822: 506: 281: 4535: 2654: 2363: 1138:
Examples of cosmological models without an event horizon are universes dominated by
556: 4570: 4560: 4507: 4484: 4062: 3797: 3757: 3505: 3454: 3309: 3223: 3016: 2986: 2862: 2844: 2615: 2555: 2502: 2449: 2404: 2341: 2331: 2280: 2226: 2107: 2038: 2005:
Margalef-Bentabol, Berta; Margalef-Bentabol, Juan; Cepa, Jordi (21 December 2012).
1902: 1807: 1756: 1740: 1676: 1500: 1439: 1220: 979: 928: 914: 881: 877: 847: 791: 631: 586: 566: 511: 4630: 2077: 2076:
Margalef-Bentabol, Berta; Margalef-Bentabol, Juan; Cepa, Jordi (8 February 2013).
2006: 651: 4645: 4620: 4545: 4540: 4423: 4384: 4346: 4290: 4164: 4100: 3817: 3767: 3742: 3538: 3382: 3289: 3255: 3167: 2765: 2218: 1846: 1631: 1590: 1418:. The minimal mass required for a star to collapse beyond these pressures is the 1374: 982:, which represents the largest comoving distance from which light emitted in the 893: 843: 814: 686: 661: 546: 541: 405: 286: 248: 4428: 1708:(in this diagram represented by the yellow/blue grid), is tilted in this way in 978:
can ever reach the observer in the future. This differs from the concept of the
456: 4670: 4342: 4326: 4322: 4225: 4195: 4052: 3955: 3732: 3717: 3484: 3423: 3267: 2941: 2506: 1716:
they simply narrow without tilting as one approaches the event horizon, and in
1618: 1431: 1378: 1289:
While approximations of this type of situation can occur in the real world (in
1231: 1103: 889: 818: 729: 696: 691: 379: 243: 2559: 2453: 2408: 2285: 2258: 1906: 1761: 1744: 4716: 4660: 4640: 4635: 4550: 4418: 4190: 4022: 3975: 3792: 3712: 3240: 2858: 2254: 2230: 1969: 1928: 1821: 1770: 1583: 1579: 1477: 908: 900: 656: 571: 551: 476: 374: 1849:(2014). "Information Preservation and Weather Forecasting for Black Holes". 616: 4680: 4600: 4565: 4095: 4057: 3747: 3621: 3589: 3197: 3116: 2876: 2355: 1973: 1812: 1785: 1557: 1443: 1187: 869:
is a real event horizon because it affects all kinds of signals, including
798: 783: 601: 581: 1935:
Relatively Speaking: Relativity, Black Holes, and the Fate of the Universe
4464: 4433: 3980: 3787: 3737: 3691: 3594: 3469: 3408: 3133: 3041: 2849: 2336: 1545: 1533:
picture of the way the Universe works, that includes both relativity and
1505: 1448: 1373:. Often, this is described as the boundary within which the black hole's 1179: 958:
as a function of time and distance, in context of the expanding Universe.
862:, its image reddens over time as the object moves closer to the horizon. 491: 461: 1385:
paths (paths that light could take) (and hence all paths in the forward
1381:. However, a more detailed description is that within this horizon, all 4675: 4241: 4085: 4080: 3777: 3707: 3676: 3651: 3604: 3599: 3584: 3250: 3187: 3177: 3078: 2914: 2789: 2737: 1705: 1701: 1521: 1469: 1465: 1460: 1386: 1337: 1322: 1216: 1212: 1203: 1199: 904: 830: 701: 263: 189: 121:{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={\kappa }T_{\mu \nu }} 2831: 2318: 2075: 2004: 1829: 4072: 3812: 3459: 3362: 3150: 3145: 1382: 1239: 1235: 1198:
that is outside the particle's apparent horizon. The event's forward
963: 922: 272: 1855: 4615: 3965: 3722: 3681: 3579: 2542: 2436: 1889: 1594: 1493: 1313:
observer. It is never contacted, even by an accelerating observer.
852: 641: 451: 291: 2602: 2489: 2391: 2094: 2025: 2007:"Evolution of the cosmological horizons in a concordance universe" 1226:
For example, this occurs with a uniformly accelerated particle. A
3762: 2798:. The Commonwealth Fund Book Program. New York / London: Norton. 1489: 1357: 1346: 1331: 4295: 3782: 3772: 3752: 3474: 3073: 3063: 1309:, the horizon always appears to be a fixed distance away for a 1139: 817:
of the gravitational influence of a massive object exceeds the
2883: 1168: 3856: 1875:
Curiel, Erik (2019). "The many definitions of a black hole".
1407: 1406:, this radius is approximately 3 kilometers (1.9 miles); for 1143: 1080:{\displaystyle d_{p}=\int _{0}^{t_{0}}{\frac {c}{a(t)}}\,dt.} 876:
More specific horizon types include the related but distinct
802: 790:
is a boundary beyond which events cannot affect an observer.
4276: 2475:
Visser, Matt (2014). "Physical observability of horizons".
1967: 1158: 1548:
and so emit radiation. For black holes, this manifests as
1791:
Philosophical Transactions of the Royal Society of London
1720:
the light cones don't change shape or orientation at all.
