Knowledge

Net (mathematics)

Source đź“ť

1549: 1280: 9880:. Convergence of the net implies convergence of the eventuality filter. This correspondence allows for any theorem that can be proven with one concept to be proven with the other. For instance, continuity of a function from one topological space to the other can be characterized either by the convergence of a net in the domain implying the convergence of the corresponding net in the codomain, or by the same statement with filter bases. 1544:{\displaystyle {\begin{alignedat}{4}&x_{\bullet }&&\to \;&&x&&\;\;{\text{ in }}X\\&x_{a}&&\to \;&&x&&\;\;{\text{ in }}X\\\lim \;&x_{\bullet }&&\to \;&&x&&\;\;{\text{ in }}X\\\lim _{a\in A}\;&x_{a}&&\to \;&&x&&\;\;{\text{ in }}X\\\lim _{a}\;&x_{a}&&\to \;&&x&&\;\;{\text{ in }}X.\end{alignedat}}} 14105: 12290:
necessarily a sequence. Moreso, a subnet of a sequence may be a sequence, but not a subsequence. But, in the specific case of a sequential space, every net induces a corresponding sequence, and this relationship maps subnets to subsequences. Specifically, for a first-countable space, the net
15077: 13974: 14373: 14758: 16586:, which states that the product of any collection of compact topological spaces is compact. But if every compact space is also Hausdorff, then the so called "Tychonoff's theorem for compact Hausdorff spaces" can be used instead, which is equivalent to the 1795: 16788: 9886:
argues that despite their equivalence, it is useful to have both concepts. He argues that nets are enough like sequences to make natural proofs and definitions in analogy to sequences, especially ones using sequential elements, such as is common in
17591: 14850: 14256: 17296: 16513: 334:), there is always some element that is "above" both of them (greater than or equal to each); in this way, directed sets generalize the notion of "a direction" in a mathematically rigorous way. Importantly though, directed sets are 16594:. Nets can be used to give short proofs of both version of Tychonoff's theorem by using the characterization of net convergence given above together with the fact that a space is compact if and only if every net has a convergent 9682:
is a related idea in topology that allows for a general definition for convergence in general topological spaces. The two ideas are equivalent in the sense that they give the same concept of convergence. More specifically, every
11656: 20250: 9854: 4771:. Topologies can also be characterized by closed subsets since a set is open if and only if its complement is closed. So the characterizations of "closed set" in terms of nets can also be used to characterize topologies. 20511: 3668: 14964: 11240: 8177: 7079: 6191: 5959: 20591: 20346: 19885: 16874: 13909: 15427: 20687: 14659: 16573: 14596: 8122: 14100:{\displaystyle {\begin{alignedat}{4}\pi _{l}:\;&&{\textstyle \prod }X_{\bullet }&&\;\to \;&X_{l}\\&&\left(x_{i}\right)_{i\in I}&&\;\mapsto \;&x_{l}\\\end{alignedat}}} 2536: 14494: 10728:
In the context of topology, sequences do not fully encode all information about functions between topological spaces. In particular, the following two conditions are, in general, not equivalent for a map
8063: 2900: 2335: 11123:
around a point. Therefore, while sequences do not encode sufficient information about functions between topological spaces, nets do, because collections of open sets in topological spaces are much like
2433: 16131: 12394: 8439: 14664: 5786: 5012: 786: 17053: 14168: 8911: 7929: 7443: 6533: 6063: 5365: 4894: 4259: 3844: 3536: 2686: 2625: 1985: 885: 551: 12683: 7770: 7692: 1675: 17470: 15797: 12577: 12104: 11547: 5173: 4618: 17170: 16670: 16395: 15742: 15697: 15260: 14543: 7823: 4082:
Virtually all concepts of topology can be rephrased in the language of nets and limits. This may be useful to guide the intuition since the notion of limit of a net is very similar to that of
15519: 15215: 14931: 14202: 4539: 2558:
The analogue of "subsequence" for nets is the notion of a "subnet". There are several different non-equivalent definitions of "subnet" and this article will use the definition introduced in
20627: 19937: 15865: 11196: 16212: 7623: 20726: 16665: 12282: 12206: 11601: 10152: 8641: 20096: 13843: 13019: 12337: 11781: 11348: 11313: 11160: 9737: 9479: 8356: 4587: 4360: 20157: 20055: 6993: 6106: 5408: 12810: 12750: 11418: 4934: 15364: 5821: 3985: 19245: 18514: 18385: 18041: 5198:
In general, this statement would not be true if the word "net" was replaced by "sequence"; that is, it is necessary to allow for directed sets other than just the natural numbers if
5725: 5646: 1894: 1644: 1608: 18630: 18592: 18157: 18119: 10438: 7198: 7105: 666: 9910:, have some important technical advantages over nets that ultimately result in nets being encountered much less often than filters outside of the fields of analysis and topology. 17960: 17754: 17686: 13727: 10017: 7259: 7172: 6740: 1858: 594: 20912: 20806: 19817: 19753: 18216: 17859: 13382: 11119:
With this change, the conditions become equivalent for all maps of topological spaces, including topological spaces that do not necessarily have a countable or linearly ordered
8818: 18686: 17383: 17086: 10572: 10314: 8775: 8561: 5100: 21022: 16613:
of a net of real numbers can be defined in a similar manner as for sequences. Some authors work even with more general structures than the real line, like complete lattices.
8287: 5982: 20775: 17421: 17342: 16346: 16073: 13577: 11982: 9528: 3015: 20937: 17495: 17195: 12958: 12504: 12448: 11851: 11750: 11701: 10082: 9129: 9077: 8237: 8207: 7721: 5530: 3469: 3367: 3268: 20986: 20964: 20400: 20373: 16239: 15971: 15892: 15161: 14877: 14400: 13657: 12860: 12228: 12172: 11485: 10204: 9945: 9027: 8264: 6874: 5696: 4722: 4673: 4647: 4440: 4118: 4039: 3440: 3393: 3302: 3218: 2752: 2713: 2362: 1199: 1102: 13979: 13297: 10634: 9303: 6950: 2134: 1033: 20881: 19651: 19506: 19468: 19430: 19140: 19102: 17995: 12130: 8521: 6392: 4292: 3936: 19959: 11941: 11906: 9967: 9656:
to the Hausdorff condition on the space, and indeed this may be taken as the definition. This result depends on the directedness condition; a set indexed by a general
