Knowledge

Current divider

Source 📝

1604: 20: 1096: 884: 1619:, the input resistance of the amplifier depends on its load, and the output resistance on the source impedance. The loading factors in these cases must employ the true amplifier impedances including these bilateral effects. For example, taking the unilateral current amplifier of Figure 3, the corresponding bilateral two-port network is shown in Figure 4 based upon 95:, unlike voltage division, where the considered impedance is in the numerator. This is because in current dividers, total energy expended is minimized, resulting in currents that go through paths of least impedance, hence the inverse relationship with impedance. Comparatively, voltage divider is used to satisfy 873: 1156:
are characterized by a short-circuit output condition, and current amplifiers and transresistance amplifiers are characterized using ideal infinite-impedance current sources. When an amplifier is terminated by a finite, non-zero termination, and/or driven by a non-ideal source, the effective gain is
1582: 1757: 1025: 498: 380: 700: 1411: 1439: 1279: 79:
refers to the splitting of current between the branches of the divider. The currents in the various branches of such a circuit will always divide in such a way as to minimize the total energy expended.
218: 675: 575: 1636: 901: 102:
To be specific, if two or more impedances are in parallel, the current that enters the combination will be split between them in inverse proportion to their impedances (according to
1072:
of the circuit. Because the capacitor has zero impedance at high frequencies and infinite impedance at low frequencies, the current in the resistor remains at its DC value
400: 282: 687:
is a straightforward addition, not the sum of the inverses inverted (as would be done for a standard parallel resistive network). For Figure 1, the current
868:{\displaystyle I_{X}={\frac {Y_{X}}{Y_{T}}}I_{T}={\frac {\frac {1}{R_{X}}}{{\frac {1}{R_{X}}}+{\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+{\frac {1}{R_{3}}}}}I_{T}.} 1324: 1577:{\displaystyle A_{\text{loaded}}={\frac {i_{L}}{i_{S}}}={\frac {R_{S}}{R_{S}+R_{\text{in}}}}{\frac {R_{\text{out}}}{R_{\text{out}}+R_{L}}}A_{i}.} 99:(KVL). The voltage around a loop must sum up to zero, so the voltage drops must be divided evenly in a direct relationship with the impedance. 1812:) is the current feedback provided by the voltage feedback source of voltage gain β V/V. For instance, for an ideal current source with 1202: 1079:
for frequencies up to the corner frequency, whereupon it drops toward zero for higher frequencies as the capacitor effectively
2008: 141: 1884: 1851: 252: 1900: 1752:{\displaystyle A_{\text{fb}}={\frac {i_{L}}{i_{S}}}={\frac {A_{\text{loaded}}}{1+\beta (R_{L}/R_{S})A_{\text{loaded}}}}.} 613: 516: 1927:
is the only two-port among the four standard choices that has a current-controlled current source on the output side.
1924: 1769:
is reduced not only by the loading factors, but due to the bilateral nature of the two-port by an additional factor
1620: 1607:
Figure 4: Current amplifier as a bilateral two-port network; feedback through dependent voltage source of gain β V/V
1612: 1020:{\displaystyle I_{R}={\frac {\frac {1}{j\omega C}}{R+{\frac {1}{j\omega C}}}}I_{T}={\frac {1}{1+j\omega CR}}I_{T},} 269:, ... etc., then the reciprocal of each resistor must be added to find the reciprocal of the total resistance 1795: 96: 1153: 1152:
The gain of an amplifier generally depends on its source and load terminations. Current amplifiers and
390:
Although the resistive divider is most common, the current divider may be made of frequency-dependent
2028: 493:{\displaystyle {\frac {1}{Z_{T}}}={\frac {1}{Z_{1}}}+{\frac {1}{Z_{2}}}+\ldots +{\frac {1}{Z_{n}}},} 375:{\displaystyle {\frac {1}{R_{T}}}={\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+\ldots +{\frac {1}{R_{n}}}.} 2023: 1971: 1592: 1994: 1988: 1876: 106:). It also follows that if the impedances have the same value, the current is split equally. 1868: 596: 391: 88: 1164:
Figure 3 shows a current amplifier example. The amplifier (gray box) has input resistance
8: 1193: 1291:. Likewise, for a short circuit at the output, the amplifier delivers an output current 1976: 1161:
at the output and/or the input, which can be understood in terms of current division.