1700:
The set of possible paths, or more accurately the future
1403: 884:
found around a black hole. Other distinct types include:
2815:"Isolated and dynamical horizons and their applications" 2795:
Black holes and time warps: Einstein's outrageous legacy
2302:"Isolated and dynamical horizons and their applications" 2683: 1454: 1305:
In the case of a horizon perceived by an occupant of a
1459:
A misconception concerning event horizons, especially
2259:"Gravitational collapse and space-time singularities" 1438:
Topologically, the event horizon is defined from the
1249: 1010: 935:, which are important in current black hole research. 64: 1608: 1556:. For accelerating particles, this manifests as the 1296: 1243:
horizon). The distance to this boundary is given by
2732: 2640: 2147: 2695:General Relativity: An introduction for physicists 2377:Senovilla, JosĂ© M. M. (2011). "Trapped surfaces". 2186: 1932: 1270: 1079: 120: 1749:Monthly Notices of the Royal Astronomical Society 27:Region in spacetime from which nothing can escape 4714: 2812: 2750:(27. printing ed.). New York, NY: Freeman. 2299: 1316: 2082:Journal of Cosmology and Astroparticle Physics 2012:Journal of Cosmology and Astroparticle Physics 829:to introduce a stricter definition of a local 3872: 2899: 2421: 1422:, which is approximately three solar masses. 763: 2580: 2159: 1527: 2698:. Cambridge University Press. p. 265. 2143: 2141: 1215:from these events intersect the particle's 1169:Apparent horizon of an accelerated particle 3879: 3865: 3465:Magnetospheric eternally collapsing object 2906: 2892: 770: 756: 2866: 2848: 2830: 2813:Ashtekar, Abhay; Krishnan, Badri (2004). 2655:"Journey into a Schwarzschild black hole" 2646: 2601: 2541: 2530:International Journal of Modern Physics D 2488: 2435: 2424:International Journal of Modern Physics D 2390: 2379:International Journal of Modern Physics D 2376: 2345: 2335: 2317: 2300:Ashtekar, Abhay; Krishnan, Badri (2004). 2284: 2093: 2069: 2024: 1888: 1854: 1811: 1760: 1390:on the spacetime coordinate system used. 1067: 813:were dominant. In these theories, if the 2138: 1927: 1870: 1868: 1866: 1178: 949: 2764: 2253: 2217: 2167:The Large Scale Structure of Space-Time 1845: 1783: 1739: 939: 14: 4715: 2788: 2474: 1874: 1841: 1839: 873:, which travel at the speed of light. 3860: 2887: 2665:from the original on 3 September 2019 2590:Journal of Physics: Conference Series 1863: 3841: 2652: 2527: 2184: 2126:from the original on 8 December 2019 2057:from the original on 8 December 2019 1597:. Another such candidate theory is 1455:Interacting with black hole horizons 4451:Tolman–Oppenheimer–Volkoff equation 4404:Friedmann–LemaĂźtre–Robertson–Walker 1836: 24: 2726: 1570:An alternative is provided by the 1540:At present, it is expected by the 81: 25: 4749: 4221:Hamilton–Jacobi–Einstein equation 2641:Misner, Thorne & Wheeler 1973 2148:Misner, Thorne & Wheeler 1973 1745:"Visual Horizons in World Models" 1710:Eddington–Finkelstein coordinates 1297:Interacting with a cosmic horizon 805:cannot escape. At that time, the 4699: 4698: 3840: 3831: 3830: 3129:Tolman–Oppenheimer–Volkoff limit 3000: 2588:(2016). "Black Hole Paradoxes". 1611: 1468:never intersects the observer's 1420:Tolman–Oppenheimer–Volkoff limit 1356: 1345: 1330: 1202:never intersects the particle's 737: 736: 723: 53: 3246:Innermost stable circular orbit 2913: 2712:from the original on 2019-03-31 2690:"11. Schwarzschild black holes" 2677: 2634: 2574: 2521: 2468: 2415: 2370: 2293: 2247: 2211: 2178: 2153: 1694: 1593:. One such candidate theory is 1563:According to the controversial 1113:is the age of the Universe. If 807:Newtonian theory of gravitation 4028:Mass–energy equivalence (E=mc) 3886: 3672:Timeline of black hole physics 2688:; Lasenby, Anthony N. (2006). 2620:10.1088/1742-6596/759/1/012060 2225:. Cambridge University Press. 1998: 1961: 1921: 1777: 1733: 1175:Hyperbolic motion (relativity) 1061: 1055: 794:coined the term in the 1950s. 32:Event horizon (disambiguation) 13: 1: 3440:Nonsingular black hole models 2112:10.1088/1475-7516/2013/02/015 2043:10.1088/1475-7516/2012/12/035 1727: 1317:Event horizon of a black hole 2819:Living Reviews in Relativity 2306:Living Reviews in Relativity 1798:. The Royal Society: 35–57. 1718:Kruskal–Szekeres coordinates 1652:Cosmic censorship hypothesis 36:Horizon (general relativity) 7: 4043:Relativistic Doppler effect 3662:Rossi X-ray Timing Explorer 3627:Hypercompact stellar system 3617:Gamma-ray burst progenitors 2195:University of Chicago Press 1604: 1499:Assuming that the possible 1416:neutron degeneracy pressure 966:, the event horizon of the 811:corpuscular theory of light 234:Gravitational time dilation 10: 4754: 4514:In computational physics: 4038:Relativity of simultaneity 3348:Black hole complementarity 3315:Bousso's holographic bound 3300:Quasi-periodic oscillation 2998: 2992:Malament–Hogarth spacetime 2771:The universe in a nutshell 2507:10.1103/PhysRevD.90.127502 2172:Cambridge University Press 1941:W. W. Norton & Company 1320: 1172: 943: 354:Mathisson–Papapetrou–Dixon 195:Pseudo-Riemannian manifold 29: 4696: 4528: 4393: 4365: 4351:Lense–Thirring precession 4234: 4183: 4145: 4124: 4113: 4071: 4015: 3999: 3941: 3933:Doubly special