Knowledge

Escherichia virus T4

Source 📝

744:
against dose of genome damaging agent. The top figure shows the survival curves for virus T4 multicomplexes and monocomplexes with increasing dose of UV light. Since survival is plotted on a log scale it is clear that survival of multicomplexes exceeds that of monocomplexes by very large factors (depending on dose). The UV inactivation curve for multicomplexes has an initial shoulder. Other virus T4 DNA damaging agents with shoulders in their multicomplex survival curves are X-rays and ethyl methane sulfonate (EMS). The presence of a shoulder has been interpreted to mean that two recombinational processes are used. The first one repairs DNA with high efficiency (in the "shoulder"), but is saturated in its ability as damage increases; the second pathway functions at all levels of damage. Surviving T4 virus released from multicomplexes show no increase in
22: 698: 72: 755:(MMC). In this case the survival curve for multicomplexes has no initial shoulder, suggesting that only the second recombinational repair process described above is active. The efficiency of repair by this process is indicated by the observation that a dose of MMC that allows survival of only 1 in 1,000 monocomplexes allows survival of about 70% of multicomplexes. Similar multicomplex survival curves (without shoulders) were also obtained for the DNA damaging agents 587: 883:, rather than being a response to selection. The traditional wisdom among bacteriologists prior to 1943 was that bacteria had no chromosomes and no genes. The Luria–Delbrück experiment showed that bacteria, like other established model genetic organisms, have genes, and that these can spontaneously mutate to generate mutants that may then reproduce to form clonal lineages. That year, they also began working with 411: 1036: 514:(from entering a bacterium to its destruction) takes approximately 30 minutes (at 37 °C). Virulent bacteriophages multiply in their bacterial host immediately after entry. After the number of progeny phages reach a certain amount, they cause the host to lyse or break down, therefore they would be released and infect new host cells. The process of host lyses and release is called the 724:(reviewed by Bernstein in 1981). It turned out later that the repair of damaged virus by mutual help that Luria had discovered was only one special case of DNA repair. Cells of all types, not just, bacteria and their viruses, but all organisms studied, including humans, are now known to have complex biochemical processes for repairing DNA damages (see 578:, particularly between deletion mutations. These genetic experiments led to the finding of a unique linear order of mutational sites within the genes. This result provided strong evidence for the key idea that the gene has a linear structure equivalent to a length of DNA with many sites that can independently mutate. 743:
MR is usually represented by "survival curves" where survival of plaque forming ability of multiply infected cells (multicomplexes) is plotted against dose of genome damaging agent. For comparison, the survival of virus plaque forming ability of singly infected cells (monocomplexes) is also plotted
438:
The structure of the 6 megadalton T4 baseplate that comprises 127 polypeptide chains of 13 different proteins (gene products 5, 5.4, 6, 7, 8, 9, 10, 11, 12, 25, 27, 48 and 53) has recently been described in atomic detail. An atomic model of the proximal region of the tail tube formed by gp54 and the
922:
for proteins. These experiments, carried out with mutants of the rIIB gene of phage T4, showed, that for a gene that encodes a protein, three sequential bases of the gene's DNA specify each successive amino acid of the protein. Thus the genetic code is a triplet code, where each triplet (called a
626:
of the phage to the bacterial cell. Adsorption is a value characteristic of phage-host pair and the adsorption of the phage on host cell surface is illustrated as a 2-stage process: reversible and irreversible. It involves the phages tail structure that begins when the phages tail fibers helps bind
688:
The final step in viral reproduction and multiplication is determined by the release of virions from the host cell. The release of the virions occurs after the breakage of the bacterial plasma membrane. Nonenveloped viruses lyse the host cell which is characterized by viral proteins attacking the
674:
Virus T4 genome is synthesized within the host cell using rolling circle replication. The time it takes for DNA replication in a living cell was measured as the rate of virus T4 DNA elongation in virus-infected E. coli. During the period of exponential DNA increase at 37 °C, the rate was 749
518:. Lytic cycle is a cycle of viral reproduction that involves the destruction of the infected cell and its membrane. This cycle involves a virus that overtakes the host cell and its machinery to reproduce. Therefore, the virus must go through 5 stages in order to reproduce and infect the host cell: 679:
mechanisms. The T4 phage head is assembled empty around a scaffolding protein, which is later degraded. Consequently, the DNA needs to enter the prohead through a tiny pore, which is achieved by a hexamer of gp17 interacting with DNA first, which also serves as a motor and nuclease. The T4 DNA
450:
interact with each other in a characteristic sequence. Maintaining an appropriate balance in the amounts of each of these proteins produced during viral infection appears to be critical for normal phage T4 morphogenesis. Phage T4 encoded proteins that determine virion structure include major
434:
into the cell it is infecting after attachment. Myoviridae phages like T4 have complex contractile tail structures with a large number of proteins involved in the tail assembly and function. The tail fibres are also important in recognizing host cell surface receptors, so they determine if a
501:
In 1952, Hershey and Chase provided key evidence that the phage DNA, as distinct from protein, enters the host bacterial cell upon infection and is thus the genetic material of the phage. This finding suggested that DNA is, in general, the genetic material of different organisms.
451:
structural components, minor structural components and non-structural proteins that catalyze specific steps in the morphogenesis sequence. Phage T4 morphogenesis is divided into three independent pathways: the head, the tail and the long tail fibres as detailed by Yap and Rossman.
43: 709:, while studying UV irradiated virus T4 in 1946, discovered MR and proposed that the observed reactivation of damaged virus occurs by a recombination mechanism.(see refs.) This preceded the confirmation of DNA as the genetic material in 1952 in related virus T2 by the 689:
peptidoglycan or membrane. The lysis of the bacteria occurs when the capsids inside the cell release the enzyme lysozyme which break down the cell wall. The released bacteriophages infect other cells, and the viral multiplication cycle is repeated within those cells.
1941:
Benzer S. "Adventures in the rII region" in Phage and the Origins of Molecular Biology (2007) Edited by John Cairns, Gunther S. Stent, and James D. Watson, Cold Spring Harbor Laboratory of Quantitative Biology, Cold Spring Harbor, Long Island, New York
926:
During 1962-1964 phage T4 researchers provided an opportunity to study the function of virtually all of the genes that are essential for growth of the phage under laboratory conditions. These studies were facilitated by the discovery of two classes of
960:
was elucidated. One noteworthy study used amber mutants defective in the gene encoding the major head protein of phage T4. This experiment provided strong evidence for the widely held, but prior to 1964 still unproven, "sequence hypothesis" that the
374:. Upon DNA replication, long multi-genome length concatemers are formed, perhaps by a rolling circle mechanism of replication. When packaged, the concatemer is cut at unspecific positions of the same length, leading to several genomes that represent 1633:
Snustad DP (August 1968). "Dominance interactions in Escherichia coli cells mixedly infected with bacteriophage T4D wild-type and amber mutants and their possible implications as to type of gene-product function: catalytic vs. stoichiometric".
2767:
Edgar RS Conditional lethals: in Phage and the Origins of Molecular Biology (2007) Edited by John Cairns, Gunther S. Stent, and James D. Watson, Cold Spring Harbor Laboratory of Quantitative Biology, Cold Spring Harbor, Long Island, New York
3331:
Malys N, Chang DY, Baumann RG, Xie D, Black LW (2002). "A bipartite bacteriophage T4 SOC and HOC randomized peptide display library: detection and analysis of phage T4 terminase (gp17) and late sigma factor (gp55) interaction".
856:. Also, in 1932, the researcher J. Bronfenbrenner had studied and worked on the T2 phage, at which the T2 phage was isolated from the virus. This isolation was made from a fecal material rather than from sewerage. At any rate, 675:
nucleotides per second. The mutation rate per base pair per replication during virus T4 DNA synthesis is 1.7 per 10, a highly accurate DNA copying mechanism, with only 1 error in 300 copies. The virus also codes for unique
939:
Studies of these two classes of mutants led to considerable insight into numerous fundamental biologic problems. Thus understanding was gained on the functions and interactions of the proteins employed in the machinery of
923:
codon) specifies a particular amino acid. They also obtained evidence that the codons do not overlap with each other in the DNA sequence encoding a protein, and that such a sequence is read from a fixed starting point.
2834:
Epstein RH, Bolle A, Steinberg CM, Kellenberger E, Boy de la Tour E, Chevalley R, Edgar RS, Susman M, Denhardt GH, Lielausis A (1963). "Physiological Studies of Conditional Lethal Mutants of Bacteriophage T4D".
701:
Survival curves for virus T4 with DNA damaged by UV (top) or MMC (bottom) after single virus T4 infecting host cells (monocomplexes) or two or more virus T4 simultaneously infecting host cells (multicomplexes).
