Knowledge

Discrete time and continuous time

Source đź“ť

62:. Thus a non-time variable jumps from one value to another as time moves from one time period to the next. This view of time corresponds to a digital clock that gives a fixed reading of 10:37 for a while, and then jumps to a new fixed reading of 10:38, etc. In this framework, each variable of interest is measured once at each time period. The number of measurements between any two time periods is finite. Measurements are typically made at sequential 47: 1392:
of the same length as every other time period, and the measured variable is plotted as a height that stays constant throughout the region of the time period. In this graphical technique, the graph appears as a sequence of horizontal steps. Alternatively, each time period can be viewed as a detached
205:) will have some value at every instant of time. The electrical signals derived in proportion with the physical quantities such as temperature, pressure, sound etc. are generally continuous signals. Other examples of continuous signals are sine wave, cosine wave, triangular wave etc. 697:
Moreover, when a researcher attempts to develop a theory to explain what is observed in discrete time, often the theory itself is expressed in discrete time in order to facilitate the development of a time series or regression model.
208:
The signal is defined over a domain, which may or may not be finite, and there is a functional mapping from the domain to the value of the signal. The continuity of the time variable, in connection with the law of density of
57:
views values of variables as occurring at distinct, separate "points in time", or equivalently as being unchanged throughout each non-zero region of time ("time period")—that is, time is viewed as a
648:
actually occurs continuously, there being no moment when the economy is totally in a pause, it is only possible to measure economic activity discretely. For this reason, published data on, for example,
1393:
point in time, usually at an integer value on the horizontal axis, and the measured variable is plotted as a height above that time-axis point. In this technique, the graph appears as a set of dots.
1327: 1191: 279: 469: 825: 360: 1088: 1003: 918: 1354: 1214: 601: 571: 504: 395: 625:
Continuous signal may also be defined over an independent variable other than time. Another very common independent variable is space and is particularly useful in
535: 877: 1374: 1234: 540:
In many disciplines, the convention is that a continuous signal must always have a finite value, which makes more sense in the case of physical signals.
1440: 92:
from a continuous-time signal. When a discrete-time signal is obtained by sampling a sequence at uniformly spaced times, it has an associated
88:
Unlike a continuous-time signal, a discrete-time signal is not a function of a continuous argument; however, it may have been obtained by
543:
For some purposes, infinite singularities are acceptable as long as the signal is integrable over any finite interval (for example, the
668:
methods in which variables are indexed with a subscript indicating the time period in which the observation occurred. For example,
1262: 1110: 660:
When one attempts to empirically explain such variables in terms of other variables and/or their own prior values, one uses
1445: 222: 1497: 407: 619: 114:
By observing an inherently discrete-time process, such as the weekly peak value of a particular economic indicator.
202: 713:
an exact description requires the use of continuous time. In a continuous time context, the value of a variable
139:, or depending on the context, over some subset of it such as the non-negative reals. Thus time is viewed as a 1400:, since the domain of time is considered to be the entire real axis or at least some connected portion of it. 756: 290: 1012: 927: 615: 108: 89: 644:
are involved, because normally it is only possible to measure variables sequentially. For example, while
159: 1532: 99:
Discrete-time signals may have several origins, but can usually be classified into one of two groups:
611: 1527: 1237: 882: 650: 163: 35: 1339: 1249: 1199: 835: 576: 546: 474: 365: 702: 607: 513: 401:
The value of a finite (or infinite) duration signal may or may not be finite. For example,
1216:
is the positive speed-of-adjustment parameter which is less than or equal to 1, and where
8: 1450: 1397: 1256:
in response to non-zero excess demand for a product can be modeled in continuous time as
856: 743: 665: 179: 140: 1359: 1219: 654: 1493: 1425: 1415: 706: 645: 197:
A signal of continuous amplitude and time is known as a continuous-time signal or an
59: 20: 1333: 626: 136: 1356:
is the speed-of-adjustment parameter which can be any positive finite number, and
1430: 1389: 175: 167: 1435: 191: 1336:
of the price with respect to time (that is, the rate of change of the price),
1521: 1385: 1101: 198: 187: 183: 128: 104: 93: 1479:"Digital Signal Processing: Instant access", Butterworth-Heinemann - page 8 1420: 846: 747: 213:, means that the signal value can be found at any arbitrary point in time. 210: 135:
number of other points in time. The variable "time" ranges over the entire
661: 641: 171: 78: 842:
is a variable in the range from 0 to 1 inclusive whose value in period
1396:
The values of a variable measured in continuous time are plotted as a
638: 1410: 155: 132: 82: 131:
short amount of time. Between any two points in time there are an
710: 63: 46: 746:, also known as recurrence relations. An example, known as the 694:
to the value of income observed in the third time period, etc.