1880: 1869: 1847: 23:
Figure 1: Schematic of an electrical circuit illustrating current division. Notation
2000: 1134:) reduces the current gain, as does the current divider in green box at the output ( 1616: 1185:. With an ideal current driver (infinite Norton resistance) all the source current 1069: 58: 1956: 1084: 600: 84: 1603: 1318:, the current delivered to the load is reduced by current division to the value 1406:{\displaystyle i_{L}={\frac {R_{\text{out}}}{R_{\text{out}}+R_{L}}}A_{i}i_{i}.} 1046: 54: 128:
that is in parallel with a combination of other resistors of total resistance
2017: 1623:. Carrying out the analysis for this circuit, the current gain with feedback 1080: 1061: 83:
The formula describing a current divider is similar in form to that for the
1966: 1196:
a current divider is formed at the input that reduces the input current to
103: 19: 1615:
amplifier. In a more general case where the amplifier is represented by a
1423:
realized with an ideal driver and a short-circuit load is reduced to the
92: 46: 895:
and a resistor. Using the formula below, the current in the resistor is
604: 1826:= 0 Ω, there is zero load voltage, again disabling the feedback. 892: 883: 1311:
to the short circuit. However, when the load is a non-zero resistor
1099:
Figure 3: A current amplifier (gray box) driven by a Norton source (
1961: 1095: 1846:. Edinburgh Gate, England: Pearson Education Limited. p. 85. 1901:"Current Divider Circuits. Divider Circuits And Kirchhoff's Laws" 1274:{\displaystyle i_{i}={\frac {R_{S}}{R_{S}+R_{\text{in}}}}i_{S},} 1591:. For more discussion of loading in other amplifier types, see 87:. However, the ratio describing current division places the 1819:= ∞ Ω, the voltage feedback has no influence, and for 1587:
The resistor ratios in the above expression are called the
587:
refers to the equivalent impedance of the entire circuit.
1598: 599:, the current divider rule can be applied just like the 213:{\displaystyle I_{X}={\frac {R_{T}}{R_{X}+R_{T}}}I_{T},} 2009:
University of Texas: Notes on electronic circuit theory
1192:
becomes input current to the amplifier. However, for a
1083:
the resistor. In other words, the current divider is a
230:
is the total current entering the combined network of
1639: 1442: 1327: 1205: 904: 891:
Figure 2 shows a simple current divider made up of a
