Knowledge

Domain of holomorphy

Source đź“ť

17: 981: 666: 1243: 1297: 1194: 1140: 1398: 170: 611: 252: 790: 220: 1083: 712: 103: 1431: 735: 133: 1037: 1007: 876: 1358: 1331: 757: 686: 574: 549: 524: 502: 479: 447: 295: 68: 409: 361: 916: 896: 850: 830: 810: 381: 335: 315: 275: 190: 924: 1039:, i.e. constructing a global holomorphic function which admits no extension from non-extendable functions defined only locally. This is called the 1056: 616: 1202: 1248: 29: 1145: 1407:
is always solvable in a domain of holomorphy; this is also true, with additional topological assumptions, for the second
1485: 1099: 1363: 138: 420: 583: 225: 766: 199: 527: 1059: 691: 77: 717: 112: 1016: 986: 1421: 855: 1336: 1309: 411:
case, every open set is a domain of holomorphy: we can define a holomorphic function with zeros
742: 671: 559: 534: 509: 487: 464: 426: 280: 53: 41: 1055:
using methods from functional analysis and partial differential equations (a consequence of
1300: 255: 37: 8: 416: 388: 340: 1469: 901: 881: 835: 815: 795: 412: 366: 320: 300: 260: 175: 1426: 1044: 450: 1052: 16: 976:{\displaystyle 1\Leftrightarrow 2,3\Leftrightarrow 4,1\Rightarrow 4,3\Rightarrow 5} 1408: 1404: 193: 1436: 1010: 1479: 1040: 552: 1048: 25: 1465: 1245:
is an ascending sequence of domains of holomorphy, then their union
661:{\displaystyle S_{n}\rightarrow S,\partial S_{n}\rightarrow \Gamma } 737:
cannot be "touched from inside" by a sequence of analytic surfaces)
48: 1464:
This article incorporates material from Domain of holomorphy on
1238:{\displaystyle \Omega _{1}\subseteq \Omega _{2}\subseteq \dots } 36:
is a domain which is maximal in the sense that there exists a
1292:{\displaystyle \Omega =\bigcup _{n=1}^{\infty }\Omega _{n}} 1452:, AMS Chelsea Publishing, Providence, Rhode Island, 1992. 1366: 1339: 1312: 1251: 1205: 1189:{\displaystyle \Omega =\bigcap _{j=1}^{n}\Omega _{j}} 1148: 1102: 1062: 1019: 989: 927: 904: 884: 858: 838: 818: 798: 769: 745: 720: 694: 674: 619: 586: 562: 537: 512: 490: 467: 429: 391: 369: 343: 323: 303: 283: 263: 228: 202: 178: 141: 115: 80: 56: 1142:are domains of holomorphy, then their intersection 1392: 1352: 1325: 1291: 1237: 1188: 1134: 1077: 1031: 1001: 975: 910: 890: 870: 844: 824: 804: 784: 751: 729: 706: 680: 660: 605: 568: 543: 518: 496: 473: 441: 423:for a domain of definition of its reciprocal. For 403: 375: 355: 329: 309: 289: 269: 246: 214: 184: 164: 127: 97: 62: 1477: 1470:Creative Commons Attribution/Share-Alike License 1135:{\displaystyle \Omega _{1},\dots ,\Omega _{n}} 1393:{\displaystyle \Omega _{1}\times \Omega _{2}} 1450:Function Theory of Several Complex Variables 898:cannot be extended to any neighbourhood of 449:this is no longer true, as it follows from 165:{\displaystyle V\subset {\mathbb {C} }^{n}} 109:if there do not exist non-empty open sets 481:the following conditions are equivalent: 151: 84: 456: 15: 1013:). The main difficulty lies in proving 613:of analytic compact surfaces such that 1478: 606:{\displaystyle S_{n}\subseteq \Omega } 247:{\displaystyle U\subset \Omega \cap V} 785:{\displaystyle x\in \partial \Omega } 215:{\displaystyle V\not \subset \Omega } 1299:is also a domain of holomorphy (see 419:of the domain, which must then be a 297:there exists a holomorphic function 13: 1381: 1368: 1341: 1314: 1280: 1274: 1252: 1220: 1207: 1177: 1149: 1123: 1104: 1078:{\displaystyle {\bar {\partial }}} 1066: 865: 779: 776: 746: 724: 721: 707:{\displaystyle S\subseteq \Omega } 701: 675: 655: 639: 600: 563: 538: 513: 491: 468: 284: 235: 209: 122: 98:{\displaystyle {\mathbb {C} }^{n}} 57: 14: 1497: 1457:Introduction to Complex Analysis 1360:are domains of holomorphy, then 730:{\displaystyle \partial \Omega } 128:{\displaystyle U\subset \Omega } 28:, in the theory of functions of 1196:is also a domain of holomorphy. 40:on this domain which cannot be 1468:, which is licensed under the 1069: 1032:{\displaystyle 5\Rightarrow 1} 1023: 1002:{\displaystyle 1\Rightarrow 3} 993: 967: 955: 943: 931: 652: 630: 1: 1442: 1090: 871:{\displaystyle U\cap \Omega } 1455:Boris Vladimirovich Shabat, 1432:solution of the Levi problem 792:there exist a neighbourhood 7: 1415: 1353:{\displaystyle \Omega _{2}} 1326:{\displaystyle \Omega _{1}} 74:-dimensional complex space 20:The sets in the definition. 10: 1502: 1400:is a domain of holomorphy. 1047:) and was first solved by 983:are standard results (for 1486:Several complex variables 504:is a domain of holomorphy 30:several complex variables 752:{\displaystyle \Omega } 681:{\displaystyle \Gamma } 569:{\displaystyle \Omega } 544:{\displaystyle \Omega } 519:{\displaystyle \Omega } 497:{\displaystyle \Omega } 474:{\displaystyle \Omega } 442:{\displaystyle n\geq 2} 290:{\displaystyle \Omega } 63:{\displaystyle \Omega } 1394: 1354: 1327: 1293: 1278: 1239: 1190: 1175: 1136: 1079: 1033: 1003: 977: 912: 892: 872: 846: 826: 806: 786: 753: 731: 708: 682: 662: 607: 570: 545: 528:holomorphically convex 520: 498: 475: 443: 405: 377: 357: 331: 311: 291: 271: 248: 216: 186: 166: 129: 99: 64: 21: 1395: 1355: 1328: 1294: 1258: 1240: 1191: 1155: 1137: 1080: 1034: 1004: 978: 913: 893: 873: 847: 827: 807: 787: 754: 732: 709: 683: 663: 608: 580:- for every sequence 571: 546: 521: 499: 476: 457:Equivalent conditions 444: 406: 378: 358: 332: 312: 292: 272: 249: 217: 187: 167: 130: 100: 65: 44:to a bigger domain. 19: 1422:Behnke–Stein theorem 1364: 1337: 1310: 1301:Behnke-Stein theorem 1249: 1203: 1146: 1100: 1060: 1017: 987: 925: 902: 882: 856: 836: 816: 796: 767: 743: 718: 692: 672: 617: 584: 560: 535: 510: 488: 465: 427: 389: 367: 341: 321: 301: 281: 261: 256:holomorphic function 254:such that for every 226: 200: 176: 139: 113: 107:domain of holomorphy 78: 54: 38:holomorphic function 34:domain of holomorphy 761:local Levi property 404:{\displaystyle n=1} 356:{\displaystyle f=g} 1448:Steven G. Krantz. 