7531: 5261: 3134: 231: 188: 15652: 15619: 14427: 13426: 12057: 10343: 9335: 5067: 4809: 3588: 3163: 2932: 2784: 997: 738: 312: 20839: 20279: 20021: 19992: 19786: 17800: 16033: 15316: 14960: 14251: 13942: 13630: 13216: 12028: 11807: 10598: 8980: 8590: 8488: 6421: 4412: 3722: 3099: 2968: 2098: 404: 378: 283: 19534: 19022: 18764: 18334: 17651: 16992: 16004: 15586: 15134: 12603: 10683: 9267: 8693: 8667: 7998: 6838: 4490: 4318: 3901: 3191: 2459: 2264: 2160: 2072: 2046: 1059: 968: 942: 816: 456: 430: 257: 18964: 17625: 17118: 16934: 16422: 16158: 15944: 15551: 15287: 15104: 13969: 13527: 13453: 13324: 13190: 13136: 13046: 12421: 10370: 10235: 9367: 9181: 8720: 6602: 5460: 1818: 19169: 18715: 18245: 17716: 11113: 10953: 7134: 6286: 5850: 3044: 2813: 17500: 1670: 20123: 19668: 19620: 19597: 19330: 19288: 19192: 18987: 18850: 18827: 18738: 18428: 18268: 17922: 16262: 14765: 13781: 13750: 13476: 13347: 13261: 13163: 13089: 12833: 12710: 11874: 11064: 11021: 10904: 10861: 10657: 10504: 10481: 10393: 10175: 9551: 7972: 7866: 7486: 7345: 7302: 7221: 6808: 6763: 6576: 6354: 6331: 6309: 6234: 5873: 5669: 5617: 5483: 5304: 5196: 5035: 4765: 4696: 4383: 4008: 3765: 3691: 2287: 2238: 2215: 1172: 19574: 19554: 19392: 19372: 19352: 19307: 19265: 19064: 19044: 18932: 18912: 18804: 18784: 18554: 18534: 18467: 18447: 18405: 18308: 18288: 18081: 18061: 17899: 17879: 17774: 17306:, this characterization says that a net converges to a point in a metric space if and only if the distance between the net and the point converges to zero. If 16962: 16446: 16306: 16286: 15912: 15181: 14897: 14222: 13697: 13677: 13597: 13547: 13500: 13402: 13238: 13109: 13066: 12924: 12904: 12880: 12770: 12468: 12248: 12150: 12002: 11725: 11676: 11567: 11505: 11438: 11372: 11260: 11084: 11041: 10998: 10924: 10881: 10838: 10811: 10787: 10767: 10747: 10723: 10703: 10544: 10524: 10458: 10286: 10266: 10106: 10057: 10037: 9874: 9757: 9650: 9630: 9606: 9586: 9431: 9407: 9387: 9241: 9221: 9201: 9149: 9099: 9047: 9000: 8951: 8931: 8740: 8459: 8376: 8307: 8127: 7949: 7843: 7643: 7575: 7551: 7463: 7378: 7322: 7279: 6914: 6894: 6785: 6702: 6682: 6662: 6642: 6622: 6553: 6469: 6441: 6257: 6211: 6002: 5590: 5570: 5550: 5428: 5281: 5216: 5120: 4954: 4833: 4742: 4607: 4464: 4198: 4178: 4158: 4138: 3875: 3742: 3556: 3413: 3322: 3238: 3070: 2833: 2382: 2192: 2020: 1915: 1569: 1285: 1273: 1250: 1219: 1149: 1122: 916: 714: 690: 617: 490: 332: 162: 18892: 17200: 16451: 16795: 13851: 11606: 10962:
While condition 1 always guarantees condition 2, the converse is not necessarily true. The spaces for which the two conditions are equivalent are called
4070:). Although Cauchy nets are not needed to describe completeness of normed spaces, they are needed to describe completeness of more general (possibly non- 20162: 11752:
which makes this one instance where (non-sequence) nets must be used because sequences alone can not reach the desired conclusion. Compare elements of
10974:, are sequential spaces, but not all topological spaces are sequential. Nets generalize the notion of a sequence so that condition 2 reads as follows: 9762: 21469: 15072:{\displaystyle \pi _{i}\left(f_{\bullet }\right)\;{\stackrel {\scriptscriptstyle {\text{def}}}{=}}\;\left(\pi _{i}\left(f_{a}\right)\right)_{a\in A}} 20418: 14368:{\displaystyle \pi _{i}\left(f_{\bullet }\right)~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~\left(\pi _{i}\left(f_{a}\right)\right)_{a\in A}} 8003: 3593: 2838: 11201: 10210:. Nets are frequently denoted using notation that is similar to (and inspired by) that used with sequences. For example, the subscript notation 6998: 6110: 5878: 21274: 20516: 1824:, every net has at most one limit, and the limit of a convergent net is always unique. Some authors do not distinguish between the notations 20284: 19822: 15369: 10814: 20632: 14601: 21305: 16518: 14548: 9560:
A net has a limit if and only if all of its subnets have limits. In that case, every limit of the net is also a limit of every subnet.
8068: 2464: 10955: 14432: 9902:
The learning curve for using nets is typically much less steep than that for filters, which is why many mathematicians, especially
14753:{\displaystyle \pi _{i}\left(f_{\bullet }\right)~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~\pi _{i}\,\circ \,f_{\bullet }.} 9691:
using the filter's pointed sets, and convergence of the filter base implies convergence of the associated net. Similarly, any net
2292: 16078: 12342: 8381: 2387: 5730: 4959: 743: 16997: 14112: 8855: 7873: 7387: 6477: 6007: 5309: 4838: 4203: 3788: 3480: 2630: 2569: 1929: 829: 495: 21677: 21640: 21531: 21489: 21424: 12621: 7726: 7648: 17426: 15747: 12509: 12065: 11510: 5125: 3477:, every net has some subnet that is an ultranet, but no nontrivial ultranets have ever been constructed explicitly. If 17123: 16355: 15702: 15657: 15220: 14503: 7775: 21611: 21587: 21561: 21451: 21246: 21219: 15432: 15186: 14902: 14173: 11351: 8124:
has the property that every finite subcollection has non-empty intersection. Thus, by the remark above, we have that
4495: 4054: 20596: 19890: 15802: 11165: 16163: 7580: 20692: 16619: 12253: 12177: 11572: 10111: 8595: 20060: 13800: 12976: 12294: 11755: 11322: 11265: 11134: 9694: 9436: 8312: 7489: 4544: 4323: 20128: 20026: 6955: 6068: 5370: 21601: 12775: 12715: 11377: 4899: 4812: 17: 21323:
R. G. Bartle, Nets and Filters In Topology, American Mathematical Monthly, Vol. 62, No. 8 (1955), pp. 551–557.
15321: 5791: 3940: 1790:{\displaystyle \lim x_{\bullet }=x\;~~{\text{ or }}~~\;\lim x_{a}=x\;~~{\text{ or }}~~\;\lim _{a\in A}x_{a}=x} 89:
that (in general), sequences are unable to characterize (this shortcoming of sequences motivated the study of
21579: 21523: 21477: 19199: 18475: 18339: 18002: 16792:
Limit superior of a net of real numbers has many properties analogous to the case of sequences. For example,
5701: 5622: 1863: 1613: 1577: 18597: 18559: 18124: 18086: 16515:
is not empty, then the axiom of choice would (in general) still be needed to conclude that the projections
10398: 7554: 7177: 7084: 622: 16783:{\displaystyle \limsup x_{a}=\lim _{a\in A}\sup _{b\succeq a}x_{b}=\inf _{a\in A}\sup _{b\succeq a}x_{b}.} 9673: 94: 19656: 17927: 17721: 17656: 13702: 9976: 7226: 7139: 6707: 6237: 1827: 560: 21446:. Mathematics and its Applications 268. Dordrecht: Kluwer Academic Publishers Group. pp. xii, 340. 20886: 20780: 19791: 19723: 18162: 17805: 13352: 8780: 18635: 17355: 17058: 10549: 10291: 8745: 8526: 5072: 21704: 21412: 20991: 8272: 5967: 3473:
Every constant net is a (trivial) ultranet. Every subnet of an ultranet is an ultranet. Assuming the
20731: 17388: 17309: 16311: 16038: 13558: 11946: 9484: 2973: 21281: 20917: 19697: 17475: 17175: 16893: 13139: 12933: 12473: 12426: 11812: 11730: 11681: 10062: 9104: 9052: 8212: 8182: 7697: 5487: 4049: 3445: 3343: 3243: 1129: 20969: 20942: 20378: 20351: 16217: 15949: 15870: 15139: 14855: 14378: 13635: 12838: 12211: 12155: 11443: 10187: 9928: 9005: 8242: 8209:
By the proof given in the next section, it is equal to the set of limits of convergent subnets of