relativity 3905: 3894: 3826: 3700: 3552: 3514: 3493: 3432: 3391: 3340: 3219:Gravitational singularity 3206: 3099: 3009: 2934: 2921: 2560:10.1142/S0218271823420129 2454:10.1142/S0218271822300154 2409:10.1142/S0218271811020354 2286:10.1103/PhysRevLett.14.57 1907:10.1038/s41550-018-0602-1 1714:Schwarzschild coordinates 1672:Kugelblitz (astrophysics) 1572:complementarity principle 1554:black hole thermodynamics 1528:Beyond general relativity 1482:Schwarzschild coordinates 1464:horizon-crossing event's 1240:asymptotically approaches 989:expansion of the universe 974:from which light emitted 4723:Concepts in astrophysics 4211:Post-Newtonian formalism 4201:Einstein field equations 4137:Mathematical formulation 3961:Hyperbolic orthogonality 3803:PSO J030947.49+271757.31 3728:SDSS J150243.09+111557.3 3261:Blandford–Znajek process 2231:10.1017/CBO9780511804533 2185:Wald, Robert M. (1984). 1704:containing all possible 1687: 1518:supermassive black holes 1135:, a horizon is present. 359:Hamilton–Jacobi–Einstein 339:Einstein field equations 162:Mathematical formulation 3922:Galilean transformation 3913:Principle of relativity 3059:Active galactic nucleus 2742:Wheeler, John Archibald 2653:Hamilton, Andrew J. S. 2536:(14): 2342012–2342235. 2264:Physical Review Letters 1972:; Schneider, Nicholas; 1762:10.1093/mnras/116.6.662 1662:Event Horizon Telescope 1271:{\displaystyle c^{2}/a} 4007:Lorentz transformation 3687:Tidal disruption event 3657:Supermassive dark star 3575:Black holes in fiction 3560:Outline of black holes 3193:Supermassive dark star 3112:Gravitational collapse 2684:Hobson, Michael Paul; 2430:(9): 2230015–2230276. 1978:The Cosmic Perspective 1813:10.1098/rstl.1784.0008 1784:Michell, John (1784). 1272: 1207: 1081: 959: 860:gravitational redshift 229:Gravitational redshift 122: 4475:Weyl−Lewis−Papapetrou 4216:Raychaudhuri equation 4155:Equivalence principle 3565:Black Hole Initiative 3378:Holographic principle 2160:Hawking, Stephen W.; 1627:Abraham–Lorentz force 1291:particle accelerators 1273: 1182: 1148:cosmological constant 1082: 953: 919:cosmological horizons 517:Weyl−Lewis−Papapetrou 472:Kerr–Newman–de Sitter 292:Einstein–Rosen bridge 224:Gravitational lensing 180:Equivalence principle 123: 4516:Numerical relativity 4357:pulsar timing arrays 3368:Final parsec problem 3327:Schwarzschild radius 2850:10.12942/lrr-2004-10 2774:. New York: Bantam. 2337:10.12942/lrr-2004-10 2223:Cosmological Physics 1599:loop quantum gravity 1395:Schwarzschild radius 1377:is greater than the 1247: 1186:showing a uniformly 1008: 946:Cosmological horizon 940:Cosmic event horizon 867:cosmic event horizon 846:, suggested that an 447:Einstein–Rosen waves 173:Fundamental concepts 62: 30:For other uses, see 4408:Friedmann equations 4302:Hulse–Taylor binary 4264:Gravitational waves 4160:Riemannian geometry 3986:Proper acceleration 3971:Maxwell's equations 3917:Galilean relativity 3667:Superluminal motion 3642:Population III star 3612:Gravitational waves 3570:Black hole starship 3353:Information paradox 2841:2004LRR.....7...10A 2766:Hawking, Stephen W. 2612:2016JPhCS.759a2060J 2552:2023IJMPD..3242012M 2499:2014PhRvD..90l7502V 2446:2022IJMPD..3130015M 2401:2011IJMPD..20.2139S 2328:2004LRR.....7...10A 2277:1965PhRvL..14...57P 2104:2013JCAP...02..015M 2035:2012JCAP...12..035M 1899:2019NatAs...3...27C 1847:Hawking, Stephen W. 1804:1784RSPT...74...35M 1682:Rindler coordinates 1647:Black hole starship 1642:Black hole electron 1565:black hole firewall 1510:stellar black holes 1486:proper acceleration 1399:rotating black hole 1393:The surface at the 1371:gravitational field 1284:proper acceleration 1045: 968:observable universe 871:gravitational waves 401:Kaluza–Klein theory 287:Minkowski spacetime 239:Gravitational waves 4738:Physical phenomena 4733:General relativity 4457:Reissner–Nordström 4375:Brans–Dicke theory 4206:Linearized gravity 4033:Length contraction 3951:Frame of reference 3928:Special relativity 3501:Optical black hole 3414:Reissner–Nordström 3373:Firewall (physics) 3278:Gravitational lens 2734:Misner, Charles W. 2686:Efstathiou, George 2189:General Relativity 1968:Bennett, Jeffrey; 1637:Beyond black holes 1576:no-cloning theorem 1336:Far away from the 1307:de Sitter universe 1268: 1208: 1152:de Sitter universe 1090:In this equation, 1077: 1024: 960: 956:reachable Universe 933:dynamical horizons 827:general relativity 809:and the so-called 730:Physics portal 502:Oppenheimer–Snyder 442:Reissner–Nordström 334:Linearized gravity 282:Spacetime diagrams 185:Special relativity 118: 47:General relativity 4710: 4709: 4524: 4523: 4503:OzsvĂĄth–SchĂŒcking 4109: 4108: 4091:Minkowski diagram 4048:Thomas precession 3991:Relativistic mass 3854: 3853: 3647:Supermassive star 3637:Naked singularity 3632:Membrane paradigm 3358:Cosmic censorship 3332:Spaghettification 3320:Immirzi parameter 3273:Hawking radiation 3214:Astrophysical jet 3183:Supermassive star 3173:Binary black hole 3107:Stellar evolution 3049:Intermediate-mass 2805:978-0-393-31276-8 2781:978-0-553-80202-3 2757:978-0-7167-0344-0 2705:978-0-521-82951-9 2659:jila.colorado.edu 2477:Physical Review D 2385:(11): 2139–2168. 