1390: 1350: 1323: 1289: 1235: 1186: 1132: 1075: 1029: 999: 973: 908: 888: 868: 842: 822: 802: 782: 763:- for every point 749: 727: 704: 678: 658: 603: 566: 541: 516: 494: 471: 439: 415:everywhere on the 401: 373: 353: 327: 307: 287: 267: 244: 212: 182: 162: 125: 95: 60: 22: 1427:Levi pseudoconvex 1072: 911:{\displaystyle x} 891:{\displaystyle f} 845:{\displaystyle f} 825:{\displaystyle x} 805:{\displaystyle U} 376:{\displaystyle U} 330:{\displaystyle V} 310:{\displaystyle g} 270:{\displaystyle f} 185:{\displaystyle V} 1493: 1399: 1397: 1396: 1391: 1389: 1388: 1376: 1375: 1359: 1357: 1356: 1351: 1349: 1348: 1332: 1330: 1329: 1324: 1322: 1321: 1298: 1296: 1295: 1290: 1288: 1287: 1277: 1272: 1244: 1242: 1241: 1236: 1228: 1227: 1215: 1214: 1195: 1193: 1192: 1187: 1185: 1184: 1174: 1169: 1141: 1139: 1138: 1133: 1131: 1130: 1112: 1111: 1084: 1082: 1081: 1076: 1074: 1073: 1065: 1038: 1036: 1035: 1030: 1008: 1006: 1005: 1000: 982: 980: 979: 974: 917: 915: 914: 909: 897: 895: 894: 889: 877: 875: 874: 869: 851: 849: 848: 843: 831: 829: 828: 823: 811: 809: 808: 803: 791: 789: 788: 783: 758: 756: 755: 750: 736: 734: 733: 728: 713: 711: 710: 705: 687: 685: 684: 679: 667: 665: 664: 659: 651: 650: 629: 628: 612: 610: 609: 604: 596: 595: 575: 573: 572: 567: 550: 548: 547: 542: 525: 523: 522: 517: 503: 501: 500: 495: 480: 478: 477: 472: 448: 446: 445: 440: 421:natural boundary 410: 408: 407: 402: 382: 380: 379: 374: 362: 360: 359: 354: 336: 334: 333: 328: 316: 314: 313: 308: 296: 294: 293: 288: 276: 274: 273: 268: 253: 251: 250: 245: 221: 219: 218: 213: 191: 189: 188: 183: 171: 169: 168: 163: 161: 160: 155: 154: 134: 132: 131: 126: 104: 102: 101: 96: 94: 93: 88: 87: 69: 67: 66: 61: 1501: 1500: 1496: 1495: 1494: 1492: 1491: 1490: 1476: 1475: 1445: 1418: 1384: 1380: 1371: 1367: 1365: 1362: 1361: 1344: 1340: 1338: 1335: 1334: 1317: 1313: 1311: 1308: 1307: 1283: 1279: 1273: 1262: 1250: 1247: 1246: 1223: 1219: 1210: 1206: 1204: 1201: 1200: 1180: 1176: 1170: 1159: 1147: 1144: 1143: 1126: 1122: 1107: 1103: 1101: 1098: 1097: 1093: 1064: 1063: 1061: 1058: 1057: 1018: 1015: 1014: 988: 985: 984: 926: 923: 922: 903: 900: 899: 883: 880: 879: 857: 854: 853: 852:holomorphic on 837: 834: 833: 817: 814: 813: 797: 794: 793: 768: 765: 764: 744: 741: 740: 719: 716: 715: 693: 690: 689: 673: 670: 669: 646: 642: 624: 620: 618: 615: 614: 591: 587: 585: 582: 581: 561: 558: 557: 536: 533: 532: 511: 508: 507: 489: 486: 485: 466: 463: 462: 459: 428: 425: 424: 390: 387: 386: 368: 365: 364: 342: 339: 338: 322: 319: 318: 302: 299: 298: 282: 279: 278: 262: 259: 258: 227: 224: 223: 201: 198: 197: 177: 174: 173: 156: 150: 149: 148: 140: 137: 136: 114: 111: 110: 89: 83: 82: 81: 79: 76: 75: 55: 52: 51: 12: 11: 5: 1499: 1489: 1488: 1461: 1460: 1453: 1444: 1441: 1440: 1439: 1437:Stein manifold 1434: 1429: 1424: 1417: 1414: 1413: 1412: 1409:Cousin problem 1405:Cousin problem 1401: 1387: 1383: 1379: 1374: 1370: 1347: 1343: 1320: 1316: 1304: 1286: 1282: 1276: 1271: 1268: 1265: 1261: 1257: 1254: 1234: 1231: 1226: 1222: 1218: 1213: 1209: 1197: 1183: 1179: 1173: 1168: 1165: 1162: 1158: 1154: 1151: 1129: 1125: 1121: 1118: 1115: 1110: 1106: 1092: 1089: 1071: 1068: 1053:Lars Hörmander 1051:, and then by 1028: 1025: 1022: 998: 995: 992: 972: 969: 966: 963: 960: 957: 954: 951: 948: 945: 942: 939: 936: 933: 930: 919: 918: 907: 887: 867: 864: 861: 841: 821: 801: 781: 778: 775: 772: 748: 738: 726: 723: 703: 700: 697: 677: 657: 654: 649: 645: 641: 638: 635: 632: 627: 623: 602: 599: 594: 590: 565: 555: 540: 530: 515: 505: 493: 470: 458: 455: 451:Hartogs' lemma 438: 435: 432: 400: 397: 394: 372: 352: 