6843: 5674: 4701: 4652: 4626: 4419: 4097: 4017: 3418: 3371: 3280: 3196: 2730: 2691: 2340: 1177: 1080: 13266: 10603: 9272: 7493: 6919: 3855: 2553: 2103: 1002: 20844: 19627: 19473: 19435: 19397: 19107: 19069: 17965: 12109: 8493: 6359: 4264: 3906: 19942: 16583: 11911: 11879: 9950: 7514: 5244: 3104: 554: 201: 171: 54: 21236: 19682: â€“ Use of filters to describe and characterize all basic topological notions and results. 15624: 15591: 14405: 13407: 12033: 10319: 9973:
example of a directed set. A sequence is a function on the natural numbers, so every sequence
9308: 5040: 4782: 4619:
Characterizations of the category of topological spaces § Convergent net characterization
3561: 3139: 2905: 2757: 973: 719: 288: 21209: 20811: 20255: 19997: 19964: 19758: 17779: 16009: 15292: 14936: 14227: 13918: 13606: 13195: 12007: 11786: 10967: 10577: 10177:
It is in this way that nets are generalizations of sequences: rather than being defined on a
9903: 8956: 8566: 8464: 6397: 5219: 4388: 3698: 3075: 3048: 2947: 2077: 383: 357: 262: 78: 19513: 18992: 18743: 18313: 17630: 17586:{\displaystyle \left\|m-m_{\bullet }\right\|:=\left(\left\|m-m_{a}\right\|\right)_{a\in A}.} 16971: 15983: 15556: 15109: 12582: 10662: 9895:. In any case, he shows how the two can be used in combination to prove various theorems in 9246: 8672: 8646: 7977: 6813: 4469: 4297: 3880: 3170: 2438: 2243: 2139: 2051: 2025: 1038: 947: 921: 795: 435: 409: 236: 21461: 21434: 18937: 17598: 17091: 16907: 16595: 16400: 16136: 15917: 15524: 15265: 15082: 14845:{\displaystyle L=\left(L_{i}\right)_{i\in I}\in {\textstyle \prod \limits _{i\in I}}X_{i},} 14497: 13947: 13757: 13753: 13505: 13431: 13302: 13168: 13114: 13024: 12399: 10348: 10213: 9679: 9340: 9154: 8834: 8698: 6580: 5433: 4768: 2547: 1800: 597: 125: 98: 86: 19145: 18691: 18221: 17695: 11089: 10929: 9970: 7110: 6262: 5826: 4066:) if and only if every Cauchy sequence converges to some point (a property that is called 4062:, which is a special type of topological vector space, is a complete TVS (equivalently, a 3020: 2789: 8: 21481: 19679: 19673: 17291:{\displaystyle d\left(m,m_{\bullet }\right):=\left(d\left(m,m_{a}\right)\right)_{a\in A}} 16508:{\displaystyle {\textstyle \prod }X_{\bullet }={\textstyle \prod \limits _{j\in I}}X_{j}} 16397:(because then there is nothing to choose between), which happens for example, when every 13479: 12968: 12927: 11120: 10245: 10241: 5593: 4083: 1649: 20105: 19602: 19579: 19312: 19270: 19174: 18969: 18832: 18809: 18720: 18410: 18250: 17904: 16244: 13763: 13732: 13458: 13329: 13243: 13145: 13071: 12815: 12692: 11856: 11046: 11003: 10886: 10843: 10639: 10486: 10463: 10375: 10248:
can be interpreted as a limit of a net. Specifically, the net is eventually in a subset
10157: 9533: 7954: 7848: 7468: 7327: 7284: 7203: 6790: 6745: 6558: 6336: 6313: 6291: 6216: 5855: 5651: 5599: 5465: 5286: 5178: 5017: 4747: 4678: 4365: 3990: 3747: 3673: 2269: 2220: 2197: 1154: 21669: 21398: 21068: 19559: 19539: 19377: 19357: 19337: 19292: 19250: 19049: 19029: 18917: 18897: 18789: 18769: 18539: 18519: 18452: 18432: 18390: 18293: 18273: 18066: 18046: 17884: 17864: 17759: 16947: 16941: 16431: 16291: 16271: 15897: 15166: 14882: 14207: 13682: 13662: 13582: 13532: 13485: 13387: 13223: 13094: 13051: 12909: 12889: 12865: 12755: 12453: 12233: 12135: 11987: 11710: 11661: 11552: 11490: 11423: 11357: 11245: 11069: 11026: 10983: 10909: 10866: 10823: 10796: 10772: 10752: 10732: 10708: 10688: 10529: 10509: 10443: 10271: 10251: 10091: 10042: 10022: 9892: 9859: 9742: 9635: 9615: 9591: 9571: 9416: 9392: 9372: 9226: 9206: 9186: 9134: 9084: 9032: 8985: 8936: 8916: 8725: 8444: 8361: 8292: 7934: 7828: 7628: 7560: 7536: 7448: 7363: 7307: 7264: 6899: 6879: 6770: 6687: 6667: 6647: 6627: 6624:; that there is always such a point follows from the fact that no open neighborhood of 6607: 6538: 6454: 6426: 6242: 6196: 5987: 5575: 5555: 5535: 5413: 5266: 5201: 5105: 4939: 4818: 4727: 4592: 4449: 4443: 4183: 4163: 4143: 4123: 3860: 3727: 3541: 3398: 3307: 3223: 3055: 2818: 2367: 2177: 2005: 1900: 1554: 1258: 1235: 1204: 1134: 1107: 901: 789: 699: 675: 602: 475: 317: 147: 18865: 21683: 21673: 21646: 21636: 21607: 21583: 21557: 21537: 21527: 21495: 21485: 21447: 21420: 21299: 21242: 21215: 16587: 13846: 12686: 792:
notation, the filled disk or "bullet" stands in place of the input variable or index
66: 21571: 21060: 20099: 19691: 17689: 17349: 16885: 13912: 11651:{\displaystyle \mathbf {0} \in \operatorname {cl} _{\mathbb {R} ^{\mathbb {R} }}E.} 11316: 10963: 9896: 9883: 8833:
The set of cluster points of a net is equal to the set of limits of its convergent
6451:(since the intersection of every two such neighborhoods is an open neighborhood of 5223: 2936: 347: 90: 42: 31: 30:
This article is about nets in topological spaces. For unfoldings of polyhedra, see
20245:{\displaystyle \left(x_{\bullet }\circ \varphi \right)(r)=x_{\varphi (r)}=0=s_{r}} 9922:
is directed. Therefore, every function on such a set is a net. In particular, the
21659: 21503: 21457: 21430: 21048: 20403: 17881:
as", so that "large enough" with respect to this relation means "close enough to
16965: 16591: 16425: 16265: 13600: 9849:{\displaystyle \left\{\left\{x_{a}:a\in A,a_{0}\leq a\right\}:a_{0}\in A\right\}} 9609: 3775: 3474: 2563: 1821: 351: 114: 21628: 21597: 21549: 21515: 16610: 16606: 16576: 13218: 11440:
everywhere except for at most finitely many points (that is, such that the set
9923: 4767:
It is these characterizations of "open subset" that allow nets to characterize
4071: 118: 13192:
is a directed set, where the direction is given by reverse inclusion, so that
21698: 21665: 21650: 20506:{\displaystyle \left(s_{i}\right)_{i\in \mathbb {N} }:=(1,1,2,2,3,3,\ldots )} 17303: 13791: 10178: 9661: 9410: 7381: 4042: 3779: 3663:{\displaystyle f\circ x_{\bullet }=\left(f\left(x_{a}\right)\right)_{a\in A}} 343: 21499: 21507: 17345: 16937: 16288:
exists; the axiom of choice is not needed in some situations, such as when
12060: 11235:{\displaystyle {\textstyle \prod \limits _{x\in \mathbb {R} }}\mathbb {R} } 11125: 10971: 10207: 6448: 4063: 4059: 4011: 141: 129: 74: 58: 21687: 21541: 18854: 15975: 8172:{\displaystyle \bigcap _{a\in A}\operatorname {cl} E_{a}\neq \varnothing } 7074:{\displaystyle \lim _{}\left(f\left(x_{a}\right)\right)_{a\in A}\to f(x).} 6186:{\displaystyle \lim _{}\left(f\left(x_{a}\right)\right)_{a\in A}\to f(x).} 5954:{\displaystyle \lim _{}\left(f\left(x_{a}\right)\right)_{a\in A}\to f(x),} 21044: 17299: 16889: 10181: 9919: 9907: 9684: 339: 110: 38: 10636:
that is, if and only if infinitely many elements of the sequence are in
6810:
this neighborhood is a member of the directed set whose index we denote
4086:. The following set of theorems and lemmas help cement that similarity: 21397:
Sundström, Manya Raman (2010). "A pedagogical history of compactness".