680:
packaging motor has been found to load DNA into virus capsids at a rate up to 2000 base pairs per second. The power involved, if scaled up in size, would be equivalent to that of an average automobile engine.
1547:
Taylor NM, Prokhorov NS, Guerrero-Ferreira RC, Shneider MM, Browning C, Goldie KN, Stahlberg H, Leiman PG (May 2016). "Structure of the T4 baseplate and its function in triggering sheath contraction".
627:
the phage to the appropriate receptor of its host. This process is reversible. One or more of the components of the base plate mediates irreversible process of binding of the phage to a bacterium.
705:
Multiplicity reactivation (MR) is the process by which two or more virus genomes, each containing inactivating genome damage, can interact within an infected cell to form a viable virus genome.
662:(T4-like phage) mechanism of penetration and it has shown that the phage's tail does not penetrate inside the bacterial cell wall and penetration of this phage involves electrochemical 1126: 646:
takes place after the irreversible adsorption phase. Mechanisms involving penetration of the phages nucleic acid are specific for each phage. This penetration mechanism can involve
820:. It has been suggested that the efficient and accurate recombinational repair of DNA damages during MR may be analogous to the recombinational repair process that occurs during 863:
The specific time and place of T4 virus isolation remains unclear, though they were likely found in sewage or fecal material. T4 and similar viruses were described in a paper by
196: 3084:
Mosig, G., and F. Eiserling. 2006. T4 and related phages: structure and development, R. Calendar and S. T. Abedon (eds.), The Bacteriophages. Oxford University Press, Oxford.
478:
cells with its long tail fibers (LTF). A recognition signal is sent through the LTFs to the baseplate. This unravels the short tail fibers (STF) that bind irreversibly to the
206: 221: 216: 211: 201: 191: 186: 898:
was an informal network of biologists centered on Max Delbrück that carried out basic research mainly on bacteriophage T4 and made numerous seminal contributions to
647: 559:
and ejects the newly built viruses into the environment, destroying the host cell. T4 has a burst size of approximately 100-150 viral particles per infected host.
2554:
Story RM, Bishop DK, Kleckner N, Steitz TA (1993). "Structural relationship of bacterial RecA proteins to recombination proteins from bacteriophage T4 and yeast".
2127:
McCarthy D, Minner C, Bernstein H, Bernstein C (1976). "DNA elongation rates and growing point distributions of wild-type phage T4 and a DNA-delay amber mutant".
618:
all can serve as receptors for the phage to bind to. In order for the T-even phage to infect its host and begin its life cycle it must enter the first process of
3536:
Kutter E., Gachechiladze K., Poglazov A., Marusich E., Shneider M., Aronsson P., Napuli A., Porter D., Mesyanzhinov V. (1995). "Evolution of T4-related phages".
3625:
Malys N, Nivinskas R (2009). "Non-canonical RNA arrangement in T4-even phages: accommodated ribosome binding site at the gene 26-25 intercistronic junction".
3457: 439:
main tube protein gp19 have also been created. The tape measure protein gp29 is present in the baseplate-tail tube complexes, but it could not be modeled.
3504:
Monod C, Repoila F, Kutateladze M, Tétart F, Krisch HM (March 1997). "The genome of the pseudo T-even bacteriophages, a diverse group that resembles T4".
1325:
Bernstein H, Bernstein C (July 1973). "Circular and branched circular concatenates as possible intermediates in bacteriophage T4 DNA replication".
658:
layer, or all three of these factor can be vital for the penetration of the nucleic acid inside the bacterial cell. Studies have been done on the
3781: 482:
cell surface. The baseplate changes conformation and the tail sheath contracts, causing GP5 at the end of the tail tube to puncture the outer
494:
layer. The remaining part of the membrane is degraded and then DNA from the head of the virus can travel through the tail tube and enter the
1138: 860:
was involved in the discovery of the T even phages. His part was naming the bacteriophages into Type 1(T1), Type 2 (T2), Type 3 (T3), etc.
918:
and Richard Watts-Tobin at the Cavendish Laboratory in Cambridge to perform genetic experiments that demonstrated the basic nature of the
1769:"Roles of cell surface components of Escherichia coli K-12 in bacteriophage T4 infection: interaction of tail core with phospholipids" 3601:
Mathews, C. K., E. M. Kutter, G. Mosig, and P. B. Berget. 1983. Bacteriophage T4. American Society for Microbiology, Washington, DC.
733: 1720:"Roles of lipopolysaccharide and outer membrane protein OmpC of Escherichia coli K-12 in the receptor function for bacteriophage T4" 562:
Benzer (1955 – 1959) developed a system for studying the fine structure of the gene using bacteriophage T4 mutants defective in the
594:
Just like all other viruses, T-even phages do not randomly attach to the surface of their host; instead they "search" and bind to
2467:
HARM W (1958). "Multiplicity reactivation, marker rescue, and genetic recombination in phage T4 following x-ray inactivation".
2111: 2086: 1437: 1369: 888: 2351:"Genetic Recombinations Leading to Production of Active Bacteriophage from Ultraviolet Inactivated Bacteriophage Particles" 3074:
Karam, J., Petrov, V., Nolan, J., Chin, D., Shatley, C., Krisch, H., and Letarov, A. The T4-like phages genome project.
2773: 2322:
LURIA SE, DULBECCO R (1948). "Lethal mutations, and inactivation of individual genetic determinants in bacteriophage".
2177: 1947: 3613: 3587: 3092: 2405: 2919:
Sarabhai AS, Stretton AO, Brenner S, Bolle A (January 1964). "Co-linearity of the gene with the polypeptide chain".
2400:
Salvador E. Luria. A Slot Machine, A Broken Test Tube: An Autobiography. Harper & Row, New York: 1984. Pp. 228.
3598:
Surdis, T.J "et al" UC Santa Cruz, Nov 1978, "Bacteriophage attachment methods specific to T4", analysis, Overview.
2717:
CRICK FH, BARNETT L, BRENNER S, WATTS-TOBIN RJ (December 1961). "General nature of the genetic code for proteins".
3581:(The second T4 bible, go here, as well as Mosig and Eiserling, 2006, to begin to learn about the biology T4 phage) 3618:
Russell, R. L. 1967. Speciation Among the T-Even Bacteriophages. PhD thesis. California Institute of Technology.
3493: 2170: 973:
determining the protein. Thus, this study demonstrated the co-linearity of the gene with its encoded protein.
422:
wide and 200 nm long (most viruses range from 25 to 200 nm in length). The DNA genome is held in an
319:
Dating back to the 1940s and continuing today, T-even phages are considered the best studied model organisms.
3607:, 1994; see especially the introductory chapter by Doermann for a historical overview of the T4-like phages) 3594:(Chapter 3 provides overview of various T4-like phages as well as the isolation of then-new T4-like phages) 3075: 2195:
Bernstein C. "Deoxyribonucleic acid repair in bacteriophage". Microbiol Rev. 1981 Mar;45(1):72-98. Review.
936: 903: 844:
in 1917. In the late 1930s, T. L. Rakieten proposed either a mixture of raw sewerage or a lysate from
710: 1094: 71: 3814: 1453:
Leiman PG, Arisaka F, van Raaij MJ, Kostyuchenko VA, Aksyuk AA, Kanamaru S, Rossmann MG (December 2010).
764: 716:
As remembered by Luria (1984, pg. 97) the discovery of reactivation of irradiated virus (referred to as "
21: 720:") immediately started a flurry of activity in the study of repair of radiation damage within the early 3772: 3667:"Hydroxymethylcytosine-containing and tryptophan-dependent bacteriophages isolated from city effluents" 3592:
Eddy, S. R. 1992. Introns in the T-Even Bacteriophages. PhD thesis. University of Colorado at Boulder.
571: 1385:
Malys N (January 2012). "Shine-Dalgarno sequence of bacteriophage T4: GAGG prevails in early genes".
962: 717: 751:
The bottom figure shows the survival curves for inactivation of virus T4 by the DNA damaging agent
371: 760: 1063: 841: 779: 768: 728:). DNA repair processes are also now recognized as playing critical roles in protecting against 395: 308: 304: 300: 236: 231: 226: 1160: 3786: 3734: 651: 1818:"How the phage T4 injection machinery works including energetics, forces, and dynamic pathway" 966: 949: 595: 575: 340: 729: 3111: 3100:"Marine T4-type bacteriophages, a ubiquitous component of the dark matter of the biosphere" 2928: 2726: 2563: 2276: 2031: 1972: 1829: 1556: 1223: 375: 66: 3710: 2872:"Temperature-sensitive mutants of bacteriophage T4D: Their isolation and Characterization" 8: 3809: 880: 607: 398:
GAGG dominates in virus T4 early genes, whereas the sequence GGAG is a target for the T4
332: 54: 3115: 3050: 3025: 2932: 2730: 2597:
Bernstein C (1979). "Why are babies young? Meiosis may prevent aging of the germ line".