2240:978-0-511-80453-3 2204:978-0-2268-7033-5 1991:978-0-134-05906-8 1982:Pearson Education 1929:Chaisson, Eric J. 1741:Rindler, Wolfgang 1667:Hawking radiation 1657:Dynamical horizon 1586:-thick membrane. 1550:Hawking radiation 1542:Hawking radiation 1535:quantum mechanics 1514:spaghettification 1367: 1366: 1286:of the particle. 1228:spacetime diagram 1184:Spacetime diagram 1065: 972:comoving distance 882:apparent horizons 823:David Finkelstein 780: 779: 413: 412: 299: 298: 16:(Redirected from 4745: 4702: 4701: 4485:van Stockum dust 4257:Two-body problem 4175:Mach's principle 4122: 4121: 4063:Terrell rotation 3903: 3902: 3881: 3874: 3867: 3858: 3857: 3844: 3843: 3834: 3833: 3506:Sonic black hole 3455:Dark-energy star 3310:Bekenstein bound 3295:M–sigma relation 3224:Ring singularity 3004: 2908: 2901: 2894: 2885: 2884: 2880: 2870: 2852: 2834: 2809: 2785: 2761: 2721: 2720: 2718: 2717: 2681: 2675: 2674: 2672: 2670: 2650: 2644: 2638: 2632: 2631: 2605: 2578: 2572: 2571: 2545: 2525: 2519: 2518: 2492: 2472: 2466: 2465: 2439: 2419: 2413: 2412: 2394: 2374: 2368: 2367: 2349: 2339: 2321: 2297: 2291: 2290: 2288: 2251: 2245: 2244: 2219:Peacock, John A. 2215: 2209: 2208: 2192: 2182: 2176: 2175: 2157: 2151: 2145: 2136: 2135: 2133: 2131: 2097: 2073: 2067: 2066: 2064: 2062: 2028: 2002: 1996: 1995: 1965: 1959: 1958: 1938: 1925: 1919: 1918: 1892: 1877:Nature Astronomy 1872: 1861: 1860: 1858: 1843: 1834: 1833: 1815: 1781: 1775: 1774: 1764: 1755:(6). : 662–677. 1737: 1721: 1698: 1677:Micro black hole 1621: 1616: 1615: 1501:apparent horizon 1440:causal structure 1360: 1349: 1334: 1327: 1326: 1311:non-accelerating 1282:is the constant 1281: 1277: 1275: 1274: 1269: 1264: 1259: 1258: 1221:apparent horizon 1134: 1124: 1086: 1084: 1083: 1078: 1066: 1064: 1047: 1044: 1043: 1042: 1032: 1020: 1019: 980:particle horizon 894:Killing horizons 848:apparent horizon 792:Wolfgang Rindler 772: 765: 758: 745: 740: 739: 732: 728: 727: 512:van Stockum dust 497:Robertson–Walker 323: 322: 213: 212: 127: 125: 124: 119: 117: 116: 104: 96: 95: 77: 76: 57: 43: 42: 21: 4753: 4752: 4748: 4747: 4746: 4744: 4743: 4742: 4713: 4712: 4711: 4706: 4692: 4520: 4424:BKL singularity 4414:LemaĂźtre–Tolman 4389: 4385:Quantum gravity 4367: 4361: 4347:geodetic effect 4321:(together with 4291:LISA Pathfinder 4230: 4179: 4165:Penrose diagram 4147: 4141: 4116: 4105: 4101:Minkowski space 4067: 4011: 3995: 3943: 3937: 3897: 3890: 3885: 3855: 3850: 3822: 3798:ULAS J1342+0928 3758:SDSS J0849+1114 3743:Phoenix Cluster 3696: 3548: 3510: 3489: 3428: 3387: 3383:No-hair theorem 3336: 3290:Bondi accretion 3256:Penrose process 3202: 3168:Gamma-ray burst 3095: 3005: 2996: 2982:Direct collapse 2930: 2917: 2912: 2806: 2782: 2758: 2729: 2727:Further reading 2724: 2715: 2713: 2706: 2682: 2678: 2668: 2666: 2651: 2647: 2639: 2635: 2586:Narayan, Ramesh 2579: 2575: 2526: 2522: 2473: 2469: 2420: 2416: 2375: 2371: 2298: 2294: 2252: 2248: 2241: 2216: 2212: 2205: 2183: 2179: 2158: 2154: 2146: 2139: 2129: 2127: 2074: 2070: 2060: 2058: 2003: 1999: 1992: 1984:. p. 156. 1966: 1962: 1955: 1926: 1922: 1873: 1864: 1844: 1837: 1782: 1778: 1738: 1734: 1730: 1725: 1724: 1699: 1695: 1690: 1632:Acoustic metric 1617: 1610: 1607: 1591:quantum gravity 1530: 1478:proper distance 1457: 1432:accretion disks 1375:escape velocity 1361: 1350: 1335: 1325: 1319: 1299: 1279: 1260: 1254: 1250: 1248: 1245: 1244: 1194:, and an event 1177: 1171: 1163:a perfect fluid 1131: 1126: 1119: 1114: 1112: 1051: 1046: 1038: 1034: 1033: 1028: 1015: 1011: 1009: 1006: 1005: 999: 970:is the largest 948: 942: 844:Stephen Hawking 815:escape velocity 776: 735: 722: 721: 714: 713: 537: 536: 527: 526: 482:LemaĂźtre–Tolman 427: 426: 415: 414: 406:Quantum gravity 393:Advanced theory 320: 319: 318: 301: 300: 249:Geodetic effect 210: 209: 200: 199: 175: 174: 158: 128: 109: 105: 100: 88: 84: 69: 65: 63: 60: 59: 39: 28: 23: 22: 15: 12: 11: 5: 4751: 4741: 4740: 4735: 4730: 4725: 4708: 4707: 4697: 4694: 4693: 4691: 4690: 4683: 4678: 4673: 4668: 4663: 4658: 4653: 4648: 4643: 4638: 4633: 4628: 4623: 4618: 4613: 4611:Choquet-Bruhat 4608: 4603: 4598: 4593: 4588: 4583: 4578: 4573: 4568: 4563: 4558: 4553: 4548: 4543: 4538: 4532: 4530: 4526: 4525: 4522: 4521: 4519: 4518: 4511: 4510: 4505: 4500: 4493: 4492: 4487: 4482: 4477: 4472: 4463:Axisymmetric: 4460: 4459: 4454: 4448: 4437: 4436: 4431: 4426: 4421: 4416: 4411: 4402:Cosmological: 4399: 4397: 4391: 4390: 4388: 4387: 4382: 4377: 4371: 4369: 4363: 4362: 4360: 4359: 4354: 4343:frame-dragging 4340: 4335: 4330: 4327:Einstein rings 4323:Einstein cross 4316: 4305: 4304: 4299: 4293: 4288: 4283: 4270: 4260: 4259: 4254: 4249: 4244: 4238: 4236: 4232: 4231: 4229: 4228: 4226:Ernst equation 4223: 4218: 4213: 4208: 4203: 4198: 4196:BSSN formalism 4193: 4187: 4185: 4181: 4180: 4178: 4177: 4172: 4167: 4162: 4157: 4151: 4149: 4143: 4142: 4140: 4139: 4134: 4128: 4126: 4119: 4111: 4110: 4107: 4106: 4104: 4103: 4098: 4093: 4088: 4083: 4077: 4075: 4069: 4068: 4066: 4065: 4060: 4055: 4053:Ladder paradox 4050: 4045: 4040: 4035: 4030: 4025: 4019: 4017: 4013: 4012: 4010: 4009: 4003: 4001: 3997: 3996: 3994: 3993: 3988: 3983: 3978: 3973: 3968: 3963: 3958: 3956:Speed of light 3953: 3947: 3945: 3939: 3938: 3936: 3935: 3930: 3925: 3919: 3909: 3907: 3900: 3892: 3891: 3884: 3883: 3876: 3869: 3861: 3852: 3851: 3849: 