21214:, Dover Books on Mathematics, Courier Dover Publications, p. 260, 21072: 20586:{\displaystyle \left(x_{i}\right)_{i\in \mathbb {N} }:=(1,2,3,\ldots )} 18860: 20341:{\displaystyle \left(s_{r}\right)_{r\in R}=x_{\bullet }\circ \varphi } 19880:{\displaystyle x_{\bullet }=(0)_{i\in \mathbb {N} }:\mathbb {N} \to X} 16869:{\displaystyle \limsup(x_{a}+y_{a})\leq \limsup x_{a}+\limsup y_{a},} 15318:
However, the converse does not hold in general. For example, suppose
13904:{\displaystyle {\textstyle \prod }X_{\bullet }:=\prod _{i\in I}X_{i}} 21403: 21064: 2266:
is a cluster point if and only if it has a subset that converges to
19685: 17861:
In other words, the relation is "has at least the same distance to
15422:{\displaystyle f_{\bullet }=\left(f_{a}\right)_{a\in \mathbb {N} }} 10085: 9888: 9657: 165: 82: 70: 62: 20682:{\displaystyle h(i):=\left\lfloor {\tfrac {i+1}{2}}\right\rfloor } 14654:{\displaystyle \pi _{i}:{\textstyle \prod }X_{\bullet }\to X_{i};} 13455:
in the net are constrained to lie in decreasing neighbourhoods of
21526:. Vol. 27. New York: Springer Science & Business Media. 16568:{\displaystyle \pi _{i}:{\textstyle \prod }X_{\bullet }\to X_{i}} 16268:
might be need to be assumed in order to conclude that this tuple
14591:{\displaystyle f_{\bullet }:A\to {\textstyle \prod }X_{\bullet }} 13553: 11131:
For an example where sequences do not suffice, interpret the set
190:(unless indicated otherwise), with the property that it is also ( 20159:
is an order morphism whose image is cofinal in its codomain and
10685:
is a cluster point of the net if and only if every neighborhood
8117:{\displaystyle \{\operatorname {cl} \left(E_{a}\right):a\in A\}} 4612: 14496:
It is sometimes useful to think of this definition in terms of
9652:
with two distinct limits. Thus the uniqueness of the limit is
9433:
are ordered by inclusion) makes it a directed set, and the net
6444: 2531:{\displaystyle x_{\geq a}:=\left\{x_{b}:b\geq a,b\in A\right\}} 21165: 21163: 9612:, the limit of a net, if it exists, is unique. Conversely, if 4077: 314:
In words, this property means that given any two elements (of
16876:
where equality holds whenever one of the nets is convergent.
14489:{\displaystyle \pi _{i}\left(f_{\bullet }\right):A\to X_{i}.} 10084:
Conversely, any net whose domain is the natural numbers is a
9906:, prefer them over filters. However, filters, and especially 8058:{\displaystyle E_{a}\triangleq \left\{x_{b}:b\geq a\right\}.} 4724:
is open if and only if every net converging to an element of
2895:{\displaystyle s_{i}=x_{h(i)}\quad {\text{ for all }}i\in I.} 2330:{\textstyle \operatorname {cl} _{X}\left(x_{\bullet }\right)} 8309:
has a convergent subnet. For the sake of contradiction, let
1571:
is clear from context, it may be omitted from the notation.
740:
Notation for nets varies, for example using angled brackets
21160: 8643:
This net cannot have a convergent subnet, because for each
2559: 2428:{\textstyle \operatorname {cl} _{X}\left(x_{\geq a}\right)} 21131: 21129: 21127: 21125: 21123: 21121: 21119: 16126:{\displaystyle \pi _{i}\left(f_{\bullet }\right)\to L_{i}} 12389:{\displaystyle \left(x_{h_{n}}\right)_{n\in \mathbb {N} }} 9664:
may have distinct limit points even in a Hausdorff space.
8434:{\displaystyle D\triangleq \{J\subset I:|J|<\infty \}.} 21106: 21104: 20402:
because it is not even a sequence since its domain is an
8953:
automatically assumed to be a directed set) and also let
5781:{\displaystyle \left(f\left(x_{a}\right)\right)_{a\in A}} 5007:{\displaystyle \lim {}f\left(x_{\bullet }\right)\to f(x)} 781:{\displaystyle \left\langle x_{a}\right\rangle _{a\in A}} 21326: 18387:
in the usual sense (meaning that for every neighborhood
17048:{\displaystyle m_{\bullet }=\left(m_{i}\right)_{a\in A}} 14163:{\displaystyle f_{\bullet }=\left(f_{a}\right)_{a\in A}} 13794:
has a limit if and only if each projection has a limit.
11876:
This pointwise comparison is a partial order that makes
8906:{\displaystyle x_{\bullet }=\left(x_{a}\right)_{a\in A}} 7924:{\displaystyle x_{\bullet }=\left(x_{a}\right)_{a\in A}} 7553:
is compact. We will need the following observation (see
7438:{\displaystyle x_{\bullet }=\left(x_{a}\right)_{a\in A}} 6528:{\displaystyle x_{\bullet }=\left(x_{a}\right)_{a\in A}} 6058:{\displaystyle x_{\bullet }=\left(x_{a}\right)_{a\in A}} 5360:{\displaystyle x_{\bullet }=\left(x_{a}\right)_{a\in A}} 4889:{\displaystyle x_{\bullet }=\left(x_{a}\right)_{a\in A}} 4254:{\displaystyle s_{\bullet }=\left(s_{a}\right)_{a\in A}} 3839:{\displaystyle x_{\bullet }=\left(x_{a}\right)_{a\in A}} 3531:{\displaystyle x_{\bullet }=\left(x_{a}\right)_{a\in A}} 2681:{\displaystyle s_{\bullet }=\left(s_{i}\right)_{i\in I}} 2620:{\displaystyle x_{\bullet }=\left(x_{a}\right)_{a\in A}} 1980:{\displaystyle x_{\bullet }=\left(x_{a}\right)_{a\in A}} 1896:, but this can lead to ambiguities if the ambient space 880:{\displaystyle x_{\bullet }=\left(x_{a}\right)_{a\in A}} 546:{\displaystyle x_{\bullet }=\left(x_{a}\right)_{a\in A}} 21188: 21186: 21184: 21182: 21180: 21178: 21150: 21148: 21146: 21144: 21116: 19702:
Pages displaying short descriptions of redirect targets
19669:
Characterizations of the category of topological spaces
18855:
Function from a well-ordered set to a topological space
15976:
Tychonoff's theorem and relation to the axiom of choice
12678:{\displaystyle S=\{x\}\cup \left\{x_{a}:a\in A\right\}} 7845:
with no finite subcover contrary to the compactness of
7765:{\displaystyle \bigcap _{i\in I}C_{i}\neq \varnothing } 7687:{\displaystyle \bigcap _{i\in J}C_{i}\neq \varnothing } 458:, since the strict inequalities cannot be satisfied if 21419:(3rd ed.). Berlin: Springer. pp. xxii, 703. 21255: 21101: 20656: 16536: 16476: 16456: 15191: 15006: 14907: 14810: 14708: 14619: 14572: 14300: 14178: 14000: 13856: 13699:
if and only if it is eventually in every neighborhood