2567: 2280: 2035: 1976: 1833: 1809: 1560: 1227: 3650: 3561: 3485: 3436: 3366:"Phylogeny of the major head and tail genes of the wide-ranging T4-type bacteriophages" 3364:
Tétart F., Desplats C., Kutateladze M., Monod C., Ackermann H.-W., Krisch H.M. (2001).
3134: 3099: 3063: 2996: 2971: 2952: 2896: 2871: 2811: 2786: 2750: 2681: 2656: 2622: 2375: 2350: 2299: 2264: 2240: 2213: 1904: 1879: 1852: 1817: 1695: 1670: 1580: 1529: 1481: 1454: 1410: 1255: 952:, and on how viruses are assembled from protein and nucleic acid components (molecular 899: 864: 663: 471: 339:. Coincident with their complexity, T-even viruses were found to have the unusual base 245: 3345: 3311: 3286: 3265: 3240: 3222: 3205: 3184: 3155: 2531: 2506: 2444: 2419: 2054: 2019: 1995: 1960: 1793: 1768: 1744: 1719: 1299: 1274: 737: 3819: 3688: 3642: 3638: 3609: 3583: 3553: 3521: 3477: 3441: 3411: 3395: 3390: 3365: 3349: 3316: 3302: 3270: 3227: 3189: 3175: 3139: 3088: 3055: 3001: 2944: 2901: 2852: 2816: 2769: 2742: 2686: 2614: 2579: 2536: 2484: 2480: 2449: 2401: 2380: 2331: 2304: 2245: 2196: 2173: 2166: 2144: 2140: 2107: 2082: 2059: 2000: 1943: 1909: 1857: 1798: 1749: 1700: 1651: 1647: 1615: 1611: 1572: 1521: 1486: 1433: 1402: 1365: 1342: 1338: 1304: 1247: 1239: 697: 3565: 3489: 2956: 2626: 1880:"Independent functions of viral protein and nucleic acid in growth of bacteriophage" 1533: 1414: 3678: 3654: 3634: 3545: 3513: 3469: 3431: 3423: 3385: 3377: 3341: 3306: 3298: 3260: 3252: 3217: 3179: 3171: 3153: 3129: 3119: 3067: 3045: 3037: 2991: 2983: 2936: 2891: 2883: 2844: 2806: 2798: 2754: 2734: 2676: 2668: 2606: 2571: 2526: 2518: 2476: 2439: 2431: 2370: 2362: 2294: 2284: 2235: 2225: 2136: 2049: 2039: 1990: 1980: 1899: 1891: 1847: 1837: 1788: 1780: 1739: 1731: 1690: 1682: 1643: 1607: 1598:
Floor E (February 1970). "Interaction of morphogenetic genes of bacteriophage T4".
1584: 1564: 1513: 1476: 1466: 1394: 1334: 1294: 1286: 1259: 1231: 1106: 1001: 868: 804: 635: 602:
structures, found on the surface of the host. These receptors vary with the phage;
271: 3381: 3256: 2987: 2522: 1784: 1735: 1290: 3427: 2802: 2672: 2435: 993: 941: 837: 659: 541: 529: 467: 320: 3023: 2887: 2848: 2265:"Reactivation of Irradiated Bacteriophage by Transfer of Self-Reproducing Units" 981: 857: 756: 3535: 2366: 2024:
Proceedings of the National Academy of Sciences of the United States of America
1965:
Proceedings of the National Academy of Sciences of the United States of America
1822:
Proceedings of the National Academy of Sciences of the United States of America
1041: 1017: 1005: 989: 985: 915: 907: 884: 872: 706: 108: 25:
Bacteriophage T4 structure as per construction from individual PDBs and cryoEMs
3723: 3718: 3683: 3666: 3451:(Historical description of the isolation of the T4-like phages T2, T4, and T6) 3041: 3024:
Leiman P.G., Kanamaru S, Mesyanzhinov V.V., Arisaka F., Rossmann M.G. (2003).
1398: 3803: 3757: 3239:
Miller, E.S., Kutter E., Mosig G., Arisaka F., Kunisawa T., Ruger W. (2003).
2856: 1243: 1068: 1049: 1021: 1009: 997: 953: 928: 911: 655: 603: 491: 483: 283: 266: 156: 144: 96: 3124: 2575: 2230: 2044: 1842: 1471: 1211: 1111: 798:
which specifies a protein that has three-dimensional structural homology to
3692: 3646: 3517: 3445: 3399: 3353: 3320: 3274: 3231: 3193: 3143: 3059: 3005: 2972:"Anecdotal, historical and critical commentaries on genetics. Gisela Mosig" 2948: 2905: 2820: 2746: 2690: 2488: 2453: 2384: 2335: 2308: 2249: 2063: 2004: 1913: 1861: 1704: 1576: 1490: 1406: 1308: 1273:
Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W (March 2003).
1251: 1013: 919: 778:
Several of the genes found to be necessary for MR in virus T4 proved to be
772: 643: 431: 399: 277: 132: 120: 3557: 3531:(Overview of various T4-like phages from the perspective of their genomes) 3525: 3481: 3473: 3363: 2610: 2583: 2289: 2200: 1985: 1802: 1753: 1655: 1619: 1525: 1517: 1346: 327:. Yet, T-even phages are in fact among the largest and highest complexity 3766: 2618: 2540: 2148: 1504:
Ackermann HW, Krisch HM (1997). "A catalogue of T4-type bacteriophages".
977: 895: 721: 515: 511: 423: 3579:
1994. Molecular Biology of Bacteriophage T4. ASM Press, Washington, DC.
3359:(T4 phage application in biotechnology for studying protein interaction) 3097: 3076:
https://web.archive.org/web/20070523215704/http://phage.bioc.tulane.edu/
1895: 1568: 1546: 3549: 3238: 957: 945: 932: 848:
infected with raw sewerage to the two researchers Milislav Demerec and
825: 813: 783: 752: 725: 676: 623: 522: 3603:(The first T4 bible; not all information here is duplicated in Karam 2738: 1816:
Maghsoodi A, Chatterjee A, Andricioaei I, Perkins NC (December 2019).
1686: 1235: 2940: 1815: 876: 787: 631: 619: 463: 419: 379: 363: 3728: 3284: 891:, "for work on the replication mechanism and genetics of viruses".) 748:, indicating that MR of UV irradiated virus is an accurate process. 299:, a name which also encompasses, among other strains (or isolates), 3751: 1073: 1058: 849: 745: 639: 611: 487: 367: 344: 292: 3154:
Chibani-Chennoufi S., Canchaya C., Bruttin A., Brussow H. (2004).
1452: 586: 2833: 935:. Another class of conditional lethal mutants is referred to as 821: 817: 791: 599: 3287:"Snapshot of the genome of the pseudo-T-even bacteriophage RB49" 3285:
Desplats C., Dez C., Tetart F., Eleaume H., Krisch H.M. (2002).
2126: 3405:(Indication of the prevalence of T4-type sequences in the wild) 535: 427: 383: 359: 58: 2716: 1000:. Other important scientists who worked with virus T4 include 887:, another phage experimenter. (The three would share the 1969 836:
Bacteriophages were first discovered by the English scientist
42: 3503: 2081:. Washington: American Society for Microbiology. p. 31. 809: 615: 556: 548: 443: 410: 336: 328: 324: 288: 275:
bacteria. It is a double-stranded DNA virus in the subfamily
83: 2970:
Nossal NG, Franklin JL, Kutter E, Drake JW (November 2004).
2918: 1035: 3660:(rare type of translational regulation characterized in T4) 3206:"The diversity and evolution of the T4-type bacteriophages" 970: 799: 447: 980:
winners worked with virus T4 or T4-like viruses including
3149:(Indication of prevalence and T4-like phages in the wild) 2969: 2553: 852:. These two researchers isolated T3, T4, T5, and T6 from 630:
Penetration is also a value characteristic of phage-host
356: 3280:(Review of phage T4, from the perspective of its genome) 3160:
phage JS98: implications for the evolution of T4 phages"
1272: 1212:"A New Pyrimidine Base from Bacteriophage Nucleic Acids" 910:, an early member of the phage group, collaborated with 490:
domain of GP5 is activated and degrades the periplasmic
3698:(T4-like phage isolation, including that of phage Ox2) 3412:"The murky origin of Snow White and her T-even dwarfs" 2787:"The genome of bacteriophage T4: an archeological dig" 2657:"The murky origin of Snow White and her T-even dwarfs" 323:
are usually required to be simple with as few as five
3571:(Comparison of the genomes of various T4-like phages) 3098:
Filee J. Tetart F., Suttle C.A., Krisch H.M. (2005).