703: 616: 519: 403: 285: 144: 1611:Figure 3 and the associated discussion refers to a 34:resistance of the circuit to the right of resistor 1751: 1576: 1405: 1273: 1019: 867: 670:{\displaystyle I_{X}={\frac {Y_{X}}{Y_{T}}}I_{T}.} 669: 569: 492: 374: 212: 570:{\displaystyle I_{X}={\frac {Z_{T}}{Z_{X}}}I_{T}} 2015: 1416:Combining these results, the ideal current gain 1866: 1841: 1867:Alexander, Charles; Sadiku, Matthew (2007). 1064:of the circuit, and the frequency for which 68:) that is a fraction of its input current ( 878: 1041:) is the impedance of the capacitor, and 1602: 1120:. Current divider in blue box at input ( 1094: 882: 18: 1829: 887:Figure 2: A low-pass RC current divider 2016: 1842:Nilsson, James; Riedel, Susan (2015). 1599:Unilateral versus bilateral amplifiers 1593:Voltage division § Loading effect 1996:Lessons In Electric Circuits Vol 1 DC 1990:Divider Circuits and Kirchhoff's Laws 1875:. New York, NY: McGraw-Hill. p.  607:(the inverse of impedance) is used: 590: 13: 114:A general formula for the current 109: 91:of the considered branches in the 14: 2040: 1982: 1871:Fundamentals of Electric Circuits 1090: 1762:That is, the ideal current gain 385: 1930: 1917: 1893: 1860: 1835: 1730: 1702: 1: 1087:for current in the resistor. 1068: = 1 is called the 2002:Lessons In Electric Circuits 7: 1950: 1796:negative-feedback amplifier 1284:which clearly is less than 1154:transconductance amplifiers 1113:) and with a resistor load 10: 2045: 1178:and an ideal current gain 57:that produces an output 1798:circuits. The factor β( 1794:, which is typical for 879:Example: RC combination 680:Take care to note that 394:. In the general case: 97:Kirchhoff's voltage law 1753: 1608: 1578: 1407: 1275: 1149: 1021: 888: 869: 671: 571: 494: 376: 214: 42: 1754: 1606: 1579: 1408: 1276: 1098: 1022: 886: 870: 672: 572: 495: 377: 215: 22: 16:Simple linear circuit 1942:desensitivity factor 1925:h-parameter two-port 1905:Electronics Textbook 1830:References and notes 1637: 1440: 1325: 1203: 1171:, output resistance 902: 701: 614: 517: 401: 283: 253:parallel combination 142: 1157:reduced due to the 244:. Notice that when 1977:Voltage regulation 1972:Thévenin's theorem 1938:improvement factor 1749: 1609: 1574: 1403: 1271: 1150: 1017: 889: 865: 667: 567: 490: 372: 255:of resistors, say 210: 135:(see Figure 1) is 43: 1936:Often called the 1886:978-0-07-128441-7 1853:978-1-292-06054-5 1844:Electric Circuits 1744: 1740: 1689: 1675: 1647: 1559: 1542: 1531: 1520: 1516: 1478: 1450: 1378: 1361: 1350: 1256: 1252: 1002: 962: 959: 935: 850: 847: 827: 807: 787: 770: 739: 652: 595:Instead of using 555: 485: 459: 439: 419: 367: 341: 321: 301: 251:is composed of a 237:in parallel with 195: 2036: 2029:Electric current 1945: 1934: 1928: 1921: 1915: 1914: 1912: 1911: 1897: 1891: 1890: 1874: 1864: 1858: 1857: 1839: 1793: 1758: 1756: 1755: 1750: 1745: 1743: 1742: 1741: 1738: 1729: 1728: 1719: 1714: 1713: 1691: 1690: 1687: 1681: 1676: 1674: 1673: 