678: 510:
is a finite duration signal but it takes an infinite value for
1508: 1094: 284:
A finite duration counterpart of the above signal could be:
19:"Discrete signal" redirects here. Not to be confused with 1384:
A variable measured in discrete time can be plotted as a
127:
views variables as having a particular value only for an
1470:"Digital Signal Processing", Prentice Hall - pages 11–12 1322:{\displaystyle {\frac {dP}{dt}}=\lambda \cdot f(P,...)} 1186:{\displaystyle P_{t+1}=P_{t}+\delta \cdot f(P_{t},...)} 16:
Frameworks for modeling variables that evolve over time
1388:, in which each time period is given a region on the 1362: 1342: 1265: 1222: 1202: 1113: 1015: 930: 885: 859: 759: 579: 549: 516: 477: 410: 368: 293: 225: 216:
A typical example of an infinite duration signal is:
107:
at constant or variable rate. This process is called
1487: 274:{\displaystyle f(t)=\sin(t),\quad t\in \mathbb {R} } 701:On the other hand, it is often more mathematically 1368: 1348: 1321: 1228: 1208: 1185: 1082: 997: 912: 871: 819: 595: 565: 529: 498: 463: 389: 354: 273: 1519: 709:in continuous time, and often in areas such as 464:{\displaystyle f(t)={\frac {1}{t}},\quad t\in } 717:at an unspecified point in time is denoted as 34:are two alternative frameworks within which 1093:Another example models the adjustment of a 725:) or, when the meaning is clear, simply as 606:Any analog signal is continuous by nature. 162:) whose domain, which is often time, is a 573:signal is not integrable at infinity, but 1252:. For example, the adjustment of a price 526: 267: 838:in the range from 2 to 4 inclusive, and 820:{\displaystyle x_{t+1}=rx_{t}(1-x_{t}),} 629:, where two space dimensions are used. 355:{\displaystyle f(t)=\sin(t),\quad t\in } 174:). That is, the function's domain is an 45: 1083:{\displaystyle x_{3}=4(8/9)(1/9)=32/81} 1520: 1509:Wagner, Thomas Charles Gordon (1959). 1379: 849:affects its value in the next period, 1376:is again the excess demand function. 998:{\displaystyle x_{2}=4(1/3)(2/3)=8/9} 732: 637:Discrete time is often employed when 178:. The function itself need not to be 1243: 681:observed in unspecified time period 632: 1490:The Nature of mathematical Modeling 38:that evolve over time are modeled. 13: 737: 118: 14: 1544: 1446:Nyquist–Shannon sampling theorem 41: 439: 327: 259: 66:values of the variable "time". 1492:. Cambridge University Press. 1473: 1464: 1316: 1298: 1180: 1155: 1063: 1049: 1046: 1032: 978: 964: 961: 947: 811: 792: 487: 481: 458: 446: 420: 414: 378: 372: 349: 334: 321: 315: 303: 297: 253: 247: 235: 229: 1: 1488:Gershenfeld, Neil A. (1999). 1457: 1248:Continuous time makes use of 677:might refer to the value of 7: 1403: 1332:where the left side is the 742:Discrete time makes use of 10: 1549: 103:By acquiring values of an 26:In mathematical dynamics, 18: 913:{\displaystyle x_{1}=1/3} 750:or logistic equation, is 612:digital signal processing 1349:{\displaystyle \lambda } 1100:in response to non-zero 653:will show a sequence of 1209:{\displaystyle \delta } 622:of continuous signals. 