3848: 3838: 3827: 3824: 3823: 3821: 3820: 3818:Swift J1644+57 3815: 3810: 3805: 3800: 3795: 3790: 3785: 3780: 3775: 3770: 3768:MS 0735.6+7421 3765: 3760: 3755: 3750: 3745: 3740: 3735: 3733:Sagittarius A* 3730: 3725: 3720: 3715: 3710: 3704: 3702: 3698: 3697: 3695: 3694: 3689: 3684: 3679: 3674: 3669: 3664: 3659: 3654: 3649: 3644: 3639: 3634: 3629: 3624: 3619: 3614: 3609: 3608: 3607: 3602: 3592: 3587: 3582: 3577: 3572: 3567: 3562: 3556: 3554: 3550: 3549: 3547: 3546: 3541: 3536: 3531: 3526: 3520: 3518: 3512: 3511: 3509: 3508: 3503: 3497: 3495: 3491: 3490: 3488: 3487: 3482: 3477: 3472: 3467: 3462: 3457: 3452: 3447: 3442: 3436: 3434: 3430: 3429: 3427: 3426: 3421: 3416: 3411: 3406: 3395: 3393: 3389: 3388: 3386: 3385: 3380: 3375: 3370: 3365: 3360: 3355: 3350: 3344: 3342: 3338: 3337: 3335: 3334: 3329: 3324: 3323: 3322: 3312: 3307: 3305:Thermodynamics 3302: 3297: 3292: 3287: 3286: 3285: 3275: 3270: 3268:Accretion disk 3265: 3264: 3263: 3258: 3248: 3243: 3238: 3233: 3232: 3231: 3226: 3216: 3210: 3208: 3204: 3203: 3201: 3200: 3195: 3190: 3185: 3180: 3175: 3170: 3165: 3164: 3163: 3158: 3153: 3143: 3142: 3141: 3131: 3126: 3125: 3124: 3114: 3109: 3103: 3101: 3097: 3096: 3094: 3093: 3092: 3091: 3086: 3081: 3076: 3071: 3066: 3061: 3051: 3046: 3045: 3044: 3034: 3033: 3032: 3029: 3024: 3013: 3011: 3007: 3006: 2999: 2997: 2995: 2994: 2989: 2984: 2979: 2974: 2969: 2964: 2959: 2954: 2949: 2944: 2942:BTZ black hole 2938: 2936: 2932: 2931: 2929: 2928: 2922: 2919: 2918: 2911: 2910: 2903: 2896: 2888: 2882: 2881: 2810: 2804: 2790:Thorne, Kip S. 2786: 2780: 2762: 2756: 2738:Thorne, Kip S. 2728: 2725: 2723: 2722: 2704: 2676: 2645: 2633: 2573: 2520: 2483:(12): 127502. 2467: 2414: 2369: 2292: 2255:Penrose, Roger 2246: 2239: 2210: 2203: 2177: 2152: 2137: 2068: 1997: 1990: 1970:Donahue, Megan 1960: 1954:978-0393306750 1953: 1920: 1862: 1835: 1776: 1743:(1956-12-01). 1731: 1729: 1726: 1723: 1722: 1692: 1691: 1689: 1686: 1685: 1684: 1679: 1674: 1669: 1664: 1659: 1654: 1649: 1644: 1639: 1634: 1629: 1623: 1622: 1619:Physics portal 1606: 1603: 1529: 1526: 1456: 1453: 1379:speed of light 1365: 1364: 1353: 1352: 1342: 1341: 1321:Main article: 1318: 1315: 1298: 1295: 1267: 1263: 1257: 1253: 1232:speed of light 1170: 1167: 1129: 1117: 1110: 1104:speed of light 1088: 1087: 1076: 1073: 1070: 1063: 1060: 1057: 1054: 1050: 1041: 1037: 1031: 1027: 1023: 1018: 1014: 997: 944:Main article: 941: 938: 937: 936: 926: 912: 901:photon spheres 897: 819:speed of light 778: 777: 775: 774: 767: 760: 752: 749: 748: 747: 746: 733: 716: 715: 712: 711: 704: 699: 694: 689: 684: 679: 674: 669: 664: 659: 654: 649: 644: 639: 634: 629: 624: 619: 614: 609: 604: 599: 594: 589: 584: 579: 574: 569: 564: 559: 554: 549: 544: 538: 534: 533: 532: 529: 528: 525: 524: 519: 514: 509: 504: 499: 494: 489: 484: 479: 474: 469: 464: 459: 454: 449: 444: 439: 428: 422: 421: 420: 417: 416: 411: 410: 409: 408: 403: 395: 394: 390: 389: 388: 387: 385:Post-Newtonian 382: 377: 369: 368: 364: 363: 362: 361: 356: 351: 346: 341: 336: 328: 327: 321: 317: 316: 313: 309: 308: 307: 306: 303: 302: 297: 296: 295: 294: 289: 284: 276: 275: 269: 268: 267: 266: 261: 256: 251: 246: 244:Frame-dragging 241: 236: 231: 226: 221: 219:Kepler problem 211: 207: 206: 205: 202: 201: 198: 197: 192: 187: 182: 176: 172: 171: 170: 167: 166: 165: 164: 159: 157: 156: 151: 146: 140: 138: 130: 129: 115: 112: 108: 103: 99: 94: 91: 87: 83: 80: 75: 72: 68: 58: 50: 49: 26: 18:Event horizons 9: 6: 4: 3: 2: 4750: 4739: 4736: 4734: 4731: 4729: 4726: 4724: 4721: 4720: 4718: 4705: 4695: 4689: 4688: 4684: 4682: 4679: 4677: 4674: 4672: 4669: 4667: 4664: 4662: 4659: 4657: 4654: 4652: 4649: 4647: 4644: 4642: 4639: 4637: 4634: 4632: 4629: 4627: 4624: 4622: 4619: 4617: 4614: 4612: 4609: 4607: 4604: 4602: 4599: 4597: 4596:Chandrasekhar 4594: 4592: 4589: 4587: 4584: 4582: 4579: 4577: 4574: 4572: 4569: 4567: 4564: 4562: 4559: 4557: 4556:Schwarzschild 4554: 4552: 4549: 4547: 4544: 4542: 4539: 4537: 4534: 4533: 4531: 4527: 4517: 4513: 4512: 4509: 4506: 4504: 4501: 4499: 4495: 4494: 4491: 4488: 4486: 4483: 4481: 4478: 4476: 4473: 4470: 4466: 4462: 4461: 4458: 4455: 4452: 4449: 4447: 4443: 4442:Schwarzschild 4439: 4438: 4435: 4432: 4430: 4427: 4425: 4422: 4420: 4417: 4415: 4412: 4409: 4405: 4401: 4400: 4398: 4396: 4392: 4386: 4383: 4381: 4378: 4376: 4373: 4372: 4370: 4364: 4358: 4355: 4352: 4348: 4344: 4341: 4339: 4338:Shapiro delay 4336: 4334: 4331: 4328: 4324: 4320: 4317: 4314: 4310: 4307: 4306: 4303: 4300: 4297: 4294: 4292: 4289: 4287: 4284: 4282: 4281:collaboration 4278: 4274: 4271: 4269: 4265: 4262: 4261: 4258: 4255: 4253: 4250: 4248: 4247:Event horizon 4245: 4243: 4240: 4239: 4237: 4233: 4227: 4224: 4222: 4219: 4217: 4214: 4212: 4209: 4207: 4204: 4202: 4199: 4197: 4194: 4192: 4191:ADM formalism 4189: 4188: 4186: 4182: 4176: 4173: 4171: 4168: 4166: 4163: 4161: 4158: 4156: 4153: 4152: 4150: 4144: 4138: 4135: 4133: 4130: 4129: 4127: 4123: 4120: 4118: 4112: 4102: 4099: 4097: 4096:Biquaternions 4094: 4092: 4089: 4087: 4084: 4082: 4079: 4078: 4076: 4074: 4070: 4064: 4061: 4059: 4056: 4054: 4051: 4049: 4046: 4044: 4041: 4039: 4036: 4034: 4031: 4029: 4026: 4024: 4023:Time dilation 4021: 4020: 4018: 4014: 4008: 4005: 4004: 4002: 3998: 3992: 3989: 3987: 3984: 