1961:"Fine structure of a genetic region in bacteriophage" 1169:
International Committee on Taxonomy of Viruses (ICTV)
1135:
International Committee on Taxonomy of Viruses (ICTV)
3330: 3080:(The T4-like phage full genomic sequence depository) 1031: 418:
T4 is a relatively large virus, at approximately 90
3499:(Nearly complete list of then-known T4-like phages) 2837:
Cold Spring Harbor Symposia on Quantitative Biology
2420:"The properties of x-ray inactivated bacteriophage" 2101: 1427: 1324: 446:, the morphogenetic proteins encoded by the phage 430:. The T4's tail is hollow so that it can pass its 3026:"Structure and morphogenesis of bacteriophage T4" 2214:"Structure and assembly of bacteriophage T4 head" 1766: 3801: 2827: 2191: 2189: 2187: 2185: 555:After the life cycle is complete, the host cell 442:During assembly of the bacteriophage (phage) T4 402:RegB that initiates the early mRNA degradation. 3664: 3455: 1503: 1359: 1320: 1318: 1092: 3719:Animation of T4 Bacteriophage Infecting E.coli 3624: 3620:(Isolation of the RB series of T4-like phages) 3326:(Overview of the RB49 genome, a T4-like phage) 3203: 2869: 2106:(seventh ed.). McGraw Hill. p. 427. 1873: 1871: 1455:"Morphogenesis of the T4 tail and tail fibers" 2348: 2321: 2182: 879:for phage resistance arise in the absence of 581: 2963: 2912: 2863: 2778: 2710: 2648: 2460: 2411: 2396: 2394: 2342: 2315: 2256: 2205: 2079:Virology, Molecular Biology and Pathogenesis 2011: 1952: 1877: 1760: 1671:"Structure and function of bacteriophage T4" 1662: 1540: 1446: 1315: 692: 669: 435:bacterium is within the virus's host range. 3724:Animation of T4 Bacteriophage DNA packaging 3409: 2547: 2020:"On the topology of genetic fine structure" 1868: 1717: 1668: 1626: 1591: 1497: 1378: 1266: 405: 2590: 1279:Microbiology and Molecular Biology Reviews 1209: 634:that involves the injection of the phages 41: 3682: 3435: 3389: 3310: 3264: 3221: 3183: 3133: 3123: 3049: 2995: 2895: 2810: 2680: 2596: 2530: 2507:"UV-induced mutation in bacteriophage T4" 2500: 2498: 2443: 2391: 2374: 2298: 2288: 2239: 2229: 2102:Prescott LM, Harley JP, Klein DA (2008). 2053: 2043: 1994: 1984: 1903: 1851: 1841: 1792: 1743: 1694: 1480: 1470: 1428:Prescott LM, Harley JP, Klein DA (2008). 1298: 1110: 931:. One class of such mutants is known as 782:for genes essential for recombination in 2211: 1926: 794:. This includes, for instance, T4 gene 696: 585: 409: 343:(HMC) in place of the nucleic acid base 20: 3458:"A catalogue of T4-type bacteriophages" 1632: 350: 3802: 2654: 2504: 2495: 2417: 2076: 2017: 1958: 1711: 1095:"Structural Model of Bacteriophage T4" 525:and penetration (starting immediately) 287:. T4 is capable of undergoing only a 3733: 3732: 3199:(Characterization of a T4-like phage) 3156:"Comparative genomics of the T4-Like 2784: 2262: 1597: 1384: 889:Nobel Prize in Physiology or Medicine 570:genes. The techniques employed were 551:particles (starting after 12 minutes) 378:of the original. The T4 genome bears 3030:Cellular and Molecular Life Sciences 2870:Edgar RS, Lielausis I (April 1964). 2466: 1767:Furukawa H, Mizushima S (May 1982). 1360:Madigan M, Martinko J, eds. (2006). 1353: 1210:Wyatt GR, Cohen SS (December 1952). 1119: 765:N-methyl-N'-nitro-N-nitrosoguanidine 590:Diagram of the DNA injection process 538:synthesis (starting after 5 minutes) 454: 906:in the mid-20th century. In 1961, 875:and Delbrück showed that bacterial 13: 3204:Desplats C, Krisch HM (May 2003). 3016: 2639: 2212:Rao VB, Black LW (December 2010). 654:molecules, enzymatic splitting of 648:electrochemical membrane potential 314: 295:. The species was formerly named 14: 3831: 3704: 1884:The Journal of General Physiology 1718:Yu F, Mizushima S (August 1982). 1432:(seventh ed.). McGraw-Hill. 965:of a protein is specified by the 763:plus near-UV irradiation (PUVA), 3639:10.1111/j.1365-2958.2009.06840.x 3456:Ackermann HW, Krisch HM (1997). 3303:10.1128/JB.184.10.2789-2804.2002 3176:10.1128/JB.186.24.8276-8286.2004 2644:(seventh ed.). McGraw-Hill. 2163:The Molecular Basis of Mutation. 1878:HERSHEY AD, CHASE M (May 1952). 1364:(11th ed.). Prentice Hall. 1285:(1): 86–156, table of contents. 1034: 70: 2761: 2697: 2633: 2155: 2120: 2095: 2070: 1935: 1931:(eighth ed.). McGraw-Hill. 1920: 1362:Brock Biology of Microorganisms 505: 414:Structural overview of T2 phage 355:The T4 virus's double-stranded 2705:A History of Molecular Biology 1421: 1203: 1153: 1086: 389: 1: 3382:10.1128/JB.183.1.358-366.2001 3346:10.1016/S0022-2836(02)00298-X 3257:10.1128/MMBR.67.1.86-156.2003 3223:10.1016/S0923-2508(03)00069-X 2523:10.1128/JVI.26.2.265-271.1978 2349:Luria SE, Dulbecco R (1949). 1785:10.1128/JB.150.2.916-924.1982 1736:10.1128/JB.151.2.718-722.1982 1291:10.1128/mmbr.67.1.86-156.2003 1079: 937:temperature-sensitive mutants 197:Enterobacteria phage Fs-alpha 3086:(Review of phage T4 biology) 2481:10.1016/0042-6822(58)90027-8 2436:10.1128/JB.63.4.473-485.1952 2269:Proc. Natl. Acad. Sci. U.S.A 2141:10.1016/0022-2836(76)90346-6 1669:Yap ML, Rossmann MG (2014). 1648:10.1016/0042-6822(68)90285-7 1612:10.1016/0022-2836(70)90303-7 1600:Journal of Molecular Biology 1339:10.1016/0022-2836(73)90443-9 1327:Journal of Molecular Biology 956:). Furthermore, the role of 904:origins of molecular biology 574:tests and crosses to detect 7: 2988:10.1093/genetics/168.3.1097 2849:10.1101/SQB.1963.028.01.053 1027: 871:in November 1944. In 1943, 808:and the homologous protein 544:(starting after 10 minutes) 10: 3836: 3665:Kay D., Fildes P. (1962). 3428:10.1093/genetics/155.2.481 3104:Proc. Natl. Acad. Sci. USA 2803:10.1093/genetics/168.2.575 2673:10.1093/genetics/155.2.481 2165:Holden-Day, San Francisco 2018:Benzer S (November 1959). 1093:Padilla-Sanchez V (2021). 