Knowledge

Convex volume approximation

Source đź“ť

262:
The given convex body can be approximated by a sequence of nested bodies, eventually reaching one of known volume (a hypersphere), with this approach used to estimate the factor by which the volume changes at each step of this sequence. Multiplying these factors gives the approximate volume of the
258:, it is possible to compare the volumes of two convex bodies, one nested within another, when their volumes are within a small factor of each other. The basic idea is to generate random points within the outer of the two bodies, and to count how often those points are also within the inner body. 32:. Often these works use a black box model of computation in which the input is given by a subroutine for testing whether a point is inside or outside of the convex body, rather than by an explicit listing of the vertices or faces of a 278:
Although the time for this algorithm is polynomial, it has a high exponent. Subsequent authors improved the running time of this method by providing more quickly mixing Markov chains for the same problem.
203:(MCMC) method, it is possible to generate points that are nearly uniformly randomly distributed within a given convex body. The basic scheme of the algorithm is a nearly uniform sampling from within 193: 749: 624: 81: 241: 221: 165: 145: 121: 101: 287:
The polynomial-time approximability result has been generalized to more complex structures such as the union and intersection of objects. This relates to
639: 753: 549: 57: 358: 313: 251:, they show that it takes a polynomial time for the random walk to settle down to being a nearly uniform distribution. 865: 860: 60:
for the problem, providing a sharp contrast between the capabilities of randomized and deterministic algorithms.
510: 506: 40:
can achieve an accurate approximation, and even for an explicit listing of faces or vertices the problem is
790: 413: 288: 29: 170: 248: 200: 711: 586: 66: 37: 17: 791:"Approximating the volume of unions and intersections of high-dimensional geometric objects" 701: 660: 576: 461:(1991), "A random polynomial-time algorithm for approximating the volume of convex bodies", 776: 688: 647: 486: 434: 391: 336: 824: 664: 580: 8: 836: 802: 555: 490: 463: 353: 255: 226: 206: 150: 130: 106: 86: 532:
Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing (STOC '91)
828: 545: 559: 494: 840: 820: 812: 762: 676: 635: 572: 535: 527: 472: 458: 422: 377: 367: 349: 322: 53: 41: 308: 816: 772: 705: 684: 643: 523: 482: 430: 387: 332: 267: 33: 767: 454: 408: 124: 49: 854: 832: 680: 667:(1993), "Random walks in a convex body and an improved volume algorithm", 540: 477: 450: 404: 311:(1986), "A geometric inequality and the complexity of computing volume", 244: 45: 25: 372: 327: 123:-dimensional Euclidean space by assuming the existence of a membership 640:
10.1002/(SICI)1098-2418(199708)11:1<1::AID-RSA1>3.0.CO;2-X
63:
The main result of the paper is a randomized algorithm for finding an