50:Discrete sampled signal 1370: 1350: 1323: 1250:differential equations 1238:excess demand function 1230: 1210: 1187: 1084: 999: 914: 873: 821: 651:gross domestic product 597: 596:{\displaystyle t^{-2}} 567: 566:{\displaystyle t^{-1}} 531: 500: 499:{\displaystyle f(t)=0} 465: 391: 390:{\displaystyle f(t)=0} 356: 275: 152:continuous-time signal 51: 1511:Analytical transients 1371: 1351: 1324: 1231: 1211: 1188: 1085: 1000: 915: 874: 822: 614:, can be obtained by 608:Discrete-time signals 598: 568: 532: 530:{\displaystyle t=0\,} 501: 466: 392: 357: 276: 49: 1441:Normalized frequency 1360: 1340: 1263: 1220: 1200: 1111: 1013: 928: 883: 857: 853:+1. For example, if 757: 744:difference equations 577: 547: 514: 475: 408: 366: 291: 223: 75:discrete-time signal 1451:Time-scale calculus 1398:continuous function 1380:Graphical depiction 872:{\displaystyle r=4} 141:continuous variable 1366: 1346: 1319: 1226: 1206: 1183: 1080: 995: 910: 869: 817: 733:Types of equations 707:theoretical models 593: 563: 527: 496: 461: 387: 352: 271: 52: 1533:Dynamical systems 1426:Discrete calculus 1416:Bernoulli process 1369:{\displaystyle f} 1284: 1229:{\displaystyle f} 1104:for a product as 646:economic activity 633:Relevant contexts 434: 190:domain, like the 182:. To contrast, a 148:continuous signal 60:discrete variable 21:Discrete variable 1540: 1514: 1503: 1480: 1477: 1471: 1468: 1375: 1373: 1372: 1367: 1355: 1353: 1352: 1347: 1334:first derivative 1328: 1326: 1325: 1320: 1285: 1283: 1275: 1267: 1235: 1233: 1232: 1227: 1215: 1213: 1212: 1207: 1192: 1190: 1189: 1184: 1167: 1166: 1142: 1141: 1129: 1128: 1089: 1087: 1086: 1081: 1076: 1059: 1042: 1025: 1024: 1004: 1002: 1001: 996: 991: 974: 957: 940: 939: 919: 917: 916: 911: 906: 895: 894: 878: 876: 875: 870: 826: 824: 823: 818: 810: 809: 791: 790: 775: 774: 627:image processing 602: 600: 599: 594: 592: 591: 572: 570: 569: 564: 562: 561: 536: 534: 533: 528: 505: 503: 502: 497: 470: 468: 467: 462: 435: 427: 396: 394: 393: 388: 361: 359: 358: 353: 280: 278: 277: 272: 270: 170:interval of the 137:real number line 81:consisting of a 1548: 1547: 1543: 1542: 1541: 1539: 1538: 1537: 1528:Time in science 1518: 1517: 1500: 1484: 1483: 1478: 1474: 1469: 1465: 1460: 1455: 1431:Discrete system 1406: 1390:horizontal axis 1382: 1361: 1358: 1357: 1341: 1338: 1337: 1276: 1268: 1266: 1264: 1261: 1260: 1246: 1244:Continuous time 1221: 1218: 1217: 1201: 1198: 1197: 1162: 1158: 1137: 1133: 1118: 1114: 1112: 1109: 1108: 1072: 1055: 1038: 1020: 1016: 1014: 1011: 1010: 987: 970: 953: 935: 931: 929: 926: 925: 902: 890: 886: 884: 881: 880: 858: 855: 854: 805: 801: 786: 782: 764: 760: 758: 755: 754: 740: 735: 693: 676: 635: 584: 580: 578: 575: 574: 554: 550: 548: 545: 544: 515: 512: 511: 476: 473: 472: 426: 409: 406: 405: 367: 364: 363: 292: 289: 288: 266: 224: 221: 220: 192:natural numbers 176:uncountable set 129:infinitesimally 125:continuous time 121: 119:Continuous time 85:of quantities. 