349: 346: 326: 306: 286: 266: 243: 240: 237: 234: 231: 211: 208: 205: 181: 159: 153: 147: 144: 124: 121: 118: 92: 86: 59: 47:Formally, an 9: 6: 4: 3: 2: 1498: 1487: 1484: 1483: 1481: 1474: 1473: 1471: 1467: 1458: 1454: 1451: 1447: 1446: 1438: 1435: 1433: 1430: 1428: 1425: 1423: 1420: 1419: 1410: 1406: 1402: 1385: 1377: 1372: 1345: 1318: 1305: 1302: 1284: 1269: 1266: 1263: 1259: 1255: 1232: 1229: 1224: 1216: 1211: 1198: 1181: 1171: 1166: 1163: 1160: 1156: 1152: 1127: 1119: 1116: 1113: 1108: 1095: 1094: 1088: 1086: 1054: 1050: 1046: 1042: 1026: 1020: 1012: 996: 990: 970: 964: 961: 958: 952: 949: 946: 940: 937: 934: 928: 921:Implications 905: 885: 862: 859: 839: 819: 799: 773: 770: 762: 739: 698: 695: 668:for some set 647: 643: 636: 633: 625: 621: 597: 592: 588: 579: 556: 554: 531: 529: 506: 484: 483: 482: 461:For a domain 454: 452: 436: 433: 430: 422: 418: 414: 398: 395: 392: 383: 370: 350: 347: 344: 324: 304: 264: 257: 241: 238: 232: 229: 206: 203: 195: 179: 157: 145: 142: 119: 116: 108: 90: 73: 50: 45: 43: 39: 35: 31: 27: 18: 1463: 1462: 1456: 1449: 1041:Levi problem 920: 760: 577: 553:pseudoconvex 460: 413:accumulating 384: 106: 105:is called a 71: 46: 33: 23: 1459:, AMS, 1992 1049:Kiyoshi Oka 1011:Oka's lemma 578:Levi convex 26:mathematics 1466:PlanetMath 1443:References 1403:The first 1091:Properties 1045:E. E. Levi 878:such that 1382:Ω 1378:× 1369:Ω 1342:Ω 1315:Ω 1281:Ω 1275:∞ 1260:⋃ 1253:Ω 1233:… 1230:⊆ 1221:Ω 1217:⊆ 1208:Ω 1178:Ω 1157:⋂ 1150:Ω 1124:Ω 1117:… 1105:Ω 1070:¯ 1067:∂ 1024:⇒ 994:⇒ 968:⇒ 956:⇒ 944:⇔ 932:⇔ 866:Ω 863:∩ 780:Ω 777:∂ 774:∈ 747:Ω 725:Ω 722:∂ 702:Ω 699:⊆ 676:Γ 656:Γ 653:→ 640:∂ 631:→ 601:Ω 598:⊆ 564:Ω 539:Ω 514:Ω 492:Ω 469:Ω 434:≥ 285:Ω 239:∩ 236:Ω 233:⊂ 210:Ω 194:connected 146:⊂ 123:Ω 120:⊂ 58:Ω 1480:Category 1416:See also 1085:-problem 688:we have 417:boundary 207:⊄ 49:open set 42:extended 1043:(after 385:In the 70:in the 1009:, see 172:where 1333:and 337:with 222:and 135:and 832:and 759:has 32:, a 1306:If 1199:If 1096:If 1087:). 812:of 576:is 551:is 526:is 453:. 363:on 317:on 277:on 196:, 192:is 24:In 1482:: 1303:). 1472:. 1411:. 1386:2 1373:1 1346:2 1319:1 1285:n 1270:1 1267:= 1264:n 1256:= 1225:2 1212:1 1182:j 1172:n 1167:1 1164:= 1161:j 1153:= 1128:n 1120:, 1114:, 1109:1 1027:1 1021:5 997:3 991:1 971:5 965:3 962:, 959:4 953:1 950:, 947:4 941:3 938:, 935:2 929:1 906:x 886:f 860:U 840:f 820:x 800:U 771:x 714:( 696:S 648:n 644:S 637:, 634:S 626:n 622:S 593:n 589:S 437:2 431:n 399:1 396:= 393:n 371:U 351:g 348:= 345:f 325:V 305:g 265:f 242:V 230:U 204:V 180:V 158:n 152:C 143:V 117:U 91:n 85:C 72:n

Index


mathematics
several complex variables
holomorphic function
extended
open set
connected
holomorphic function
accumulating
boundary
natural boundary
Hartogs' lemma
holomorphically convex
pseudoconvex
Oka's lemma
Levi problem
E. E. Levi
Kiyoshi Oka
Lars Hörmander
¯ {\displaystyle {\bar {\partial }}} -problem
Behnke-Stein theorem
Cousin problem
Cousin problem
Behnke–Stein theorem
Levi pseudoconvex
solution of the Levi problem
Stein manifold
PlanetMath
Creative Commons Attribution/Share-Alike License
Category

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