11206: 2390: 2295: 21338: 20994: 20972: 20945: 20920: 20889: 20847: 20814: 20783: 20734: 20695: 20635: 20599: 20519: 20421: 20381: 20354: 20287: 20258: 20165: 20131: 20108: 20063: 20029: 20000: 19967: 19945: 19893: 19825: 19794: 19761: 19726: 19630: 19605: 19582: 19562: 19542: 19516: 19476: 19438: 19400: 19380: 19360: 19340: 19315: 19295: 19273: 19253: 19202: 19177: 19148: 19110: 19072: 19052: 19032: 18995: 18972: 18940: 18920: 18900: 18868: 18835: 18812: 18792: 18772: 18746: 18723: 18694: 18638: 18600: 18562: 18542: 18522: 18478: 18455: 18435: 18413: 18393: 18342: 18316: 18296: 18276: 18253: 18224: 18165: 18127: 18089: 18069: 18049: 18005: 17968: 17930: 17907: 17887: 17867: 17808: 17782: 17762: 17724: 17698: 17659: 17633: 17601: 17503: 17478: 17429: 17391: 17358: 17312: 17203: 17178: 17126: 17094: 17061: 17000: 16974: 16950: 16910: 16798: 16673: 16622: 16521: 16454: 16434: 16403: 16358: 16314: 16294: 16274: 16247: 16220: 16166: 16139: 16081: 16041: 16012: 15986: 15952: 15920: 15900: 15873: 15805: 15750: 15705: 15660: 15627: 15594: 15559: 15527: 15435: 15372: 15324: 15295: 15268: 15223: 15189: 15169: 15142: 15112: 15085: 14967: 14939: 14905: 14885: 14858: 14768: 14667: 14604: 14551: 14506: 14435: 14408: 14381: 14259: 14230: 14210: 14176: 14115: 13977: 13950: 13921: 13854: 13803: 13766: 13735: 13705: 13685: 13665: 13638: 13609: 13585: 13561: 13535: 13508: 13488: 13461: 13434: 13410: 13390: 13355: 13332: 13305: 13269: 13246: 13226: 13198: 13171: 13148: 13117: 13097: 13074: 13054: 13027: 12979: 12936: 12912: 12892: 12868: 12841: 12818: 12778: 12758: 12718: 12695: 12624: 12585: 12512: 12476: 12456: 12429: 12402: 12345: 12297: 12256: 12236: 12214: 12180: 12158: 12138: 12112: 12068: 12036: 12010: 11990: 11949: 11914: 11882: 11859: 11815: 11789: 11758: 11733: 11713: 11684: 11664: 11609: 11575: 11555: 11513: 11493: 11446: 11426: 11380: 11360: 11325: 11268: 11248: 11204: 11168: 11137: 11092: 11072: 11049: 11029: 11006: 10986: 10932: 10912: 10889: 10869: 10846: 10826: 10799: 10775: 10755: 10735: 10711: 10691: 10665: 10642: 10606: 10580: 10552: 10532: 10512: 10489: 10466: 10446: 10401: 10378: 10351: 10322: 10294: 10274: 10254: 10216: 10190: 10160: 10114: 10094: 10065: 10045: 10025: 9979: 9953: 9931: 9862: 9765: 9745: 9697: 9638: 9618: 9594: 9574: 9536: 9487: 9439: 9419: 9395: 9375: 9343: 9311: 9275: 9249: 9229: 9209: 9189: 9157: 9137: 9107: 9087: 9055: 9035: 9008: 8988: 8959: 8939: 8919: 8858: 8783: 8748: 8728: 8701: 8675: 8649: 8598: 8569: 8529: 8496: 8467: 8447: 8384: 8364: 8315: 8295: 8275: 8245: 8215: 8185: 8130: 8071: 8006: 7980: 7957: 7937: 7876: 7851: 7831: 7778: 7729: 7700: 7651: 7631: 7583: 7563: 7539: 7517: 7471: 7451: 7390: 7366: 7330: 7310: 7287: 7267: 7229: 7206: 7180: 7142: 7113: 7087: 7001: 6958: 6922: 6902: 6882: 6846: 6816: 6793: 6773: 6748: 6710: 6690: 6670: 6650: 6630: 6610: 6583: 6561: 6541: 6480: 6457: 6429: 6400: 6362: 6339: 6316: 6294: 6265: 6245: 6219: 6199: 6113: 6071: 6010: 5990: 5970: 5881: 5858: 5829: 5794: 5733: 5704: 5677: 5654: 5625: 5602: 5578: 5558: 5538: 5490: 5468: 5436: 5416: 5373: 5312: 5289: 5269: 5247: 5204: 5181: 5128: 5108: 5075: 5043: 5020: 4962: 4942: 4902: 4841: 4821: 4785: 4750: 4730: 4704: 4681: 4655: 4629: 4595: 4547: 4498: 4472: 4452: 4422: 4391: 4368: 4326: 4300: 4267: 4206: 4186: 4166: 4146: 4126: 4100: 4020: 3993: 3943: 3909: 3883: 3863: 3791: 3750: 3730: 3701: 3676: 3596: 3564: 3544: 3483: 3448: 3421: 3401: 3374: 3346: 3310: 3283: 3246: 3226: 3199: 3173: 3142: 3107: 3078: 3058: 3023: 2976: 2950: 2908: 2841: 2821: 2792: 2760: 2733: 2694: 2633: 2572: 2467: 2441: 2370: 2343: 2272: 2246: 2223: 2200: 2180: 2142: 2106: 2080: 2054: 2028: 2008: 1932: 1903: 1866: 1830: 1803: 1678: 1652: 1616: 1580: 1557: 1283: 1261: 1238: 1207: 1180: 1157: 1137: 1110: 1083: 1041: 1005: 976: 950: 924: 904: 832: 798: 746: 722: 702: 678: 625: 605: 563: 498: 478: 438: 412: 386: 360: 320: 291: 265: 239: 204: 174: 150: 85:, where they are used to characterize many important 21175: 21141: 19694: â€“ Topological space characterized by sequences 17962:
can be canonically interpreted as a net directed by
13603:
for a topology is also a subbase) and given a point
12835:
In this way, the question of whether or not the net
21417:
Infinite dimensional analysis: A hitchhiker's guide
10725:contains infinitely many elements of the sequence. 8179:and this is precisely the set of cluster points of 168:, typically automatically assumed to be denoted by 21016: 20980: 20958: 20931: 20906: 20875: 20833: 20800: 20769: 20720: 20681: 20621: 20585: 20505: 20394: 20367: 20340: 20273: 20244: 20151: 20117: 20090: 20049: 20015: 19986: 19953: 19931: 19879: 19811: 19780: 19747: 19645: 19614: 19591: 19568: 19548: 19528: 19500: 19462: 19424: 19386: 19366: 19346: 19324: 19301: 19282: 19259: 19239: 19186: 19163: 19134: 19096: 19058: 19038: 19016: 18981: 18958: 18926: 18906: 18886: 18844: 18821: 18798: 18778: 18758: 18732: 18709: 18680: 18624: 18586: 18548: 18528: 18508: 18461: 18441: 18422: 18399: 18379: 18328: 18302: 18282: 18262: 18239: 18210: 18151: 18113: 18075: 18055: 18035: 17989: 17954: 17916: 17893: 17873: 17853: 17794: 17768: 17748: 17718:being the origin, for example) and direct the set 17710: 17680: 17645: 17619: 17585: 17489: 17465:{\displaystyle \left\|m-m_{\bullet }\right\|\to 0} 17464: 17415: 17377: 17336: 17290: 17189: 17164: 17112: 17080: 17047: 16986: 16956: 16928: 16868: 16782: 16659: 16567: 16507: 16440: 16416: 16389: 16340: 16300: 16280: 16256: 16233: 16206: 16152: 16125: 16067: 16027: 15998: 15965: 15938: 15906: 15886: 15859: 15792:{\displaystyle X_{1}\times X_{2}=\mathbb {R} ^{2}} 15791: 15736: 15691: 15646: 15613: 15580: 15545: 15513: 15421: 15358: 15310: 15281: 15254: 15209: 15175: 15155: 15128: 15098: 15071: 14954: 14925: 14891: 14871: 14844: 14752: 14653: 14590: 14537: 14488: 14421: 14394: 14367: 14245: 14216: 14196: 14162: 14099: 13963: 13936: 13903: 13837: 13775: 13744: 13721: 13691: 13671: 