1664: 1663: 1654: 1649: 1648: 1645: 1617:two-port network 1583: 1581: 1580: 1575: 1570: 1569: 1560: 1558: 1557: 1556: 1544: 1543: 1540: 1533: 1532: 1529: 1523: 1521: 1519: 1518: 1517: 1514: 1505: 1504: 1494: 1493: 1484: 1479: 1477: 1476: 1467: 1466: 1457: 1452: 1451: 1448: 1412: 1410: 1409: 1404: 1399: 1398: 1389: 1388: 1379: 1377: 1376: 1375: 1363: 1362: 1359: 1352: 1351: 1348: 1342: 1337: 1336: 1280: 1278: 1277: 1272: 1267: 1266: 1257: 1255: 1254: 1253: 1250: 1241: 1240: 1230: 1229: 1220: 1215: 1214: 1070:corner frequency 1060:is known as the 1026: 1024: 1023: 1018: 1013: 1012: 1003: 1001: 978: 973: 972: 963: 961: 960: 958: 944: 934: 920: 919: 914: 913: 874: 872: 871: 866: 861: 860: 851: 849: 848: 846: 845: 833: 828: 826: 825: 813: 808: 806: 805: 793: 788: 786: 785: 773: 769: 768: 756: 755: 750: 749: 740: 738: 737: 728: 727: 718: 713: 712: 676: 674: 673: 668: 663: 662: 653: 651: 650: 641: 640: 631: 626: 625: 591:Using admittance 576: 574: 573: 568: 566: 565: 556: 554: 553: 544: 543: 534: 529: 528: 503:and the current 499: 497: 496: 491: 486: 484: 483: 471: 460: 458: 457: 445: 440: 438: 437: 425: 420: 418: 417: 405: 381: 379: 378: 373: 368: 366: 365: 353: 342: 340: 339: 327: 322: 320: 319: 307: 302: 300: 299: 287: 219: 217: 216: 211: 206: 205: 196: 194: 193: 192: 180: 179: 169: 168: 159: 154: 153: 77:Current division 51:current divider 2044: 2043: 2039: 2038: 2037: 2035: 2034: 2033: 2024:Analog circuits 2014: 2013: 1999:free ebook and 1985: 1957:Voltage divider 1953: 1948: 1935: 1931: 1922: 1918: 1909: 1907: 1899: 1898: 1894: 1887: 1865: 1861: 1854: 1840: 1836: 1832: 1824: 1817: 1810: 1803: 1791: 1783: 1776: 1770: 1767: 1737: 1733: 1724: 1720: 1715: 1709: 1705: 1692: 1686: 1682: 1680: 1669: 1665: 1659: 1655: 1653: 1644: 1640: 1638: 1635: 1634: 1630:is found to be 1629: 1601: 1589:loading factors 1565: 1561: 1552: 1548: 1539: 1535: 1534: 1528: 1524: 1522: 1513: 1509: 1500: 1496: 1495: 1489: 1485: 1483: 1472: 1468: 1462: 1458: 1456: 1447: 1443: 1441: 1438: 1437: 1432: 1421: 1394: 1390: 1384: 1380: 1371: 1367: 1358: 1354: 1353: 1347: 1343: 1341: 1332: 1328: 1326: 1323: 1322: 1316: 1309: 1304: 1297: 1289: 1262: 1258: 1249: 1245: 1236: 1232: 1231: 1225: 1221: 1219: 1210: 1206: 1204: 1201: 1200: 1190: 1183: 1177: 1170: 1146: 1140: 1133: 1125: 1118: 1111: 1104: 1093: 1085:low-pass filter 1077: 1044: 1035: 1008: 1004: 982: 977: 968: 964: 948: 943: 936: 924: 918: 909: 905: 903: 900: 899: 881: 856: 852: 841: 837: 832: 821: 817: 812: 801: 797: 792: 781: 777: 772: 771: 764: 760: 754: 745: 741: 733: 729: 723: 719: 717: 708: 704: 702: 699: 698: 692: 685: 658: 654: 646: 642: 636: 632: 630: 621: 617: 615: 612: 611: 601:voltage