411:(1988), "On the complexity of computing the volume of a polyhedron", 382: 426: 807: 530:(1991), "Sampling and Integration of Near Log-concave Functions", 28:, a problem that can also be used to model many other problems in 21: 571: 127:. The algorithm takes time bounded by a polynomial in 20:, several authors have studied the computation of the 714: 708:(2006), "Simulated annealing in convex bodies and an 589: 229: 209: 173: 153: 133: 109: 89: 69: 788: 743: 618: 235: 215: 187: 159: 139: 115: 95: 75: 789:Bringmann, Karl; Friedrich, Tobias (2010-08-01). 852: 659: 449: 522: 700: 356:(1987), "Computing the volume is difficult", 83:approximation to the volume of a convex body 534:, New York, NY, USA: ACM, pp. 156–163, 348: 403: 806: 766: 539: 476: 381: 371: 326: 247:over these cubes. By using the theory of 754:Journal of Computer and System Sciences 853: 307: 266:This work earned its authors the 1991 36:. It is known that, in this model, no 626:volume algorithm for convex bodies", 445: 443: 195:. The algorithm combines two ideas: 58:polynomial time approximation scheme 359:Discrete and Computational Geometry 314:Discrete and Computational Geometry 13: 669:Random Structures & Algorithms 628:Random Structures & Algorithms 565: 440: 282: 14: 877: 694: 653: 516: 397: 342: 301: 223:by placing a grid consisting of 782: 273: 243:-dimensional cubes and doing a 825:11858/00-001M-0000-000F-1603-4 738: 725: 613: 600: 500: 188:{\displaystyle 1/\varepsilon } 1: 583:(1997), "Random walks and an 511:American Mathematical Society 294: 817:10.1016/j.comgeo.2010.03.004 744:{\displaystyle O^{*}(n^{4})} 619:{\displaystyle O^{*}(n^{5})} 249:rapidly mixing Markov chains 76:{\displaystyle \varepsilon } 7: 44:. However, a joint work by 10: 882: 768:10.1016/j.jcss.2005.08.004 414:SIAM Journal on Computing 30:combinatorial enumeration 866:Approximation algorithms 201:Markov chain Monte Carlo 513:, retrieved 2017-08-03. 507:Fulkerson Prize winners 38:deterministic algorithm 861:Computational geometry 795:Computational Geometry 745: 681:10.1002/rsa.3240040402 620: 289:Klee's measure problem 237: 217: 189: 161: 141: 117: 97: 77: 56:provided a randomized 18:analysis of algorithms 746: 621: 541:10.1145/103418.103439 478:10.1145/102782.102783 238: 218: 190: 162: 142: 118: 98: 78: 712: 587: 227: 207: 171: 151: 131: 107: 87: 67: 24:of high-dimensional 751:volume algorithm", 147:, the dimension of 741: 616: 581:Simonovits, MiklĂłs 464:Journal of the ACM 373:10.1007/BF02187886 328:10.1007/BF02187701 256:rejection sampling 233: 213: 185: 157: 137: 113: 93: 73: 551:978-0-89791-397-3 236:{\displaystyle n} 216:{\displaystyle K} 160:{\displaystyle K} 140:{\displaystyle n} 116:{\displaystyle n} 96:{\displaystyle K} 873: 845: 844: 810: 786: 780: 779: 770: 750: 748: 747: 742: 737: 736: 724: 723: 706:Vempala, Santosh 698: 692: 691: 657: 651: 650: 625: 623: 622: 617: 612: 611: 599: 598: 569: 563: 562: 543: 524:Applegate, David 520: 514: 504: 498: 497: 480: 447: 438: 437: 401: 395: 394: 385: 375: 346: 340: 339: 330: 305: 242: 240: 239: 234: 222: 220: 219: 214: 194: 192: 191: 186: 181: 166: 164: 163: 158: 146: 144: 143: 138: 122: 120: 119: 114: 102: 100: 99: 94: 82: 80: 79: 74: 54:Ravindran Kannan 881: 880: 876: 875: 874: 872: 871: 870: 851: 850: 849: 848: 787: 783: 732: 728: 719: 715: 713: 710: 709: 699: 695: 658: 654: 607: 603: 594: 590: 588: 585: 584: 570: 566: 552: 521: 517: 505: 501: 448: 441: 427:10.1137/0217060 402: 398: 347: 343: 306: 302: 297: 285: 283:Generalizations 276: 268:Fulkerson Prize 263:original body. 228: 225: 224: 208: 205: 204: 177: 172: 169: 168: 152: 149: 148: 132: 129: 128: 108: 105: 104: 88: 85: 84: 68: 65: 64: 34:convex polytope 12: 11: 5: 879: 869: 868: 863: 847: 846: 801:(6): 601–610. 