71:discrete signal 44: 32:continuous time 24: 17: 12: 11: 5: 1546: 1536: 1535: 1530: 1516: 1515: 1505: 1504: 1498: 1482: 1481: 1472: 1462: 1461: 1459: 1456: 1454: 1453: 1448: 1443: 1438: 1436:Discretization 1433: 1428: 1423: 1418: 1413: 1407: 1405: 1402: 1381: 1378: 1365: 1345: 1330: 1329: 1318: 1315: 1312: 1309: 1306: 1303: 1300: 1297: 1294: 1291: 1288: 1282: 1279: 1274: 1271: 1245: 1242: 1225: 1205: 1194: 1193: 1182: 1179: 1176: 1173: 1170: 1165: 1161: 1157: 1154: 1151: 1148: 1145: 1140: 1136: 1132: 1127: 1124: 1121: 1117: 1079: 1075: 1071: 1068: 1065: 1062: 1058: 1054: 1051: 1048: 1045: 1041: 1037: 1034: 1031: 1028: 1023: 1019: 994: 990: 986: 983: 980: 977: 973: 969: 966: 963: 960: 956: 952: 949: 946: 943: 938: 934: 909: 905: 901: 898: 893: 889: 868: 865: 862: 828: 827: 816: 813: 808: 804: 800: 797: 794: 789: 785: 781: 778: 773: 770: 767: 763: 739: 736: 734: 731: 689: 672: 634: 631: 590: 587: 583: 560: 557: 553: 525: 522: 519: 508: 507: 495: 492: 489: 486: 483: 480: 460: 457: 454: 451: 448: 445: 442: 438: 433: 430: 425: 422: 419: 416: 413: 399: 398: 386: 383: 380: 377: 374: 371: 351: 348: 345: 342: 339: 336: 333: 330: 326: 323: 320: 317: 314: 311: 308: 305: 302: 299: 296: 282: 281: 269: 265: 262: 258: 255: 252: 249: 246: 243: 240: 237: 234: 231: 228: 120: 117: 116: 115: 112: 43: 40: 15: 9: 6: 4: 3: 2: 1545: 1534: 1531: 1529: 1526: 1525: 1523: 1512: 1507: 1506: 1501: 1499:0-521-57095-6 1495: 1491: 1486: 1485: 1476: 1467: 1463: 1452: 1449: 1447: 1444: 1442: 1439: 1437: 1434: 1432: 1429: 1427: 1424: 1422: 1419: 1417: 1414: 1412: 1409: 1408: 1401: 1399: 1394: 1391: 1387: 1386:step function 1377: 1363: 1343: 1335: 1313: 1310: 1307: 1304: 1301: 1295: 1292: 1289: 1286: 1280: 1277: 1272: 1269: 1259: 1258: 1257: 1255: 1251: 1241: 1239: 1223: 1203: 1177: 1174: 1171: 1168: 1163: 1159: 1152: 1149: 1146: 1143: 1138: 1134: 1130: 1125: 1122: 1119: 1115: 1107: 1106: 1105: 1103: 1102:excess demand 1099: 1096: 1091: 1077: 1073: 1069: 1066: 1060: 1056: 1052: 1043: 1039: 1035: 1029: 1026: 1021: 1017: 1008: 992: 988: 984: 981: 975: 971: 967: 958: 954: 950: 944: 941: 936: 932: 923: 907: 903: 899: 896: 891: 887: 866: 863: 860: 852: 848: 845: 841: 837: 833: 814: 806: 802: 798: 795: 787: 783: 779: 776: 771: 768: 765: 761: 753: 752: 751: 749: 745: 738:Discrete time 730: 728: 724: 720: 716: 712: 708: 705:to construct 704: 699: 695: 692: 688: 684: 680: 675: 671: 667: 663: 658: 656: 652: 647: 643: 640: 630: 628: 623: 621: 617: 613: 609: 604: 588: 585: 581: 558: 555: 551: 541: 538: 523: 520: 517: 493: 490: 484: 478: 455: 452: 449: 443: 440: 436: 431: 428: 423: 417: 411: 404: 403: 402: 384: 381: 375: 369: 346: 343: 340: 337: 331: 328: 324: 318: 312: 309: 306: 300: 294: 287: 286: 285: 263: 260: 256: 250: 244: 241: 238: 232: 226: 219: 218: 217: 214: 212: 206: 204: 200: 199:analog signal 195: 193: 189: 186:signal has a 185: 184:discrete-time 181: 177: 173: 169: 165: 161: 157: 154:is a varying 153: 149: 144: 142: 138: 134: 130: 126: 