divider 593: 585: 561: 557: 549: 545: 539: 535: 533: 524: 520: 518: 515: 514: 508: 479: 475: 470: 453: 449: 444: 433: 429: 424: 413: 409: 404: 402: 399: 398: 388: 361: 357: 352: 335: 331: 326: 315: 311: 306: 295: 291: 286: 284: 281: 280: 274: 267: 260: 249: 242: 235: 228: 201: 197: 188: 184: 175: 171: 170: 164: 160: 158: 149: 145: 143: 140: 139: 133: 126: 119: 112: 110:Current divider 85:voltage divider 73: 66: 39: 28: 17: 12: 11: 5: 2042: 2032: 2031: 2026: 2012: 2011: 2006: 1984: 1983:External links 1981: 1980: 1979: 1974: 1969: 1964: 1959: 1952: 1949: 1947: 1946: 1929: 1916: 1892: 1885: 1859: 1852: 1833: 1831: 1828: 1822: 1815: 1808: 1801: 1789: 1781: 1774: 1765: 1760: 1759: 1748: 1736: 1732: 1727: 1723: 1718: 1712: 1708: 1704: 1701: 1698: 1695: 1685: 1679: 1672: 1668: 1662: 1658: 1652: 1643: 1627: 1600: 1597: 1585: 1584: 1573: 1568: 1564: 1555: 1551: 1547: 1538: 1527: 1512: 1508: 1503: 1499: 1492: 1488: 1482: 1475: 1471: 1465: 1461: 1455: 1446: 1430: 1419: 1414: 1413: 1402: 1397: 1393: 1387: 1383: 1374: 1370: 1366: 1357: 1346: 1340: 1335: 1331: 1314: 1307: 1302: 1295: 1287: 1282: 1281: 1270: 1265: 1261: 1248: 1244: 1239: 1235: 1228: 1224: 1218: 1213: 1209: 1188: 1181: 1175: 1168: 1159:loading effect 1144: 1138: 1131: 1123: 1116: 1109: 1102: 1092: 1091:Loading effect 1089: 1081:short-circuits 1075: 1047:imaginary unit 1042: 1033: 1028: 1027: 1016: 1011: 1007: 1000: 997: 994: 991: 988: 985: 981: 976: 971: 967: 957: 954: 951: 947: 942: 939: 933: 930: 927: 923: 917: 912: 908: 880: 877: 876: 875: 864: 859: 855: 844: 840: 836: 831: 824: 820: 816: 811: 804: 800: 796: 791: 784: 780: 776: 767: 763: 759: 753: 748: 744: 736: 732: 726: 722: 716: 711: 707: 690: 683: 678: 677: 666: 661: 657: 649: 645: 639: 635: 629: 624: 620: 592: 589: 583: 578: 577: 564: 560: 552: 548: 542: 538: 532: 527: 523: 506: 501: 500: 489: 482: 478: 474: 469: 466: 463: 456: 452: 448: 443: 436: 432: 428: 423: 416: 412: 408: 387: 384: 383: 382: 371: 364: 360: 356: 351: 348: 345: 338: 334: 330: 325: 318: 314: 310: 305: 298: 294: 290: 272: 265: 258: 247: 240: 233: 226: 221: 220: 209: 204: 200: 191: 187: 183: 178: 174: 167: 163: 157: 152: 148: 131: 124: 121:in a resistor 117: 111: 108: 71: 64: 55:linear circuit 37: 30:refers to the 26: 15: 9: 6: 4: 3: 2: 2041: 2030: 2027: 2025: 2022: 2021: 2019: 2010: 2007: 2004: 2003: 1998: 1997: 1993:chapter from 1992: 1991: 1987: 1986: 1978: 1975: 1973: 1970: 1968: 1965: 1963: 1960: 1958: 1955: 1954: 1943: 1939: 1933: 1926: 1920: 1906: 1902: 1896: 1888: 1882: 1878: 1873: 1872: 1863: 1855: 1849: 1845: 1838: 1834: 1827: 1825: 1818: 1811: 1804: 1797: 1788: 1784: 1777: 1768: 1746: 1734: 1725: 1721: 1716: 1710: 