13651: 13624: 13591: 13571: 13541: 13521: 13494: 13470: 13447: 13420: 13396: 13376: 13341: 13318: 13291: 13255: 13232: 13210: 13184: 13157: 13130: 13103: 13083: 13060: 13040: 13013: 12952: 12918: 12898: 12874: 12854: 12827: 12804: 12764: 12744: 12704: 12677: 12597: 12572:{\displaystyle h_{n}:=\inf\{a\in A:a>h_{n-1}\}} 12571: 12498: 12462: 12442: 12415: 12388: 12331: 12276: 12242: 12222: 12200: 12166: 12144: 12124: 12099:{\displaystyle \operatorname {Id} :(E,\geq )\to E} 12098: 12051: 12022: 11996: 11976: 11935: 11900: 11868: 11845: 11801: 11775: 11744: 11719: 11695: 11670: 11650: 11595: 11561: 11542:{\displaystyle \mathbf {0} :\mathbb {R} \to \{0\}} 11541: 11499: 11479: 11432: 11412: 11366: 11342: 11307: 11254: 11234: 11190: 11154: 11107: 11078: 11058: 11035: 11015: 10992: 10947: 10918: 10898: 10875: 10855: 10832: 10805: 10781: 10761: 10741: 10717: 10697: 10677: 10651: 10628: 10592: 10566: 10538: 10518: 10498: 10475: 10452: 10432: 10387: 10364: 10337: 10308: 10280: 10260: 10229: 10198: 10169: 10146: 10100: 10076: 10051: 10031: 10011: 9961: 9939: 9876:generated by this filter base is called the net's 9868: 9848: 9751: 9731: 9644: 9624: 9600: 9580: 9545: 9522: 9473: 9425: 9401: 9381: 9361: 9329: 9297: 9261: 9235: 9215: 9195: 9175: 9143: 9123: 9093: 9071: 9041: 9021: 8994: 8974: 8945: 8925: 8905: 8812: 8769: 8734: 8714: 8687: 8661: 8635: 8584: 8555: 8515: 8482: 8453: 8433: 8370: 8350: 8301: 8281: 8258: 8231: 8201: 8171: 8116: 8057: 7992: 7966: 7943: 7923: 7860: 7837: 7817: 7764: 7715: 7686: 7637: 7617: 7569: 7545: 7525: 7480: 7457: 7437: 7372: 7339: 7316: 7296: 7273: 7253: 7215: 7192: 7166: 7128: 7099: 7073: 6987: 6944: 6908: 6888: 6868: 6832: 6802: 6779: 6757: 6734: 6696: 6676: 6656: 6636: 6616: 6596: 6570: 6547: 6527: 6463: 6435: 6415: 6386: 6348: 6325: 6303: 6280: 6251: 6228: 6205: 6185: 6100: 6057: 5996: 5976: 5953: 5867: 5844: 5815: 5780: 5719: 5690: 5663: 5640: 5611: 5584: 5564: 5544: 5524: 5477: 5454: 5422: 5402: 5359: 5298: 5275: 5255: 5210: 5190: 5168:{\displaystyle f\left(x_{\bullet }\right)\to f(x)} 5167: 5114: 5094: 5061: 5029: 5006: 4948: 4928: 4888: 4827: 4803: 4759: 4736: 4716: 4690: 4667: 4641: 4601: 4581: 4533: 4484: 4458: 4434: 4406: 4377: 4354: 4312: 4286: 4253: 4192: 4172: 4152: 4132: 4112: 4041:is Cauchy if the filter generated by the net is a 4033: 4002: 3979: 3930: 3895: 3869: 3838: 3759: 3736: 3716: 3685: 3662: 3582: 3550: 3530: 3463: 3434: 3407: 3387: 3361: 3316: 3296: 3262: 3232: 3212: 3185: 3157: 3128: 3093: 3064: 3038: 3009: 2962: 2926: 2894: 2827: 2807: 2778: 2746: 2707: 2680: 2619: 2530: 2453: 2427: 2376: 2356: 2329: 2281: 2258: 2232: 2209: 2186: 2154: 2128: 2092: 2066: 2040: 2014: 1979: 1909: 1888: 1852: 1812: 1789: 1664: 1638: 1602: 1563: 1543: 1267: 1244: 1213: 1193: 1166: 1143: 1116: 1096: 1053: 1027: 991: 962: 936: 910: 879: 810: 780: 732: 708: 684: 660: 611: 588: 545: 484: 450: 424: 398: 372: 326: 306: 277: 251: 225: 182: 156: 19624:The first example is a special case of this with 17627:has at least two points, then we can fix a point 17165:{\displaystyle d\left(m,m_{\bullet }\right)\to 0} 16390:{\displaystyle \pi _{i}\left(f_{\bullet }\right)} 15737:{\displaystyle \pi _{2}\left(f_{\bullet }\right)} 15692:{\displaystyle \pi _{1}\left(f_{\bullet }\right)} 15255:{\displaystyle \pi _{i}\left(f_{\bullet }\right)} 14538:{\displaystyle \pi _{i}\left(f_{\bullet }\right)} 9913: 8820:This is a contradiction and completes the proof. 7818:{\displaystyle \left\{C_{i}^{c}\right\}_{i\in I}} 21696: 21411: 20914:in other words, when considered as functions on 19688: â€“ Reflexive and transitive binary relation 19676: â€“ Family of sets representing "large" sets 19204: 18344: 16896:of integration, partially ordered by inclusion. 16850: 16834: 16799: 16752: 16736: 16707: 16691: 16674: 13785: 13549:according to the definition of net convergence. 12780: 12720: 12526: 12490: 11956: 10402: 7003: 6960: 6115: 6073: 5883: 5375: 4963: 4904: 4500: 4327: 1867: 1831: 1756: 1717: 1679: 1617: 1581: 1484: 1423: 1374: 16892:where the net's directed set is the set of all 15514:{\displaystyle (1,1),(0,0),(1,1),(0,0),\ldots } 15210:{\displaystyle {\textstyle \prod }X_{\bullet }} 14926:{\displaystyle {\textstyle \prod }X_{\bullet }} 14197:{\displaystyle {\textstyle \prod }X_{\bullet }} 8461:is a directed set under inclusion and for each 6604:is a point in this neighborhood that is not in 4534:{\displaystyle \lim _{a\in A}s_{\bullet }\to x} 4058:if every Cauchy net converges to some point. A 21365:Megginson, p. 217, p. 221, Exercises 2.53–2.55 20622:{\displaystyle h:\mathbb {N} \to \mathbb {N} } 19932:{\displaystyle I=\{r\in \mathbb {R} :r>0\}} 15860:{\displaystyle \left(L_{1},L_{2}\right)=(0,1)} 11191:{\displaystyle f:\mathbb {R} \to \mathbb {R} } 6876:the member of the directed set whose index is 406:cannot be replaced by the strict inequalities 97:). Nets are in one-to-one correspondence with 16207:{\displaystyle L=\left(L_{i}\right)_{i\in I}} 12152:-valued net. This net converges pointwise to 11783:pointwise in the usual way by declaring that 11658:This will be proven by constructing a net in 9632:is not Hausdorff, then there exists a net on 7618:{\displaystyle \left\{C_{i}\right\}_{i\in I}} 4613:Open sets and characterizations of topologies 109:The concept of a net was first introduced by 20721:{\displaystyle h(\mathbb {N} )=\mathbb {N} } 20085: 20079: 19926: 19900: 18619: 18613: 18581: 18575: 18497: 18491: 18146: 18140: 18108: 18102: 18024: 18018: 17949: 17943: 17743: 17737: 17407: 17401: 17328: 17322: 16660:{\displaystyle \left(x_{a}\right)_{a\in A},} 12637: 12631: 12566: 12529: 12277:{\displaystyle \mathbb {R} ^{\mathbb {R} }.} 12201:{\displaystyle \mathbb {R} ^{\mathbb {R} },} 11971: 11959: 11596:{\displaystyle \mathbb {R} ^{\mathbb {R} };} 11536: 11530: 11474: 11447: 11407: 11395: 10147:{\displaystyle \mathbb {N} =\{1,2,\ldots \}} 10141: 10123: 8761: 8755: 8636:{\displaystyle \left(x_{C}\right)_{C\in D}.