123:In contrast, 113: 110: 106: 105:analog signal 102: 101: 100: 97: 95: 94:sampling rate 91: 86: 84: 80: 76: 72: 67: 65: 61: 56: 55:Discrete time 48: 42:Discrete time 39: 37: 33: 29: 28:discrete time 22: 1510: 1489: 1475: 1466: 1421:Digital data 1395: 1383: 1331: 1253: 1247: 1195: 1097: 1092: 1006: 921: 850: 843: 839: 831: 829: 748:logistic map 741: 726: 722: 718: 714: 700: 696: 690: 686: 682: 673: 669: 659: 642:measurements 636: 624: 620:quantization 605: 542: 539: 509: 400: 283: 215: 211:real numbers 207: 196: 151: 147: 145: 124: 122: 98: 87: 74: 70: 68: 54: 53: 31: 27: 25: 1009:=2 we have 924:=1 we have 920:, then for 847:nonlinearly 662:time series 79:time series 1522:Categories 1458:References 1005:, and for 666:regression 610:, used in 506:otherwise, 397:otherwise. 201:. This (a 180:continuous 1344:λ 1293:⋅ 1290:λ 1204:δ 1150:⋅ 1147:δ 836:parameter 830:in which 799:− 703:tractable 655:quarterly 639:empirical 586:− 556:− 444:∈ 347:π 341:π 338:− 332:∈ 313:⁡ 264:∈ 245:⁡ 188:countable 168:connected 166:(e.g., a 164:continuum 36:variables 1513:. Wiley. 1411:Aliasing 1404:See also 657:values. 616:sampling 156:quantity 133:infinite 109:sampling 90:sampling 83:sequence 1236:is the 711:physics 64:integer 1496:  1196:where 679:income 203:signal 160:signal 1095:price 834:is a 603:is). 172:reals 150:or a 77:is a 1494:ISBN 879:and 618:and 471:and 362:and 30:and 664:or 537:. 310:sin 242:sin 158:(a 73:or 1524:: 1240:. 1090:. 1078:81 1070:32 729:. 685:, 194:. 146:A 143:. 96:. 69:A 1502:. 1364:f 1317:) 1314:. 1311:. 1308:. 1305:, 1302:P 1299:( 1296:f 1287:= 1281:t 1278:d 1273:P 1270:d 1254:P 1224:f 1181:) 1178:. 1175:. 1172:. 1169:, 1164:t 1160:P 1156:( 1153:f 1144:+ 1139:t 1135:P 1131:= 1126:1 1123:+ 1120:t 1116:P 1098:P 1074:/ 1067:= 1064:) 1061:9 1057:/ 1053:1 1050:( 1047:) 1044:9 1040:/ 1036:8 1033:( 1030:4 1027:= 1022:3 1018:x 1007:t 993:9 989:/ 985:8 982:= 979:) 976:3 972:/ 968:2 965:( 962:) 959:3 955:/ 951:1 948:( 945:4 942:= 937:2 933:x 922:t 908:3 904:/ 900:1 897:= 892:1 888:x 867:4 864:= 861:r 851:t 844:t 840:x 832:r 815:, 812:) 807:t 803:x 796:1 793:( 788:t 784:x 780:r 777:= 772:1 769:+ 766:t 762:x 727:y 723:t 721:( 719:y 715:y 691:3 687:y 683:t 674:t 670:y 589:2 582:t 559:1 552:t 524:0 521:= 518:t 494:0 491:= 488:) 485:t 482:( 479:f 459:] 456:1 453:, 450:0 447:[ 441:t 437:, 432:t 429:1 424:= 421:) 418:t 415:( 412:f 385:0 382:= 379:) 376:t 373:( 370:f 350:] 344:, 335:[ 329:t 325:, 322:) 319:t 316:( 307:= 304:) 301:t 298:( 295:f 268:R 261:t 257:, 254:) 251:t 248:( 239:= 236:) 233:t 230:( 227:f 111:. 23:.

Index

Discrete variable
variables

discrete variable
integer
time series
sequence
sampling
sampling rate
analog signal
sampling
infinitesimally
infinite
real number line
continuous variable
quantity
signal
continuum
connected
reals
uncountable set
continuous
discrete-time
countable
natural numbers
analog signal
signal
real numbers
Discrete-time signals
digital signal processing

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