1706: 1699: 1696: 1693: 1683: 1677: 1670: 1666: 1660: 1656: 1650: 1641: 1633: 1632: 1631: 1626: 1622: 1618: 1614: 1605: 1596: 1594: 1590: 1571: 1566: 1562: 1553: 1549: 1545: 1536: 1525: 1510: 1506: 1501: 1497: 1490: 1486: 1480: 1473: 1469: 1463: 1459: 1453: 1444: 1436: 1435: 1434: 1429: 1426: 1422: 1400: 1395: 1391: 1385: 1381: 1372: 1368: 1364: 1355: 1344: 1338: 1333: 1329: 1321: 1320: 1319: 1317: 1310: 1301: 1294: 1290: 1268: 1263: 1259: 1246: 1242: 1237: 1233: 1226: 1222: 1216: 1211: 1207: 1199: 1198: 1197: 1195: 1194:Norton driver 1191: 1184: 1174: 1167: 1162: 1160: 1155: 1147: 1137: 1130: 1126: 1119: 1112: 1105: 1097: 1088: 1086: 1082: 1078: 1071: 1067: 1063: 1062:time constant 1059: 1055: 1050: 1048: 1040: 1036: 1014: 1009: 1005: 998: 995: 992: 989: 986: 983: 979: 974: 969: 965: 955: 952: 949: 945: 940: 937: 931: 928: 925: 921: 915: 910: 906: 898: 897: 896: 894: 885: 862: 857: 853: 842: 838: 834: 829: 822: 818: 814: 809: 802: 798: 794: 789: 782: 778: 774: 765: 761: 757: 751: 746: 742: 734: 730: 724: 720: 714: 709: 705: 697: 696: 695: 693: 686: 664: 659: 655: 647: 643: 637: 633: 627: 622: 618: 610: 609: 608: 606: 602: 598: 588: 586: 562: 558: 550: 546: 540: 536: 530: 525: 521: 513: 512: 511: 509: 487: 480: 476: 472: 467: 464: 461: 454: 450: 446: 441: 434: 430: 426: 421: 414: 410: 406: 397: 396: 395: 393: 369: 362: 358: 354: 349: 346: 343: 336: 332: 328: 323: 316: 312: 308: 303: 296: 292: 288: 279: 278: 277: 275: 268: 261: 254: 250: 243: 236: 229: 207: 202: 198: 189: 185: 181: 176: 172: 165: 161: 155: 150: 146: 138: 137: 136: 134: 127: 120: 107: 105: 100: 98: 94: 90: 86: 81: 78: 74: 67: 60: 56: 52: 48: 40: 33: 29: 21: 2001: 1995: 1989: 1941: 1937: 1932: 1919: 1908:. Retrieved 1904: 1895: 1870: 1862: 1843: 1837: 1820: 1813: 1806: 1799: 1786: 1779: 1772: 1763: 1761: 1624: 1621:h-parameters 1610: 1588: 1586: 1427: 1424: 1417: 1415: 1312: 1305: 1299: 1292: 1285: 1283: 1186: 1179: 1172: 1165: 1163: 1158: 1151: 1142: 1135: 1128: 1121: 1114: 1107: 1100: 1073: 1065: 1057: 1053: 1052:The product 1051: 1038: 1031: 1029: 890: 688: 681: 679: 594: 581: 579: 510:is given by 504: 502: 389: 386:General case 270: 263: 256: 245: 238: 231: 224: 222: 129: 122: 115: 113: 101: 82: 76: 69: 62: 53:is a simple 50: 44: 35: 31: 24: 1425:loaded gain 93:denominator 47:electronics 2018:Categories 1910:2018-01-10 1613:unilateral 605:admittance 597:impedances 392:impedances 1967:Ohm's law 1700:β 993:ω 953:ω 929:ω 893:capacitor 694:would be 465:… 347:… 104:Ohm's law 89:impedance 1962:Resistor 1951:See also 603:rule if 2005:series. 