3982: 3979: 3977: 3976:Proper length 3974: 3972: 3969: 3967: 3964: 3962: 3959: 3957: 3954: 3952: 3949: 3948: 3946: 3940: 3934: 3931: 3929: 3926: 3923: 3920: 3918: 3914: 3911: 3910: 3908: 3904: 3901: 3899: 3893: 3889: 3882: 3877: 3875: 3870: 3868: 3863: 3862: 3859: 3847: 3839: 3837: 3829: 3828: 3825: 3819: 3816: 3814: 3811: 3809: 3806: 3804: 3801: 3799: 3796: 3794: 3793:Markarian 501 3791: 3789: 3786: 3784: 3781: 3779: 3776: 3774: 3771: 3769: 3766: 3764: 3761: 3759: 3756: 3754: 3751: 3749: 3746: 3744: 3741: 3739: 3736: 3734: 3731: 3729: 3726: 3724: 3721: 3719: 3718:XTE J1118+480 3716: 3714: 3713:XTE J1650-500 3711: 3709: 3706: 3705: 3703: 3699: 3693: 3690: 3688: 3685: 3683: 3680: 3678: 3675: 3673: 3670: 3668: 3665: 3663: 3660: 3658: 3655: 3653: 3650: 3648: 3645: 3643: 3640: 3638: 3635: 3633: 3630: 3628: 3625: 3623: 3620: 3618: 3615: 3613: 3610: 3606: 3603: 3601: 3598: 3597: 3596: 3593: 3591: 3588: 3586: 3583: 3581: 3578: 3576: 3573: 3571: 3568: 3566: 3563: 3561: 3558: 3557: 3555: 3551: 3545: 3542: 3540: 3537: 3535: 3532: 3530: 3527: 3525: 3522: 3521: 3519: 3517: 3513: 3507: 3504: 3502: 3499: 3498: 3496: 3492: 3486: 3483: 3481: 3478: 3476: 3473: 3471: 3468: 3466: 3463: 3461: 3458: 3456: 3453: 3451: 3448: 3446: 3443: 3441: 3438: 3437: 3435: 3431: 3425: 3422: 3420: 3417: 3415: 3412: 3410: 3407: 3404: 3400: 3399:Schwarzschild 3397: 3396: 3394: 3390: 3384: 3381: 3379: 3376: 3374: 3371: 3369: 3366: 3364: 3361: 3359: 3356: 3354: 3351: 3349: 3346: 3345: 3343: 3339: 3333: 3330: 3328: 3325: 3321: 3318: 3317: 3316: 3313: 3311: 3308: 3306: 3303: 3301: 3298: 3296: 3293: 3291: 3288: 3284: 3281: 3280: 3279: 3276: 3274: 3271: 3269: 3266: 3262: 3259: 3257: 3254: 3253: 3252: 3249: 3247: 3244: 3242: 3241:Photon sphere 3239: 3237: 3236:Event horizon 3234: 3230: 3227: 3225: 3222: 3221: 3220: 3217: 3215: 3212: 3211: 3209: 3205: 3199: 3196: 3194: 3191: 3189: 3186: 3184: 3181: 3179: 3176: 3174: 3171: 3169: 3166: 3162: 3161:Related links 3159: 3157: 3154: 3152: 3149: 3148: 3147: 3144: 3140: 3139:Related links 3137: 3136: 3135: 3132: 3130: 3127: 3123: 3122:Related links 3120: 3119: 3118: 3115: 3113: 3110: 3108: 3105: 3104: 3102: 3098: 3090: 3087: 3085: 3082: 3080: 3077: 3075: 3072: 3070: 3067: 3065: 3062: 3060: 3057: 3056: 3055: 3052: 3050: 3047: 3043: 3040: 3039: 3038: 3035: 3030: 3028: 3025: 3023: 3020: 3019: 3018: 3015: 3014: 3012: 3008: 3003: 2993: 2990: 2988: 2985: 2983: 2980: 2978: 2975: 2973: 2970: 2968: 2965: 2963: 2960: 2958: 2955: 2953: 2950: 2948: 2947:Schwarzschild 2945: 2943: 2940: 2939: 2937: 2933: 2927: 2924: 2923: 2920: 2916: 2909: 2904: 2902: 2897: 2895: 2890: 2889: 2886: 2878: 2874: 2869: 2864: 2860: 2856: 2851: 2846: 2842: 2838: 2833: 2832:gr-qc/0407042 2828: 2824: 2820: 2816: 2811: 2807: 2801: 2797: 2796: 2791: 2787: 2783: 2777: 2773: 2772: 2767: 2763: 2759: 2753: 2749: 2748: 2743: 2739: 2735: 2731: 2730: 2711: 2707: 2701: 2697: 2696: 2691: 2687: 2680: 2664: 2660: 2656: 2649: 2643:, p. 824 2642: 2637: 2629: 2625: 2621: 2617: 2613: 2609: 2604: 2599: 2595: 2591: 2587: 2583: 2582:Joshi, Pankaj 2577: 2569: 2565: 2561: 2557: 2553: 2549: 2544: 2539: 2535: 2531: 2524: 2516: 2512: 2508: 2504: 2500: 2496: 2491: 2486: 2482: 2478: 2471: 2463: 2459: 2455: 2451: 2447: 2443: 2438: 2433: 2429: 2425: 2418: 2410: 2406: 2402: 2398: 2393: 2388: 2384: 2380: 2373: 2365: 2361: 2357: 2353: 2348: 2343: 2338: 2333: 2329: 2325: 2320: 2319:gr-qc/0407042 2315: 2311: 2307: 2303: 2296: 2287: 2282: 2278: 2274: 2270: 2266: 2265: 2260: 2256: 2250: 2242: 2236: 2232: 2228: 2224: 2220: 2214: 2206: 2200: 2196: 2191: 2190: 2181: 2173: 2169: 2168: 2163: 2162:Ellis, G.F.R. 2156: 2150:, p. 848 2149: 2144: 2142: 2125: 2121: 2117: 2113: 2109: 2105: 2101: 2096: 2091: 2087: 2083: 2079: 2072: 2056: 2052: 2048: 2044: 2040: 2036: 2032: 2027: 2022: 2018: 2014: 2013: 2008: 2001: 1993: 1987: 1983: 1979: 1975: 1974:Voit, G. Mark 1971: 1964: 1956: 1950: 1946: 1942: 1937: 1936: 1930: 1924: 1916: 1912: 1908: 1904: 1900: 1896: 1891: 1886: 1882: 1878: 1871: 1869: 1867: 1857: 1852: 1848: 1842: 1840: 1831: 1827: 1823: 1819: 1814: 1809: 1805: 1801: 1797: 1793: 1792: 1787: 1780: 1772: 1768: 1763: 1758: 1754: 1750: 1746: 1742: 1736: 1732: 1719: 1715: 1711: 1707: 1703: 1697: 1693: 1683: 1680: 1678: 1675: 1673: 1670: 1668: 1665: 1663: 1660: 1658: 1655: 1653: 1650: 1648: 1645: 1643: 1640: 1638: 1635: 1633: 1630: 1628: 1625: 1624: 1620: 1614: 1609: 1602: 1600: 1596: 1592: 1587: 1585: 1584:Planck length 1581: 1577: 1573: 1568: 1566: 1561: 1559: 1555: 1551: 1547: 1543: 1538: 1536: 1525: 1523: 1519: 1515: 1511: 1507: 1502: 1497: 1495: 1491: 1487: 1483: 1479: 1473: 1471: 1467: 1462: 1452: 1450: 1445: 1441: 1436: 1433: 1427: 1423: 1421: 1417: 1413: 1409: 1405: 1400: 1396: 1391: 1388: 1384: 1380: 1376: 1372: 1359: 1355: 1354: 1348: 1344: 1343: 1339: 1333: 1329: 1328: 1324: 1314: 1312: 1308: 1303: 1294: 1292: 1287: 1285: 1265: 1261: 1255: 1251: 1241: 1237: 1233: 1229: 1224: 1222: 1218: 1214: 1205: 1201: 1197: 1193: 1189: 1185: 1181: 1176: 1166: 1164: 1160: 1155: 1153: 1149: 1145: 1141: 1136: 1132: 1123: 1120: 1109: 1105: 1101: 1097: 1093: 1074: 1071: 1068: 1058: 1052: 1048: 1039: 1035: 1029: 1025: 1021: 1016: 1012: 1004: 1003: 1002: 1000: 992: 990: 985: 981: 977: 973: 969: 965: 957: 952: 