} 8425: 8391: 8111: 8072: 7488:This can be seen as a generalization of the 692:is clear from context it is simply called a 668:. Elements of a net's domain are called its 69:. Nets directly generalize the concept of a 21444:Topologies on closed and closed convex sets 20593:, although it is a subnet, because the map 20375:(where this subnet is not a subsequence of 20091:{\displaystyle \varphi (r)=\lceil r\rceil } 13838:{\displaystyle \left(X_{i}\right)_{i\in I}} 13014:{\displaystyle \left(x_{a}\right)_{a\in A}} 12332:{\displaystyle \left(x_{a}\right)_{a\in A}} 11776:{\displaystyle \mathbb {R} ^{\mathbb {R} }} 11343:{\displaystyle \mathbb {R} ^{\mathbb {R} }} 11308:{\displaystyle (f(x))_{x\in \mathbb {R} },} 11155:{\displaystyle \mathbb {R} ^{\mathbb {R} }} 9947:together with the usual integer comparison 9732:{\displaystyle \left(x_{a}\right)_{a\in A}} 9674:Filters in topology § Filters and nets 9474:{\displaystyle \left(y_{b}\right)_{b\in B}} 8828: 8351:{\displaystyle \left\{U_{i}:i\in I\right\}} 4582:{\displaystyle \left(s_{a}\right)_{a\in A}} 4355:{\displaystyle \lim {}_{}s_{\bullet }\to x} 4078:Characterizations of topological properties 1797:using the equal sign in place of the arrow 619:is some directed set, and whose values are 77:. Nets are primarily used in the fields of 21043: 20689:is an order-preserving map whose image is 20152:{\displaystyle \varphi :I\to \mathbb {N} } 20050:{\displaystyle \varphi :I\to \mathbb {N} } 16888:can be interpreted as a limit of a net of 16601: 15017: 14996: 14080: 14076: 14023: 14019: 13995: 12286:More generally, a subnet of a sequence is 7522: 7518: 6988:{\displaystyle \lim _{}x_{\bullet }\to x.} 6101:{\displaystyle \lim _{}x_{\bullet }\to x,} 5403:{\displaystyle \lim _{}x_{\bullet }\to x.} 5252: 5248: 4089: 1754: 1736: 1716: 1698: 1525: 1524: 1514: 1493: 1470: 1469: 1459: 1438: 1409: 1408: 1398: 1377: 1361: 1360: 1350: 1318: 1317: 1307: 21627: 21596: 21570: 21402: 21396: 21319: 21317: 21315: 21203: 21201: 21169: 21086: 20974: 20922: 20897: 20791: 20714: 20703: 20615: 20607: 20547: 20449: 20145: 20043: 19950: 19946: 19910: 19867: 19857: 19802: 19735: 17668: 17480: 17180: 15779: 15413: 15352: 14736: 14732: 13411: 12805:{\displaystyle \lim _{}x_{\bullet }\to x} 12745:{\displaystyle \lim _{}x_{\bullet }\to x} 12380: 12265: 12259: 12189: 12183: 11767: 11761: 11631: 11625: 11584: 11578: 11523: 11413:{\displaystyle f:\mathbb {R} \to \{0,1\}} 11388: 11334: 11328: 11296: 11228: 11219: 11184: 11176: 11146: 11140: 10560: 10302: 10192: 10116: 10067: 9958: 9954: 9933: 8289:) Conversely, suppose that every net in 6535:such that for every open neighborhood of 4929:{\displaystyle \lim _{}x_{\bullet }\to x} 1921: 723: 179: 175: 21633:Handbook of Analysis and Its Foundations 21603:Handbook of Analysis and Its Foundations 15359:{\displaystyle X_{1}=X_{2}=\mathbb {R} } 5816:{\displaystyle f(\operatorname {int} V)} 3980:{\displaystyle \left(x_{a},x_{b}\right)} 2754:if there exists an order-preserving map 27:A generalization of a sequence of points 21657: 21344: 21332: 21207: 21192: 21154: 21135: 19240:{\displaystyle \lim _{x\to t}f(x)\to L} 18509:{\displaystyle f:M\setminus \{c\}\to X} 18380:{\displaystyle \lim _{m\to c}f(m)\to L} 18036:{\displaystyle f:M\setminus \{c\}\to X} 14545:is equal to the composition of the net 12962: 3774:A Cauchy net generalizes the notion of 14: 21697: 21576:An Introduction to Banach Space Theory 21548: 21514: 21312: 21304:: CS1 maint: archived copy as title ( 21241:, New Age International, p. 356, 21198: 21110: 21079: 21051:(1922). "A General Theory of Limits". 19556:if and only if for every neighborhood 19247:if and only if for every neighborhood 18786:if and only if for every neighborhood 11315:and conversely) and endow it with the 10440:if and only if for every neighborhood 9667: 5720:{\displaystyle \operatorname {int} V.} 5641:{\displaystyle \operatorname {int} V,} 1889:{\displaystyle \lim x_{\bullet }\to x} 1639:{\displaystyle \lim x_{\bullet }\to y} 1603:{\displaystyle \lim x_{\bullet }\to x} 117:in 1922. The term "net" was coined by 21582:. Vol. 193. New York: Springer. 21468: 21261: 21234: 18625:{\displaystyle m\in M\setminus \{c\}} 18587:{\displaystyle n\in M\setminus \{c\}} 18152:{\displaystyle m\in M\setminus \{c\}} 18114:{\displaystyle n\in M\setminus \{c\}} 17756:reversely according to distance from 16582:The axiom of choice is equivalent to 15946:does not contain even a single point 13048:come and stay as close as we want to 10433:{\displaystyle \lim {}_{n}a_{n}\to L} 10088:because by definition, a sequence in 9588:can have more than one limit, but if 7625:be a collection of closed subsets of 7193:{\displaystyle \operatorname {int} U} 7100:{\displaystyle \operatorname {int} U} 6423:Now the set of open neighborhoods of 3193:is a cluster point of some subnet of 661:{\displaystyle x_{\bullet }(a)=x_{a}} 21441: 19887:is the constant zero sequence. Let 12930:of (that is, the points of) the net 12613: 10956:(continuous in the sequential sense) 10206:), a net is defined on an arbitrary 4140:if and only if every limit point in 17955:{\displaystyle I:=M\setminus \{c\}} 17901:". Given any function with domain 17749:{\displaystyle I:=M\setminus \{c\}} 17681:{\displaystyle M:=\mathbb {R} ^{n}} 16879: 16478: 14812: 13944:denote the canonical projection to 13845:be topological spaces, endow their 13722:{\displaystyle U\in {\mathcal {B}}} 11208: 10815:continuous in the topological sense 10012:{\displaystyle a_{1},a_{2},\ldots } 9891:, while filters are most useful in 9563: 7254:{\displaystyle f\left(x_{a}\right)} 7167:{\displaystyle f\left(x_{a}\right)} 6735:{\displaystyle f\left(x_{a}\right)} 6004:be a point such that for every net 2217:the net is frequently/cofinally in 2174:of a net if for every neighborhood 1853:{\displaystyle \lim x_{\bullet }=x} 1225:expressed equivalently as: the net 589:{\displaystyle x_{\bullet }:A\to X} 24: 20907:{\displaystyle i\in \mathbb {N} ;} 20801:{\displaystyle i\in \mathbb {N} .