929:conditional lethal mutants 831: 683: 582:Adsorption and penetration 459:The T4 virus initiates an 3741: 3684:10.1099/00221287-27-1-143 3245:Microbiol. Mol. Biol. Rev 3241:"Bacteriophage T4 genome" 3042:10.1007/s00018-003-3072-1 2888:10.1093/genetics/49.4.649 1399:10.1007/s11033-011-0707-4 1387:Molecular Biology Reports 1275:"Bacteriophage T4 genome" 718:multiplicity reactivation 693:Multiplicity reactivation 670:Replication and packaging 606:, cell wall proteins and 335:is made up of around 300 331:, in which these phage's 251: 244: 207:Enterobacteria phage SKII 183: 178: 65: 49: 40: 33: 2785:Edgar B (October 2004). 2367:10.1093/genetics/34.2.93 1161:"ICTV Taxonomy history: 1127:"ICTV 9th Report (2011) 958:chain terminating codons 769:methyl methane sulfonate 711:Hershey–Chase experiment 474:(LPS) on the surface of 406:Virus particle structure 222:Enterobacteria phage SV3 217:Enterobacteria phage SKX 212:Enterobacteria phage SKV 202:Enterobacteria phage PST 192:Enterobacteria phage F10 187:Enterobacteria phage C16 16:Species of bacteriophage 3743:Enterobacteria phage T4 3125:10.1073/pnas.0503404102 2655:Abedon ST (June 2000). 2642:Prescott's Microbiology 2576:10.1126/science.8456313 2231:10.1186/1743-422X-7-356 2045:10.1073/pnas.45.11.1607 1929:Prescott's Microbiology 1843:10.1073/pnas.1909298116 1773:Journal of Bacteriology 1724:Journal of Bacteriology 1472:10.1186/1743-422X-7-355 666:on the inner membrane. 396:Shine-Dalgarno sequence 309:Enterobacteria phage T6 305:Enterobacteria phage T4 301:Enterobacteria phage T2 254:Enterobacteria phage T4 237:Enterobacteria phage T6 232:Enterobacteria phage T4 227:Enterobacteria phage T2 3518:10.1006/jmbi.1996.0867 1959:Benzer S (June 1955). 1099:WikiJournal of Science 702: 591: 532:(starting immediately) 426:head, also known as a 415: 26: 3474:10.1007/s007050050246 2611:10.1353/pbm.1979.0041 2290:10.1073/pnas.33.9.253 1986:10.1073/pnas.41.6.344 1518:10.1007/s007050050246 1112:10.15347/WJS/2021.005 700: 589: 413: 376:circular permutations 366:long and encodes 289 341:hydroxymethylcytosine 24: 3410:Abedon S.T. (2000). 1506:Archives of Virology 1197:Escherichia virus T4 1163:Escherichia virus T4 867:, Max Delbrück, and 372:terminally redundant 370:. The T4 genome is 351:Genome and structure 297:T-even bacteriophage 293:lysogenic life cycle 263:Escherichia virus T4 171:Escherichia virus T4 67:Virus classification 51:Escherichia virus T4 35:Escherichia virus T4 3496:on 1 November 2001. 3116:2005PNAS..10212471F 2933:1964Natur.201...13S 2731:1961Natur.192.1227C 2599:Perspect. Biol. Med 2568:1993Sci...259.1892S 2281:1947PNAS...33..253L 2036:1959PNAS...45.1607B 1977:1955PNAS...41..344B 1927:Sherwood L (2011). 1896:10.1085/jgp.36.1.39 1834:2019PNAS..11625097M 1828:(50): 25097–25105. 1675:Future Microbiology 1569:10.1038/nature17971 1561:2016Natur.533..346T 1228:1952Natur.170.1072W 1222:(4338): 1072–1073. 1141:on 26 December 2018 967:nucleotide sequence 963:amino acid sequence 608:lipopolysaccharides 333:genetic information 3815:Tilings in biology 3550:10.1007/BF01728666 2505:Yarosh DB (1978). 2418:WATSON JD (1952). 2077:Norkin LC (2010). 900:microbial genetics 865:Thomas F. Anderson 703: 664:membrane potential 592: 472:lipopolysaccharide 416: 27: 3797: 3796: 3735:Taxon identifiers 3714:: T4-like viruses 3671:J. Gen. Microbiol 3297:(10): 2789–2804. 3036:(11): 2356–2370. 2739:10.1038/1921227a0 2725:(4809): 1227–32. 2263:Luria SE (1947). 2113:978-0-07-126727-4 2088:978-1-55581-453-3 1687:10.2217/fmb.14.91 1439:978-0-07-126727-4 1371:978-0-13-144329-7 1236:10.1038/1701072a0 642:. Penetration of 547:Formation of new 486:of the cell. The 455:Infection process 260: 259: 3827: 3790: 3789: 3777: 3776: 3775: 3773:Tequatrovirus T4 3762: 3761: 3760: 3730: 3729: 3696: 3686: 3658: 3633:(6): 1115–1127. 3569: 3544:(2–3): 285–297. 3529: 3497: 3492:. Archived from 3449: 3439: 3403: 3393: 3357: 3324: 3314: 3278: 3268: 3235: 3225: 3197: 3187: 3158:Escherichia coli 3147: 3137: 3127: 3071: 3053: 3010: 3009: 2999: 2967: 2961: 2960: 2941:10.1038/201013a0 2916: 2910: 2909: 2899: 2867: 2861: 2860: 2831: 2825: 2824: 2814: 2782: 2776: 2765: 2759: 2758: 2714: 2708: 2701: 2695: 2694: 2684: 2652: 2646: 2645: 2637: 2631: 2630: 2594: 2588: 2587: 2562:(5103): 1892–6. 2551: 2545: 2544: 2534: 2502: 2493: 2492: 2464: 2458: 2457: 2447: 2415: 2409: 2408:(USA and Canada) 2398: 2389: 2388: 2378: 2346: 2340: 2339: 2319: 2313: 2312: 2302: 2292: 2260: 2254: 2253: 2243: 2233: 2218:Virology Journal 2209: 2203: 2193: 2180: 2161:Drake JW (1970) 2159: 2153: 2152: 2124: 2118: 2117: 2099: 2093: 2092: 2074: 2068: 2067: 2057: 2047: 2015: 2009: 2008: 1998: 1988: 1956: 1950: 1939: 1933: 1932: 1924: 1918: 1917: 1907: 1875: 1866: 1865: 1855: 1845: 1813: 1807: 1806: 1796: 1764: 1758: 1757: 1747: 1715: 1709: 1708: 1698: 1666: 1660: 1659: 1630: 1624: 1623: 1595: 1589: 1588: 1555:(7603): 346–52. 1544: 1538: 1537: 1501: 1495: 1494: 1484: 1474: 1459:Virology Journal 1450: 1444: 1443: 1425: 1419: 1418: 1382: 1376: 1375: 1357: 1351: 1350: 1322: 1313: 1312: 1302: 1270: 1264: 1263: 1207: 1201: 1200: 1177: 1175: 1157: 1151: 1150: 1148: 1146: 1137:. Archived from 1123: 1117: 1116: 1114: 1090: 1044: 1039: 1038: 1002:Michael Rossmann 869:Milislav Demerec 805:Escherichia coli 660:T2 bacteriophage 636:genetic material 512:lytic life cycle 466:by binding OmpC 461:Escherichia coli 289:lytic life cycle 272:Escherichia coli 265:is a species of 75: 74: 45: 31: 30: 3835: 3834: 3830: 3829: 3828: 3826: 3825: 3824: 3800: 3799: 3798: 3793: 3785: 3780: 3771: 3770: 3765: 3756: 3755: 3750: 3737: 3707: 3702: 3468:(12): 2329–45. 3170:(24): 8276–86. 3110:(35): 12471–6. 3019: 3017:Further reading 3014: 3013: 2982:(3): 1097–104. 2968: 2964: 2917: 2913: 2868: 2864: 2832: 2828: 2783: 2779: 2766: 2762: 2715: 2711: 2702: 2698: 2653: 2649: 2638: 2634: 2595: 2591: 2552: 2548: 2503: 2496: 2465: 2461: 2416: 2412: 2399: 2392: 2347: 2343: 2320: 2316: 2261: 2257: 2210: 2206: 2194: 2183: 2160: 2156: 2125: 2121: 2114: 2100: 2096: 2089: 2075: 2071: 2030:(11): 1607–20. 2016: 2012: 1957: 1953: 1940: 1936: 1925: 1921: 1876: 1869: 1814: 1810: 1765: 1761: 1716: 1712: 1681:(12): 1319–27. 1667: 1663: 1631: 1627: 1596: 1592: 1545: 1541: 1512:(12): 2329–45. 