947: 934: 930: 927: 924: 920: 916: 913: 910: 909:Kerr solution 906: 902: 898: 895: 891: 887: 886: 885: 883: 879: 874: 872: 868: 863: 861: 856: 854: 849: 845: 840: 836: 832: 828: 824: 820: 816: 812: 808: 804: 800: 795: 793: 789: 788:event horizon 785: 773: 768: 766: 761: 759: 754: 753: 751: 750: 744: 734: 731: 726: 720: 719: 718: 717: 710: 709: 705: 703: 700: 698: 695: 693: 690: 688: 685: 683: 680: 678: 675: 673: 670: 668: 665: 663: 660: 658: 655: 653: 650: 648: 647:Chandrasekhar 645: 643: 640: 638: 635: 633: 630: 628: 625: 623: 620: 618: 615: 613: 610: 608: 605: 603: 600: 598: 595: 593: 590: 588: 585: 583: 580: 578: 575: 573: 570: 568: 565: 563: 562:Schwarzschild 560: 558: 555: 553: 550: 548: 545: 543: 540: 539: 531: 530: 523: 522:Hartle–Thorne 520: 518: 515: 513: 510: 508: 505: 503: 500: 498: 495: 493: 490: 488: 485: 483: 480: 478: 475: 473: 470: 468: 465: 463: 460: 458: 455: 453: 450: 448: 445: 443: 440: 437: 433: 432:Schwarzschild 430: 429: 425: 419: 418: 407: 404: 402: 399: 398: 397: 396: 392: 391: 386: 383: 381: 378: 376: 373: 372: 371: 370: 366: 365: 360: 357: 355: 352: 350: 347: 345: 342: 340: 337: 335: 332: 331: 330: 329: 325: 324: 314: 311: 310: 305: 304: 293: 290: 288: 285: 283: 280: 279: 278: 277: 274: 271: 270: 265: 262: 260: 257: 255: 254:Event horizon 252: 250: 247: 245: 242: 240: 237: 235: 232: 230: 227: 225: 222: 220: 217: 216: 215: 214: 204: 203: 196: 193: 191: 188: 186: 183: 181: 178: 177: 169: 168: 163: 160: 155: 152: 150: 147: 145: 142: 141: 139: 137: 134: 133: 132: 131: 113: 110: 106: 101: 97: 92: 89: 85: 78: 73: 70: 66: 56: 52: 51: 48: 45: 44: 41: 37: 33: 19: 4686: 4380:Kaluza–Klein 4246: 4132:Introduction 4058:Twin paradox 3748:PKS 1302-102 3622:Gravity well 3590:Compact star 3544:Microquasars 3529:Most massive 3433:Alternatives 3235: 3198:X-ray binary 3117:Neutron star 3054:Supermassive 3031:Hawking star 2972:Supermassive 2822: 2818: 2794: 2770: 2746: 2714:. Retrieved 2694: 2679: 2667:. Retrieved 2658: 2648: 2636: 2596:(1): 12–60. 2593: 2589: 2576: 2533: 2529: 2523: 2480: 2476: 2470: 2427: 2423: 2417: 2382: 2378: 2372: 2309: 2305: 2295: 2268: 2262: 2249: 2222: 2213: 2188: 2180: 2166: 2155: 2128:. Retrieved 2085: 2081: 2071: 2059:. Retrieved 2016: 2010: 2000: 1977: 1963: 1934: 1923: 1880: 1876: 1795: 1789: 1779: 1752: 1748: 1735: 1696: 1588: 1569: 1562: 1558:Unruh effect 1539: 1531: 1524:or greater. 1522:solar masses 1506:tidal forces 1498: 1474: 1458: 1444:teleological 1437: 1428: 1424: 1392: 1368: 1304: 1300: 1288: 1225: 1209: 1195: 1191: 1156: 1137: 1127: 1115: 1107: 1099: 1096:scale factor 1091: 1089: 995: 993: 983: 975: 961: 921:relevant to 875: 864: 857: 799:John Michell 796: 787: 784:astrophysics 781: 707: 667:Raychaudhuri 253: 136:Introduction 40: 4728:Black holes 4469:Kerr–Newman 4440:Spherical: 4309:Other tests 4252:Singularity 4184:Formulation 4146:Fundamental 4000:Formulation 3981:Proper time 3942:Fundamental 3738:Centaurus A 3692:Planet Nine 3595:Exotic star 3524:Black holes 3470:Planck star 3419:Kerr–Newman 3134:White dwarf 3084:Radio-Quiet 3042:Microquasar 2915:Black holes 2747:Gravitation 2193:. Chicago: 2019:(12): 035. 1856:1401.5761v1 1706:world lines 1546:temperature 1449:proper time 1387:light cones 1213:light cones 1188:accelerated 905:ergospheres 835:information 682:van Stockum 612:Oppenheimer 467:Kerr–Newman 259:Singularity 4717:Categories 4621:Zel'dovich 4529:Scientists 4508:Alcubierre 4315:of Mercury 4313:precession 4242:Black hole 4125:Background 4117:relativity 4086:World line 4081:Light cone 3906:Background 3898:relativity 3888:Relativity 3788:Q0906+6930 3778:Hercules A 3708:Cygnus X-1 3677:White hole 3652:Quasi-star 3605:Preon star 3600:Quark star 3585:Big Bounce 3445:Black star 3403:Derivation 3251:Ergosphere 3207:Properties 3188:Quasi-star 3178:Quark star 3089:Radio-Loud 2977:Primordial 2967:Kugelblitz 2716:2018-01-26 2543:2210.03750 2437:2112.06515 2130:3 December 2088:(2): 015. 2061:3 December 1943:. p.  1890:1808.01507 1728:References 1702:light cone 1470:world line 1466:light cone 1461:black hole 1338:black hole 1323:Black hole 1217:world line 1204:world line 1200:light cone 1190:particle, 1173:See also: 831:black hole 535:Scientists 367:Formalisms 315:Formalisms 264:Black hole 190:World line 4591:Robertson 4576:Friedmann 4571:Eddington 4561:de Sitter 4395:Solutions 4273:detectors 4268:astronomy 4235:Phenomena 4170:Geodesics 4073:Spacetime 4016:Phenomena 3813:AT2018hyz 3460:Gravastar 3450:Dark star 3283:Microlens 3156:Hypernova 3151:Micronova 3146:Supernova 3100:Formation 2859:2367-3613 2825:(1): 10. 2628:118592546 2603:1402.3055 2568:252781040 2515:119290638 2490:1407.7295 2462:245123647 2392:1107.1344 2312:(1): 10. 2271:(3): 57. 2120:119614479 2095:1302.2186 2051:119704554 2026:1302.1609 1915:119080734 1883:: 27–34. 1822:0261-0523 1771:0035-8711 1383:lightlike 1236:hyperbola 1144:radiation 1026:∫ 964:cosmology 923:cosmology 797:In 1784, 627:Robertson 592:Friedmann 587:Eddington 577:Nordström 567:de Sitter 424:Solutions 349:Geodesics 344:Friedmann 326:Equations 312:Equations 273:Spacetime 208:Phenomena 114:ν 111:μ 102:κ 93:ν 90:μ 82:Λ 74:ν 71:μ 4704:Category 4581:LemaĂźtre 4546:Einstein 4536:PoincarĂ© 4496:Others: 4480:Taub–NUT 4446:interior 4368:theories 4366:Advanced 4333:redshift 4148:concepts 3966:Rapidity 3944:concepts 3836:Category 3723:A0620-00 3682:Wormhole 3580:Big Bang 3480:Fuzzball 3363:ER = EPR 3229:Theorems 3027:Electron 3022:Extremal 2952:Rotating 2877:28163644 2792:(1994). 