1940:or the 1771:(1 + β( 1045:is the 59:current 1883:  1850:  1790:loaded 1739:loaded 1688:loaded 1449:loaded 1431:loaded 1030:where 580:where 223:where 1037:= 1/( 32:total 1923:The 1881:ISBN 1848:ISBN 49:, a 1877:392 1541:out 1530:out 1360:out 1349:out 1296:out 1176:out 1139:out 1066:ωCR 1039:jωC 75:). 45:In 2020:: 1903:. 1879:. 1785:) 1646:fb 1628:fb 1595:. 1515:in 1433:: 1303:in 1298:= 1251:in 1169:in 1132:in 1127:, 1106:, 1058:CR 1056:= 1049:. 276:: 262:, 1944:. 1913:. 1889:. 1856:. 1823:L 1821:R 1816:S 1814:R 1809:S 1807:R 1805:/ 1802:L 1800:R 1792:) 1787:A 1782:S 1780:R 1778:/ 1775:L 1773:R 1766:i 1764:A 1747:. 1735:A 1731:) 1726:S 1722:R 1717:/ 1711:L 1707:R 1703:( 1697:+ 1694:1 1684:A 1678:= 1671:S 1667:i 1661:L 1657:i 1651:= 1642:A 1625:A 1572:. 1567:i 1563:A 1554:L 1550:R 1546:+ 1537:R 1526:R 1511:R 1507:+ 1502:S 1498:R 1491:S 1487:R 1481:= 1474:S 1470:i 1464:L 1460:i 1454:= 1445:A 1428:A 1420:i 1418:A 1401:. 1396:i 1392:i 1386:i 1382:A 1373:L 1369:R 1365:+ 1356:R 1345:R 1339:= 1334:L 1330:i 1315:L 1313:R 1308:i 1306:i 1300:A 1293:i 1288:S 1286:i 1269:, 1264:S 1260:i 1247:R 1243:+ 1238:S 1234:R 1227:S 1223:R 1217:= 1212:i 1208:i 1189:S 1187:i 1182:i 1180:A 1173:R 1166:R 1148:) 1145:L 1143:R 1141:, 1136:R 1129:R 1124:S 1122:R 1117:L 1115:R 1110:S 1108:R 1103:S 1101:i 1076:T 1074:I 1054:τ 1043:j 1034:C 1032:Z 1015:, 1010:T 1006:I 999:R 996:C 990:j 987:+ 984:1 980:1 975:= 970:T 966:I 956:C 950:j 946:1 941:+ 938:R 932:C 926:j 922:1 916:= 911:R 907:I 863:. 858:T 854:I 843:3 839:R 835:1 830:+ 823:2 819:R 815:1 810:+ 803:1 799:R 795:1 790:+ 783:X 779:R 775:1 766:X 762:R 758:1 752:= 747:T 743:I 735:T 731:Y 725:X 721:Y 715:= 710:X 706:I 691:X 689:I 684:T 682:Y 665:. 660:T 656:I 648:T 644:Y 638:X 634:Y 628:= 623:X 619:I 584:T 582:Z 563:T 559:I 551:X 547:Z 541:T 537:Z 531:= 526:X 522:I 507:X 505:I 488:, 481:n 477:Z 473:1 468:+ 462:+ 455:2 451:Z 447:1 442:+ 435:1 431:Z 427:1 422:= 415:T 411:Z 407:1 370:. 363:n 359:R 355:1 350:+ 344:+ 337:2 333:R 329:1 324:+ 317:1 313:R 309:1 304:= 297:T 293:R 289:1 273:T 271:R 266:2 264:R 259:1 257:R 248:T 246:R 241:T 239:R 234:X 232:R 227:T 225:I 208:, 203:T 199:I 190:T 186:R 182:+ 177:X 173:R 166:T 162:R 156:= 151:X 147:I 132:T 130:R 125:X 123:R 118:X 116:I 72:T 70:I 65:X 63:I 61:( 41:. 38:X 36:R 27:T 25:R

Index


electronics
linear circuit
current
voltage divider
impedance
denominator
Kirchhoff's voltage law
Ohm's law
parallel combination
impedances
impedances
voltage divider
admittance

capacitor
imaginary unit
time constant
corner frequency
short-circuits
low-pass filter

transconductance amplifiers
Norton driver
Voltage division § Loading effect

unilateral
two-port network
h-parameters
negative-feedback amplifier

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.