1502: 1498: 1451: 1447: 1440: 1426: 1422: 1383: 1379: 1372: 1358: 1354: 1323: 1316: 1271: 1267: 1208: 1204: 1173: 1171: 1159: 1158: 1154: 1144: 1142: 1125: 1124: 1120: 1091: 1087: 1082: 1040: 1033: 1030: 994:James D. Watson 942:DNA replication 842:Félix d'Hérelle 838:Frederick Twort 834: 695: 686: 672: 584: 572:complementation 542:DNA replication 530:gene expression 528:Arrest of host 508: 457: 408: 392: 353: 321:Model organisms 317: 315:Use in research 174: 69: 17: 12: 11: 5: 3833: 3823: 3822: 3817: 3812: 3795: 3794: 3792: 3791: 3778: 3763: 3747: 3745: 3739: 3738: 3727: 3726: 3721: 3716: 3706: 3705:External links 3703: 3701: 3700: 3662: 3622: 3616: 3599: 3596: 3590: 3573: 3533: 3501: 3453: 3407: 3376:(1): 358–366. 3361: 3340:(2): 289–304. 3328: 3282: 3236: 3210:Res. Microbiol 3201: 3151: 3095: 3082: 3072: 3020: 3018: 3015: 3012: 3011: 2962: 2927:(4914): 13–7. 2911: 2862: 2826: 2777: 2774:978-0879698003 2760: 2709: 2696: 2647: 2632: 2589: 2546: 2494: 2459: 2410: 2390: 2341: 2314: 2255: 2204: 2181: 2178:978-0816224500 2154: 2119: 2112: 2094: 2087: 2069: 2010: 1951: 1948:978-0879698003 1934: 1919: 1867: 1808: 1759: 1710: 1661: 1625: 1606:(3): 293–306. 1590: 1539: 1496: 1445: 1438: 1420: 1377: 1370: 1352: 1314: 1265: 1202: 1152: 1118: 1084: 1083: 1081: 1078: 1077: 1076: 1071: 1066: 1061: 1056: 1046: 1045: 1042:Viruses portal 1029: 1026: 1018:Richard Lenski 1006:Seymour Benzer 990:Alfred Hershey 986:Salvador Luria 916:Leslie Barnett 908:Sydney Brenner 885:Alfred Hershey 873:Salvador Luria 833: 830: 707:Salvador Luria 694: 691: 685: 682: 671: 668: 583: 580: 553: 552: 545: 539: 533: 526: 507: 504: 456: 453: 407: 404: 391: 388: 352: 349: 316: 313: 281:of the family 267:bacteriophages 258: 257: 249: 248: 242: 241: 240: 239: 234: 229: 224: 219: 214: 209: 204: 199: 194: 189: 181: 180: 176: 175: 168: 166: 162: 161: 154: 150: 149: 142: 138: 137: 134:Caudoviricetes 130: 126: 125: 118: 114: 113: 110:Heunggongvirae 106: 102: 101: 94: 87: 86: 81: 77: 76: 63: 62: 47: 46: 38: 37: 15: 9: 6: 4: 3: 2: 3832: 3821: 3818: 3816: 3813: 3811: 3808: 3807: 3805: 3788: 3783: 3779: 3774: 3768: 3764: 3759: 3753: 3749: 3748: 3746: 3744: 3740: 3736: 3731: 3725: 3722: 3720: 3717: 3715: 3713: 3709: 3708: 3699: 3694: 3690: 3685: 3680: 3676: 3672: 3668: 3663: 3661: 3656: 3652: 3648: 3644: 3640: 3636: 3632: 3628: 3627:Mol Microbiol 3623: 3621: 3617: 3615: 3614:0-914826-56-5 3611: 3608: 3604: 3600: 3597: 3595: 3591: 3589: 3588:1-55581-064-0 3585: 3582: 3578: 3575:Karam, J. D. 3574: 3572: 3567: 3563: 3559: 3555: 3551: 3547: 3543: 3539: 3534: 3532: 3527: 3523: 3519: 3515: 3512:(2): 237–49. 3511: 3507: 3502: 3500: 3495: 3491: 3487: 3483: 3479: 3475: 3471: 3467: 3463: 3459: 3454: 3452: 3447: 3443: 3438: 3433: 3429: 3425: 3421: 3417: 3413: 3408: 3406: 3401: 3397: 3392: 3387: 3383: 3379: 3375: 3371: 3367: 3362: 3360: 3355: 3351: 3347: 3343: 3339: 3335: 3329: 3327: 3322: 3318: 3313: 3308: 3304: 3300: 3296: 3292: 3288: 3283: 3281: 3276: 3272: 3267: 3262: 3258: 3254: 3251:(1): 86–156. 3250: 3246: 3242: 3237: 3233: 3229: 3224: 3219: 3216:(4): 259–67. 3215: 3211: 3207: 3202: 3200: 3195: 3191: 3186: 3181: 3177: 3173: 3169: 3165: 3161: 3159: 3152: 3150: 3145: 3141: 3136: 3131: 3126: 3121: 3117: 3113: 3109: 3105: 3101: 3096: 3094: 3093:0-19-514850-9 3090: 3087: 3083: 3081: 3077: 3073: 3069: 3065: 3061: 3057: 3052: 3047: 3043: 3039: 3035: 3031: 3027: 3022: 3021: 3007: 3003: 2998: 2993: 2989: 2985: 2981: 2977: 2973: 2966: 2958: 2954: 2950: 2946: 2942: 2938: 2934: 2930: 2926: 2922: 2915: 2907: 2903: 2898: 2893: 2889: 2885: 2882:(4): 649–62. 2881: 2877: 2873: 2866: 2858: 2854: 2850: 2846: 2842: 2838: 2830: 2822: 2818: 2813: 2808: 2804: 2800: 2797:(2): 575–82. 2796: 2792: 2788: 2781: 2775: 2771: 2764: 2756: 2752: 2748: 2744: 2740: 2736: 2732: 2728: 2724: 2720: 2713: 2706: 2700: 2692: 2688: 2683: 2678: 2674: 2670: 2666: 2662: 2658: 2651: 2643: 2636: 2628: 2624: 2620: 2616: 2612: 2608: 2605:(4): 539–44. 2604: 2600: 2593: 2585: 2581: 2577: 2573: 2569: 2565: 2561: 2557: 2550: 2542: 2538: 2533: 2528: 2524: 2520: 2517:(2): 265–71. 2516: 2512: 2508: 2501: 2499: 2490: 2486: 2482: 2478: 2475:(2): 337–61. 2474: 2470: 2463: 2455: 2451: 2446: 2441: 2437: 2433: 2430:(4): 473–85. 2429: 2425: 2421: 2414: 2407: 2406:0-06-015260-5 2403: 2397: 2395: 2386: 2382: 2377: 2372: 2368: 2364: 2361:(2): 93–125. 2360: 2356: 2352: 2345: 2337: 2333: 2329: 2325: 2318: 2310: 2306: 2301: 2296: 2291: 2286: 2282: 2278: 2275:(9): 253–64. 2274: 2270: 2266: 2259: 2251: 2247: 2242: 2237: 2232: 2227: 2223: 2219: 2215: 2208: 2202: 2198: 2192: 2190: 2188: 2186: 2179: 2175: 2172: 2168: 2164: 2158: 2150: 2146: 2142: 2138: 2135:(4): 963–81. 2134: 2130: 2123: 2115: 2109: 2105: 2098: 2090: 2084: 2080: 2073: 2065: 2061: 2056: 2051: 2046: 2041: 2037: 2033: 2029: 2025: 2021: 2014: 2006: 2002: 1997: 1992: 1987: 1982: 1978: 1974: 1971:(6): 344–54. 1970: 1966: 1962: 1955: 1949: 1945: 1938: 1930: 1923: 1915: 1911: 1906: 1901: 1897: 1893: 1889: 1885: 1881: 1874: 1872: 1863: 1859: 1854: 1849: 1844: 1839: 1835: 1831: 1827: 1823: 1819: 1812: 1804: 1800: 1795: 1790: 1786: 1782: 1779:(2): 916–24. 1778: 1774: 1770: 1763: 1755: 1751: 1746: 1741: 1737: 1733: 1730:(2): 718–22. 1729: 1725: 1721: 1714: 1706: 1702: 1697: 1692: 1688: 1684: 1680: 1676: 1672: 1665: 1657: 1653: 1649: 1645: 1642:(4): 550–63. 1641: 1637: 1629: 1621: 1617: 1613: 1609: 1605: 1601: 1594: 1586: 1582: 1578: 1574: 1570: 1566: 1562: 1558: 1554: 1550: 1543: 1535: 1531: 1527: 1523: 1519: 1515: 1511: 1507: 1500: 1492: 1488: 1483: 1478: 1473: 1468: 1464: 1460: 1456: 1449: 1441: 1435: 1431: 1424: 1416: 1412: 1408: 1404: 1400: 1396: 1392: 1388: 1381: 1373: 1367: 1363: 1356: 1348: 1344: 1340: 1336: 1333:(3): 355–61. 