2768:(2001). 2744:(1973). 2710:Archived 2663:Archived 2364:16566181 2356:28163644 2257:(1965). 2221:(1999). 2164:(1975). 2124:Archived 2055:Archived 1976:(2014). 1931:(1990). 1605:See also 1595:M-theory 1494:freefall 1412:electron 1278:, where 1238:, which 929:Isolated 915:Particle 878:absolute 853:infinity 839:firewall 743:Category 607:LemaĂźtre 572:Reissner 557:PoincarĂ© 542:Einstein 487:Taub–NUT 452:Wormhole 436:interior 149:Timeline 4646:Hawking 4641:Penrose 4626:Novikov 4606:Wheeler 4551:Hilbert 4541:Lorentz 4498:pp-wave 4319:lensing 4115:General 3896:Special 3846:Commons 3808:P172+18 3763:TON 618 3701:Notable 3553:Related 3539:Quasars 3534:Nearest 3494:Analogs 3424:Hayward 3392:Metrics 3037:Stellar 2962:Virtual 2957:Charged 2926:Outline 2868:5253930 2837:Bibcode 2669:28 June 2608:Bibcode 2548:Bibcode 2495:Bibcode 2442:Bibcode 2397:Bibcode 2347:5253930 2324:Bibcode 2273:Bibcode 2100:Bibcode 2084:. 015. 2031:Bibcode 1895:Bibcode 1800:Bibcode 1580:strings 1490:G-force 1484:), the 1102:is the 1094:is the 907:of the 662:Hawking 657:Penrose 632:Bardeen 622:Wheeler 552:Hilbert 547:Lorentz 507:pp-wave 144:History 4687:others 4676:Thorne 4666:Misner 4651:Taylor 4636:Geroch 4631:Ehlers 4601:Zwicky 4419:Kasner 3783:3C 273 3773:NeVe 1 3753:OJ 287 3475:Q star 3341:Issues 3074:Blazar 3064:Quasar 2875:  2865:  2857:  2802:  2778:  2754:  2702:  2626:  2566:  2513:  2460:  2362:  2354:  2344:  2237:  2201:  2118:  2049:  1988:  1951:  1913:  1830:106576 1828:  1820:  1769:  1142:or by 1140:matter 1106:, and 890:Cauchy 741:  708:others 702:Thorne 692:Newman 672:Taylor 652:Ehlers 637:Walker 602:Zwicky 477:Kasner 4681:Weiss 4661:Bondi 4656:Hulse 4586:Milne 4490:discs 4434:Milne 4429:Gödel 4286:Virgo 3516:Lists 3017:Micro 2987:Rogue 2935:Types 2827:arXiv 2624:S2CID 2598:arXiv 2564:S2CID 2538:arXiv 2511:S2CID 2485:arXiv 2458:S2CID 2432:arXiv 2387:arXiv 2360:S2CID 2314:arXiv 2116:S2CID 2090:arXiv 2047:S2CID 2021:arXiv 1911:S2CID 1885:arXiv 1851:arXiv 1826:JSTOR 1688:Notes 1408:Earth 825:used 803:light 786:, an 677:Hulse 617:Gödel 597:Milne 492:Milne 457:Gödel 154:Tests 4616:Kerr 4566:Weyl 4465:Kerr 4325:and 4279:and 4277:LIGO 3485:Geon 3409:Kerr 3010:Size 2873:PMID 2855:ISSN 2800:ISBN 2776:ISBN 2752:ISBN 2700:ISBN 2671:2020 2352:PMID 2235:ISBN 2199:ISBN 2132:2013 2086:2013 2063:2013 2017:2012 1986:ISBN 1949:ISBN 1818:ISSN 1767:ISSN 1414:and 1159:FLRW 984:past 954:The 931:and 917:and 903:and 899:The 892:and 888:The 880:and 837:and 687:Taub 642:Kerr 582:Weyl 462:Kerr 380:BSSN 34:and 4671:Yau 4296:GEO 3079:OVV 3069:LQG 2863:PMC 2845:doi 2616:doi 2594:759 2556:doi 2503:doi 2450:doi 2405:doi 2342:PMC 2332:doi 2281:doi 2227:doi 2108:doi 2039:doi 1945:213 1903:doi 1808:doi 1757:doi 1753:116 1404:Sun 1154:). 1150:(a 1133:≠ ∞ 1122:→ ∞ 1001:as 976:now 962:In 855:." 782:In 697:Yau 375:ADM 4719:: 4345:/ 4311:: 4266:: 2871:. 2861:. 2853:. 2843:. 2835:. 2821:. 2817:. 2740:; 2736:; 2708:. 2692:. 2661:. 2657:. 2622:. 2614:. 2606:. 2592:. 2584:; 2562:. 2554:. 2546:. 2534:32 2532:. 2509:. 2501:. 2493:. 2481:90 2479:. 2456:. 2448:. 2440:. 2428:31 2426:. 2403:. 2395:. 2383:20 2381:. 2358:. 2350:. 2340:. 2330:. 2322:. 2308:. 2304:. 2279:. 2269:14 2267:. 2261:. 2233:. 2197:. 2170:. 2140:^ 2122:. 2114:. 2106:. 2098:. 2080:. 2053:. 2045:. 2037:. 2029:. 2015:. 2009:. 1980:. 1947:. 1939:. 1909:. 1901:. 1893:. 1879:. 1865:^ 1838:^ 1824:. 1816:. 1806:. 1796:74 1794:. 1788:. 1765:. 1751:. 1747:. 1601:. 1512:, 1451:. 1165:. 1098:, 4471:) 4467:( 4453:) 4444:( 4410:) 4406:( 4353:) 4349:( 4329:) 4298:) 4275:( 3924:) 3915:( 3880:e 3873:t 3866:v 3405:) 3401:( 2907:e 2900:t 2893:v 2879:. 2847:: 2839:: 2829:: 2823:7 2808:. 2784:. 2760:. 2719:. 2673:. 2630:. 2618:: 2610:: 2600:: 2570:. 2558:: 2550:: 2540:: 2517:. 2505:: 2497:: 2487:: 2464:. 2452:: 2444:: 2434:: 2411:. 2407:: 2399:: 2389:: 2366:. 2334:: 2326:: 2316:: 2310:7 2289:. 2283:: 2275:: 2243:. 2229:: 2207:. 2174:. 2134:. 2110:: 2102:: 2092:: 2065:. 2041:: 2033:: 2023:: 1994:. 1957:. 1917:. 1905:: 1897:: 1887:: 1881:3 1859:. 1853:: 1832:. 1810:: 1802:: 1773:. 1759:: 1488:( 1280:a 1266:a 1262:/ 1256:2 1252:c 1206:. 1196:E 1192:P 1130:p 1128:d 1118:p 1116:d 1111:0 1108:t 1100:c 1092:a 1075:. 1072:t 1069:d 1062:) 1059:t 1056:( 1053:a 1049:c 1040:0 1036:t 1030:0 1022:= 1017:p 1013:d 998:p 996:d 925:. 911:. 896:. 771:e 764:t 757:v 438:) 434:( 107:T 98:= 86:g 79:+ 67:G 38:. 20:)

Index

Event horizons
Event horizon (disambiguation)
Horizon (general relativity)
General relativity
Spacetime curvature schematic
Introduction
History
Timeline
Tests
Mathematical formulation
Equivalence principle
Special relativity
World line
Pseudo-Riemannian manifold
Kepler problem
Gravitational lensing
Gravitational redshift
Gravitational time dilation
Gravitational waves
Frame-dragging
Geodetic effect
Event horizon
Singularity
Black hole
Spacetime
Spacetime diagrams
Minkowski spacetime
Einstein–Rosen bridge
Linearized gravity
Einstein field equations

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