781: 761:(2): 392–417, 740: 735: 731: 727: 722: 718: 693: 675:(4): 359–412, 665:Simonovits, M. 652: 615: 610: 606: 602: 597: 593: 577:Lovász, LászlĂł 564: 550: 515: 499: 439: 421:(5): 967–974, 396: 366:(4): 319–326, 354:FĂĽredi, Zoltán 341: 321:(4): 289–292, 299: 298: 296: 293: 284: 281: 275: 272: 260: 259: 252: 232: 212: 184: 180: 176: 156: 136: 112: 92: 72: 50:Alan M. Frieze 9: 6: 4: 3: 2: 878: 867: 864: 862: 859: 858: 856: 842: 838: 834: 830: 826: 822: 818: 814: 809: 804: 800: 796: 792: 785: 778: 774: 769: 764: 760: 756: 755: 733: 729: 720: 716: 707: 703: 697: 690: 686: 682: 678: 674: 670: 666: 662: 656: 649: 645: 641: 637: 633: 629: 608: 604: 595: 591: 582: 578: 574: 568: 561: 557: 553: 547: 542: 537: 533: 529: 525: 519: 512: 508: 503: 496: 492: 488: 484: 479: 474: 470: 466: 465: 460: 456: 452: 446: 444: 436: 432: 428: 424: 420: 416: 415: 410: 406: 400: 393: 389: 384: 379: 374: 369: 365: 361: 360: 355: 351: 345: 338: 334: 329: 324: 320: 316: 315: 310: 304: 300: 292: 290: 280: 271: 269: 264: 257: 253: 250: 246: 230: 210: 202: 198: 197: 196: 182: 178: 174: 154: 134: 126: 110: 90: 70: 61: 59: 55: 51: 47: 43: 39: 35: 31: 27: 26:convex bodies 23: 19: 798: 794: 784: 758: 752: 696: 672: 668: 655: 631: 627: 573:Kannan, Ravi 567: 531: 528:Kannan, Ravi 518: 502: 468: 462: 459:Kannan, Ravi 455:Frieze, Alan 451:Dyer, Martin 418: 412: 409:Frieze, Alan 405:Dyer, Martin 399: 363: 357: 350:Bárány, Imre 344: 318: 312: 303: 286: 277: 274:Improvements 265: 261: 62: 15: 634:(1): 1–50, 471:(1): 1–17, 245:random walk 199:By using a 46:Martin Dyer 855:Categories 702:Lovász, L. 661:Lovász, L. 309:Elekes, G. 295:References 833:0925-7721 808:0809.0835 721:∗ 596:∗ 383:1813/8572 254:By using 183:ε 71:ε 560:15432190 495:13268711 841:5930593 777:2205290 689:1238906 648:1608200 487:1095916 435:0961051 392:0911186 337:0866364 42:#P-hard 16:In the 839:  831:  775:  687:  646:  558:  548:  493:  485:  433:  390:  335:  125:oracle 22:volume 837:S2CID 803:arXiv 556:S2CID 491:S2CID 829:ISSN 546:ISBN 167:and 52:and 821:hdl 813:doi 763:doi 677:doi 636:doi 536:doi 473:doi 423:doi 378:hdl 368:doi 323:doi 103:in 857:: 835:. 827:. 819:. 811:. 799:43 797:. 793:. 773:MR 771:, 759:72 757:, 704:; 685:MR 683:, 671:, 663:; 644:MR 642:, 632:11 630:, 579:; 575:; 554:, 544:, 526:; 509:, 489:, 483:MR 481:, 469:38 467:, 457:; 453:; 442:^ 431:MR 429:, 419:17 417:, 407:; 388:MR 386:, 376:, 362:, 352:; 333:MR 331:, 317:, 291:. 270:. 48:, 843:. 823:: 815:: 805:: 765:: 739:) 734:4 730:n 726:( 717:O 679:: 673:4 638:: 614:) 609:5 605:n 601:( 592:O 538:: 475:: 425:: 380:: 370:: 364:2 325:: 319:1 231:n 211:K 179:/ 175:1 155:K 135:n 111:n 91:K

Index

analysis of algorithms
volume
convex bodies
combinatorial enumeration
convex polytope
deterministic algorithm
#P-hard
Martin Dyer
Alan M. Frieze
Ravindran Kannan
polynomial time approximation scheme
oracle
Markov chain Monte Carlo
random walk
rapidly mixing Markov chains
rejection sampling
Fulkerson Prize
Klee's measure problem
Elekes, G.
Discrete and Computational Geometry
doi
10.1007/BF02187701
MR
0866364
Bárány, Imre
Füredi, Zoltán
Discrete and Computational Geometry
doi
10.1007/BF02187886
hdl

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