1332: 1328: 1321: 1319: 1310: 1306: 1301: 1296: 1292: 1288: 1284: 1280: 1276: 1269: 1261: 1257: 1253: 1249: 1245: 1241: 1237: 1233: 1229: 1225: 1221: 1217: 1213: 1206: 1199: 1198: 1194: 1190: 1186: 1182: 1170: 1166: 1164: 1156: 1140: 1136: 1132: 1130: 1122: 1113: 1108: 1104: 1100: 1096: 1089: 1085: 1075: 1072: 1070: 1069:Bacteriophage 1067: 1065: 1062: 1060: 1057: 1055: 1053: 1048: 1047: 1043: 1037: 1032: 1025: 1023: 1019: 1015: 1011: 1010:Bruce Alberts 1007: 1003: 999: 998:Francis Crick 995: 991: 987: 983: 979: 974: 972: 968: 964: 959: 955: 954:morphogenesis 951: 950:recombination 947: 943: 938: 934: 933:amber mutants 930: 924: 921: 917: 913: 912:Francis Crick 909: 905: 901: 897: 892: 890: 886: 882: 878: 874: 870: 866: 861: 859: 855: 851: 847: 843: 839: 829: 827: 823: 819: 815: 811: 807: 806: 801: 797: 793: 789: 785: 781: 776: 774: 770: 766: 762: 758: 754: 749: 747: 741: 739: 735: 731: 727: 723: 719: 714: 712: 708: 699: 690: 681: 678: 667: 665: 661: 657: 656:peptidoglycan 653: 649: 645: 641: 637: 633: 628: 625: 621: 617: 613: 609: 605: 604:teichoic acid 601: 597: 588: 579: 577: 576:recombination 573: 569: 565: 560: 558: 550: 546: 543: 540: 537: 534: 531: 527: 524: 521: 520: 519: 517: 513: 503: 499: 497: 493: 492:peptidoglycan 489: 485: 481: 477: 473: 470:proteins and 469: 465: 462: 452: 449: 445: 440: 436: 433: 429: 425: 421: 412: 403: 401: 397: 387: 385: 381: 377: 373: 369: 365: 362:is about 169 361: 358: 348: 346: 342: 338: 334: 330: 326: 322: 312: 310: 306: 302: 298: 294: 290: 286: 285: 284:Straboviridae 280: 279: 274: 273: 268: 264: 256: 255: 250: 247: 243: 238: 235: 233: 230: 228: 225: 223: 220: 218: 215: 213: 210: 208: 205: 203: 200: 198: 195: 193: 190: 188: 185: 184: 182: 177: 173: 172: 167: 164: 163: 160: 159: 158:Tequatrovirus 155: 152: 151: 148: 147: 146:Straboviridae 143: 140: 139: 136: 135: 131: 128: 127: 124: 123: 119: 116: 115: 112: 111: 107: 104: 103: 100: 99: 98:Duplodnaviria 95: 92: 89: 88: 85: 82: 79: 78: 73: 68: 64: 60: 56: 52: 48: 44: 39: 36: 32: 29: 23: 19: 3742: 3711: 3697: 3674: 3670: 3659: 3630: 3626: 3619: 3606: 3602: 3593: 3580: 3576: 3570: 3541: 3537: 3530: 3509: 3506:J. Mol. Biol 3505: 3498: 3494:the original 3465: 3461: 3450: 3422:(2): 481–6. 3419: 3415: 3404: 3373: 3370:J. Bacteriol 3369: 3358: 3337: 3333: 3325: 3294: 3291:J. Bacteriol 3290: 3279: 3248: 3244: 3213: 3209: 3198: 3167: 3164:J. Bacteriol 3163: 3157: 3148: 3107: 3103: 3085: 3079: 3033: 3029: 2979: 2975: 2965: 2924: 2920: 2914: 2879: 2875: 2865: 2840: 2836: 2829: 2794: 2790: 2780: 2763: 2722: 2718: 2712: 2704: 2699: 2667:(2): 481–6. 2664: 2660: 2650: 2641: 2635: 2602: 2598: 2592: 2559: 2555: 2549: 2514: 2510: 2472: 2468: 2462: 2427: 2424:J. Bacteriol 2423: 2413: 2358: 2354: 2344: 2327: 2323: 2317: 2272: 2268: 2258: 2221: 2217: 2207: 2162: 2157: 2132: 2128: 2122: 2104:Microbiology 2103: 2097: 2078: 2072: 2027: 2023: 2013: 1968: 1964: 1954: 1937: 1928: 1922: 1890:(1): 39–56. 1887: 1883: 1825: 1821: 1811: 1776: 1772: 1762: 1727: 1723: 1713: 1678: 1674: 1664: 1639: 1635: 1628: 1603: 1599: 1593: 1552: 1548: 1542: 1509: 1505: 1499: 1462: 1458: 1448: 1430:Microbiology 1429: 1423: 1390: 1386: 1380: 1361: 1355: 1330: 1326: 1282: 1278: 1268: 1219: 1215: 1205: 1196: 1192: 1189:Tevenvirinae 1188: 1184: 1181:Caudovirales 1180: 1179: 1172:. Retrieved 1168: 1162: 1155: 1143:. Retrieved 1139:the original 1134: 1128: 1121: 1102: 1098: 1088: 1051: 1014:Gisela Mosig 982:Max Delbrück 976:A number of 975: 925: 920:genetic code 893: 862: 858:Max Delbrück 853: 845: 840:in 1915 and 835: 816:and RadA in 803: 795: 777: 773:nitrous acid 750: 742: 715: 704: 687: 673: 644:nucleic acid 629: 593: 567: 563: 561: 554: 509: 506:Reproduction 500: 495: 479: 475: 460: 458: 441: 437: 432:nucleic acid 417: 400:endonuclease 393: 354: 318: 296: 291:and not the 282: 278:Tevenvirinae 276: 270: 269:that infect 262: 261: 253: 252: 170: 169: 157: 145: 133: 121: 109: 97: 90: 80:(unranked): 50: 34: 28: 18: 3767:Wikispecies 3538:Virus Genes 3462:Arch. Virol 2843:: 375–394. 1393:(1): 33–9. 1174:26 December 1145:26 December 978:Nobel Prize 896:phage group 784:prokaryotes 753:mitomycin C 738:infertility 722:phage group 638:inside the 598:, specific 557:bursts open 516:lytic cycle 424:icosahedral 390:Translation 386:sequences. 122:Uroviricota 3810:Myoviridae 3804:Categories 3334:J Mol Biol 2707:, pp 43-44 2640:Willey J. 2330:(6): 618. 2171:0816224501 2129:J Mol Biol 1185:Myoviridae 1129:Myoviridae 1080:References 1022:James Bull 826:eukaryotes 814:eukaryotes 788:eukaryotes 771:(MMS) and 726:DNA repair 677:DNA repair 624:adsorption 523:Adsorption 3712:Viralzone 3677:: 143–6. 2857:0091-7451 2703:Morange, 1244:1476-4687 881:selection 877:mutations 780:orthologs 640:bacterium 632:infection 620:infection 596:receptors 464:infection 380:eukaryote 165:Species: 105:Kingdom: 3820:T-phages 3787:11459726 3752:Wikidata 3693:14454648 3647:19708923 3566:20529415 3490:39369249 3446:10835374 3416:Genetics 3400:11114936 3354:12051907 3321:11976309 3275:12626685 3232:12798230 3194:15576776 3144:16116082 3060:14625682 3051:11138918 3006:15579671 2976:Genetics 2957:10179456 2949:14085558 2906:14156925 2876:Genetics 2821:15514035 2791:Genetics 2747:13882203 2691:10835374 2661:Genetics 2627:38550472 2511:J. Virol 2489:13544109 2469:Virology 2454:14938320 2385:17247312 2355:Genetics 2336:18100306 2324:Genetics 2309:16588748 2250:21129201 2064:16590553 2005:16589677 1914:12981234 1862:31767752 1705:25517898 1636:Virology 1577:27193680 1534:39369249 1491:21129200 1415:17854788 1407:21533668 1309:12626685 1252:13013321 1105:(1): 5. 1074:Virology 1064:T6 phage 1059:T2 phage 1028:See also 902:and the 850:Ugo Fano 767:(MNNG), 761:psoralen 746:mutation 612:flagella 488:lysozyme 484:membrane 368:proteins 345:cytosine 246:Synonyms 179:Strains 141:Family: 117:Phylum: 3758:Q913706 3655:8187771 3558:8828153 3526:9096222 3482:9672598 3437:1461100 3135:1194919 3112:Bibcode 3068:2228357 2997:1448779 2929:Bibcode 2897:1210603 2812:1448817 2755:4276146 2727:Bibcode 2682:1461100 2584:8456313 2564:Bibcode 2556:Science 2376:1209443 2300:1079044 2277:Bibcode 2241:3012670 2224:: 356. 2201:6261109 2032:Bibcode 1973:Bibcode 1905:2147348 1853:6911207 1830:Bibcode 1803:7040345 1754:7047495 1696:4275845 1656:4878023 1620:4907266 1585:4399265 1557:Bibcode 1526:9672598 1482:3004832 1465:: 355. 1347:4580243 1260:4277592 1224:Bibcode 1193:T4virus 969:of the 846:E. coli 832:History 822:meiosis 818:archaea 792:archaea 759:decay, 684:Release 600:protein 496:E. coli 480:E. coli 476:E. coli 153:Genus: 129:Class: 3691:  3653:  3645:  3612:  3605:et al. 3586:  3577:et al. 3564:  3556:  3524:  3488:  3480:  3444:  3434:  3398:  3388:  3352:  3319:  3312:135041 3309:  3273:  3266:150520 3263:  3230:  3192:  3185:532421 3182:  3142:  3132:  3091:  3066:  3058:  3048:  3004:  2994:  2955:  2947:  2921:Nature 2904:  2894:  2855:  2819:  2809:  2772:  2753:  2745:  2719:Nature 2689:  2679:  2625:  2619:573881 2617:  2582:  2541:660716 2539:  2532:354064 2529:  2487:  2452:  2445:169298 2442:  2404:  2383:  2373:  2334:  2307:  2297:  2248:  2238:  2199:  2176:  2169:  2149:789903 2147:  2110:  2085:  2062:  2055:222769 2052:  2003:  1996:528093 1993:  1946:  1912:  1902:  1860:  1850:  1801:  1794:216445 1791:  1752:  1745:220313 1742:  1703:  1693:  1654:  1618:  1583:  1575:  1549:Nature 1532:  1524:  1489:  1479:  1436:  1413:  1405:  1368:  1345:  1307:  1300:150520 1297:  1258:  1250:  1242:  1216:Nature 1054:system 1020:, and 996:, and 946:repair 854:E.coli 736:, and 734:cancer 614:, and 536:Enzyme 498:cell. 444:virion 428:capsid 384:intron 382:-like 360:genome 59:virion 3782:IRMNG 3651:S2CID 3562:S2CID 3486:S2CID 3391:94885 3064:S2CID 2953:S2CID 2751:S2CID 2623:S2CID 1581:S2CID 1530:S2CID 1411:S2CID 1256:S2CID 1195:> 1191:> 1187:> 1183:> 810:RAD51 802:from 730:aging 549:virus 468:porin 448:genes 337:genes 329:virus 325:genes 91:Realm 84:Virus 3689:PMID 3643:PMID 3610:ISBN 3584:ISBN 3554:PMID 3522:PMID 3478:PMID 3442:PMID 3396:PMID 3350:PMID 3317:PMID 3271:PMID 3228:PMID 3190:PMID 3140:PMID 3089:ISBN 3056:PMID 3002:PMID 2945:PMID 2902:PMID 2853:ISSN 2817:PMID 2770:ISBN 2743:PMID 2687:PMID 2615:PMID 2580:PMID 2537:PMID 2485:PMID 2450:PMID 2402:ISBN 2381:PMID 2332:PMID 2305:PMID 2246:PMID 2197:PMID 2174:ISBN 2167:ISBN 2145:PMID 2108:ISBN 2083:ISBN 2060:PMID 2001:PMID 1944:ISBN 1910:PMID 1858:PMID 1799:PMID 1750:PMID 1701:PMID 1652:PMID 1616:PMID 1573:PMID 1522:PMID 1487:PMID 1434:ISBN 1403:PMID 1366:ISBN 1343:PMID 1305:PMID 1248:PMID 1240:ISSN 1176:2018 1147:2018 971:gene 948:and 894:The 800:RecA 796:uvsX 790:and 616:pili 568:rIIB 566:and 564:rIIA 510:The 394:The 307:and 3679:doi 3635:doi 3546:doi 3514:doi 3510:267 3470:doi 3466:142 3432:PMC 3424:doi 3420:155 3386:PMC 3378:doi 3374:183 3342:doi 3338:319 3307:PMC 3299:doi 3295:184 3261:PMC 3253:doi 3218:doi 3214:154 3180:PMC 3172:doi 3168:186 3130:PMC 3120:doi 3108:102 3046:PMC 3038:doi 2992:PMC 2984:doi 2980:168 2937:doi 2925:201 2892:PMC 2884:doi 2845:doi 2807:PMC 2799:doi 2795:168 2735:doi 2723:192 2677:PMC 2669:doi 2665:155 2607:doi 2572:doi 2560:259 2527:PMC 2519:doi 2477:doi 2440:PMC 2432:doi 2371:PMC 2363:doi 2295:PMC 2285:doi 2236:PMC 2226:doi 2137:doi 2133:106 2050:PMC 2040:doi 1991:PMC 1981:doi 1900:PMC 1892:doi 1848:PMC 1838:doi 1826:116 1789:PMC 1781:doi 1777:150 1740:PMC 1732:doi 1728:151 1691:PMC 1683:doi 1644:doi 1608:doi 1565:doi 1553:533 1514:doi 1510:142 1477:PMC 1467:doi 1395:doi 1335:doi 1295:PMC 1287:doi 1232:doi 1220:170 1107:doi 1052:rII 1050:T4 824:in 812:in 757:P32 652:ATP 364:kbp 357:DNA 57:of 3806:: 3784:: 3769:: 3754:: 3687:. 3675:27 3673:. 3669:. 3649:. 3641:. 3631:73 3629:. 3560:. 3552:. 3542:11 3540:. 3520:. 3508:. 3484:. 3476:. 3464:. 3460:. 3440:. 3430:. 3418:. 3414:. 3394:. 3384:. 3372:. 3368:. 3348:. 3336:. 3315:. 3305:. 3293:. 3289:. 3269:. 3259:. 3249:67 3247:. 3243:. 3226:. 3212:. 3208:. 3188:. 3178:. 3166:. 3162:. 3138:. 3128:. 3118:. 3106:. 3102:. 3078:. 3062:. 3054:. 3044:. 3034:60 3032:. 3028:. 3000:. 2990:. 2978:. 2974:. 2951:. 2943:. 2935:. 2923:. 2900:. 2890:. 2880:49 2878:. 2874:. 2851:. 2841:28 2839:. 2815:. 2805:. 2793:. 2789:. 2749:. 2741:. 2733:. 2721:. 2685:. 2675:. 2663:. 2659:. 2621:. 2613:. 2603:22 2601:. 2578:. 2570:. 2558:. 2535:. 2525:. 2515:26 2513:. 2509:. 2497:^ 2483:. 2471:. 2448:. 2438:. 2428:63 2426:. 2422:. 2393:^ 2379:. 2369:. 2359:34 2357:. 2353:. 2328:33 2326:. 2303:. 2293:. 2283:. 2273:33 2271:. 2267:. 2244:. 2234:. 2220:. 2216:. 2184:^ 2143:. 2131:. 2058:. 2048:. 2038:. 2028:45 2026:. 2022:. 1999:. 1989:. 1979:. 1969:41 1967:. 1963:. 1908:. 1898:. 1888:36 1886:. 1882:. 1870:^ 1856:. 1846:. 1836:. 1824:. 1820:. 1797:. 1787:. 1775:. 1771:. 1748:. 1738:. 1726:. 1722:. 1699:. 1689:. 1677:. 1673:. 1650:. 1640:35 1638:. 1614:. 1604:47 1602:. 1579:. 1571:. 1563:. 1551:. 1528:. 1520:. 1508:. 1485:. 1475:. 1461:. 1457:. 1409:. 1401:. 1391:39 1389:. 1341:. 1331:77 1329:. 1317:^ 1303:. 1293:. 1283:67 1281:. 1277:. 1254:. 1246:. 1238:. 1230:. 1218:. 1214:. 1178:. 1167:. 1133:. 1101:. 1097:. 1024:. 1016:, 1012:, 1008:, 1004:, 992:, 988:, 984:, 944:, 914:, 828:. 786:, 775:. 740:. 732:, 713:. 650:, 622:, 610:, 420:nm 347:. 311:. 303:, 93:: 61:) 55:EM 3695:. 3681:: 3657:. 3637:: 3568:. 3548:: 3528:. 3516:: 3472:: 3448:. 3426:: 3402:. 3380:: 3356:. 3344:: 3323:. 3301:: 3277:. 3255:: 3234:. 3220:: 3196:. 3174:: 3146:. 3122:: 3114:: 3070:. 3040:: 3008:. 2986:: 2959:. 2939:: 2931:: 2908:. 2886:: 2859:. 2847:: 2823:. 2801:: 2757:. 2737:: 2729:: 2693:. 2671:: 2629:. 2609:: 2586:. 2574:: 2566:: 2543:. 2521:: 2491:. 2479:: 2473:5 2456:. 2434:: 2387:. 2365:: 2338:. 2311:. 2287:: 2279:: 2252:. 2228:: 2222:7 2151:. 2139:: 2116:. 2091:. 2066:. 2042:: 2034:: 2007:. 1983:: 1975:: 1916:. 1894:: 1864:. 1840:: 1832:: 1805:. 1783:: 1756:. 1734:: 1707:. 1685:: 1679:9 1658:. 1646:: 1622:. 1610:: 1587:. 1567:: 1559:: 1536:. 1516:: 1493:. 1469:: 1463:7 1442:. 1417:. 1397:: 1374:. 1349:. 1337:: 1311:. 1289:: 1262:. 1234:: 1226:: 1165:" 1149:. 1131:" 1115:. 1109:: 1103:4 53:(

Index



EM
virion
Virus classification
Edit this classification
Virus
Duplodnaviria
Heunggongvirae
Uroviricota
Caudoviricetes
Straboviridae
Tequatrovirus
Enterobacteria phage C16
Enterobacteria phage F10
Enterobacteria phage Fs-alpha
Enterobacteria phage PST
Enterobacteria phage SKII
Enterobacteria phage SKV
Enterobacteria phage SKX
Enterobacteria phage SV3
Enterobacteria phage T2
Enterobacteria phage T4
Enterobacteria phage T6
Synonyms
bacteriophages
Escherichia coli
Tevenvirinae
Straboviridae
lytic life cycle

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.