} 19812:{\displaystyle i\in \mathbb {N} ,} 19748:{\displaystyle X=\mathbb {R} ^{n}} 18211:{\displaystyle d(m,c)\leq d(n,c),} 17854:{\displaystyle d(j,c)\leq d(i,c).} 13714: 13564: 13377:{\displaystyle \left(x_{S}\right)} 12973:Intuitively, convergence of a net 11703:However, there does not exist any 10506:The net is frequently in a subset 9389:is then cofinal. Moreover, giving 8813:{\displaystyle x_{B}\notin U_{c}.} 8422: 8378:with no finite subcover. Consider 2554:Filters in topology § Subnets 25: 21716: 21635:. San Diego, CA: Academic Press. 18681:{\displaystyle d(m,c)\leq d(n,c)} 18610: 18572: 18488: 18137: 18099: 18083:if and only if there exists some 18015: 17940: 17734: 17378:{\displaystyle m_{\bullet }\to m} 17081:{\displaystyle m_{\bullet }\to m} 16884:The definition of the value of a 13752:This characterization extends to 11352:topology of pointwise convergence 10567:{\displaystyle N\in \mathbb {N} } 10309:{\displaystyle N\in \mathbb {N} } 8770:{\displaystyle B\supseteq \{c\},} 8556:{\displaystyle x_{C}\notin U_{a}} 8166: 7759: 7681: 6767:Now, for every open neighborhood 5410:Then for every open neighborhood 5095:{\displaystyle x_{\bullet }\to x} 4659: 4649:is open if and only if no net in 4200:. Explicitly, this means that if 3452: 821: 65:of this function is usually some 21238:Introduction to General Topology 16899: 16590:and so strictly weaker than the 12216: 12160: 11735: 11686: 11611: 11515: 11374:denote the set of all functions 11162:of all functions with prototype 10926:with this sequence converges to 8913:be a net in a topological space 3442:is eventually in the complement 716:is a directed set with preorder 21377: 21368: 21359: 21350: 21267: 21228: 21053:American Journal of Mathematics 21017:{\displaystyle s_{\bullet }=h.} 20409: 19939:be directed by the usual order 19714: 14933:if and only if for every index 14375:denote the result of "plugging 12470: – that is, let 11908:a directed set since given any 9759:induces a filter base of tails 8282:{\displaystyle \Longleftarrow } 5977:{\displaystyle \Longleftarrow } 2874: 1610:and this limit is unique (i.e. 354:. In this case, the conditions 21484:Science & Business Media. 21092: 21037: 20870: 20864: 20770:{\displaystyle s_{i}=x_{h(i)}} 20762: 20756: 20707: 20699: 20645: 20639: 20611: 20580: 20556: 20500: 20458: 20218: 20212: 20198: 20192: 20141: 20073: 20067: 20039: 19871: 19846: 19839: 19536:is a cluster point of the net 19486: 19480: 19457: 19445: 19419: 19407: 19231: 19228: 19222: 19211: 19158: 19152: 19129: 19117: 19091: 19079: 19008: 18996: 18953: 18941: 18881: 18869: 18766:is a cluster point of the net 18704: 18698: 18675: 18663: 18654: 18642: 18500: 18371: 18368: 18362: 18351: 18234: 18228: 18202: 18190: 18181: 18169: 18027: 17981: 17969: 17845: 17833: 17824: 17812: 17614: 17602: 17560: 17539: 17526: 17505: 17456: 17452: 17431: 17416:{\displaystyle (M,\|\cdot \|)} 17410: 17392: 17369: 17337:{\displaystyle (M,\|\cdot \|)} 17331: 17313: 17156: 17107: 17095: 17072: 16923: 16911: 16828: 16802: 16552: 16341:{\displaystyle L_{i}\in X_{i}} 16110: 16068:{\displaystyle L_{i}\in X_{i}} 15933: 15921: 15894:since the open ball of radius 15854: 15842: 15572: 15560: 15540: 15528: 15502: 15490: 15484: 15472: 15466: 15454: 15448: 15436: 14635: 14568: 14470: 14077: 14020: 13572:{\displaystyle {\mathcal {B}}} 12796: 12736: 12116: 12090: 12087: 12075: 11977:{\displaystyle m:=\min\{f,g\}} 11895: 11883: 11840: 11834: 11825: 11819: 11527: 11487:is finite). Then the constant 11465: 11459: 11392: 11285: 11281: 11275: 11269: 11180: 11115:(continuous in the net sense). 11102: 11096: 10942: 10936: 10424: 9914:As generalization of sequences 9523:{\displaystyle y_{b}=x_{h(b)}} 9515: 9509: 9356: 9344: 9321: 9170: 9158: 8415: 8407: 8276: 7519: 7355: 7123: 7117: 7065: 7059: 7053: 6976: 6372: 6366: 6275: 6269: 6177: 6171: 6165: 6089: 5971: 5961:and this direction is proven. 5945: 5939: 5933: 5839: 5833: 5810: 5798: 5516: 5510: 5446: 5440: 5391: 5249: 5162: 5156: 5150: 5086: 5053: 5001: 4995: 4989: 4920: 4811:between topological spaces is 4795: 4525: 4346: 3769: 3574: 3123: 3117: 3033: 3027: 3010:{\displaystyle h(i)\leq h(j).} 3001: 2995: 2986: 2980: 2918: 2869: 2863: 2802: 2796: 2770: 1880: 1804: 1630: 1594: 1511: 1456: 1395: 1347: 1304: 642: 636: 580: 135: 13: 1: 21606:. San Diego: Academic Press. 21580:Graduate Texts in Mathematics 21524:Graduate Texts in Mathematics 21478:Graduate Texts in Mathematics 21390: 21383:Schechter, Sections 7.43–7.47 20932:{\displaystyle \mathbb {N} ,} 19700: â€“ Maximal proper filter 19026:It is eventually in a subset 17490:{\displaystyle \mathbb {R} ,} 17190:{\displaystyle \mathbb {R} ,} 13786:Limits in a Cartesian product 12953:{\displaystyle x_{\bullet }.} 12886:on this topological subspace 12862:converges to the given point 12499:{\displaystyle h_{1}:=\inf A} 12443:{\displaystyle n^{\text{th}}} 12059:This partial order turns the 11846:{\displaystyle f(x)\geq g(x)} 11745:{\displaystyle \mathbf {0} ,} 11696:{\displaystyle \mathbf {0} .} 11319:. This (product) topology on 10077:{\displaystyle \mathbb {N} .} 9568:In general, a net in a space 9124:{\displaystyle x_{\bullet }.} 9072:{\displaystyle x_{\bullet }.} 8232:{\displaystyle x_{\bullet }.} 8202:{\displaystyle x_{\bullet }.} 7716:{\displaystyle J\subseteq I.} 7465:has a subnet with a limit in 5525:{\displaystyle V:=f^{-1}(U),} 5069:is continuous if and only if 4835:if and only if for every net 4774: 4074:) topological vector spaces. 3464:{\displaystyle X\setminus S.} 3362:{\displaystyle S\subseteq X,} 3263:{\displaystyle x_{\bullet }.} 21474:Modern Analysis and Topology 21030: 20981:{\displaystyle \mathbb {N} } 20966:is just the identity map on 20959:{\displaystyle x_{\bullet }} 20395:{\displaystyle x_{\bullet }} 20368:{\displaystyle x_{\bullet }} 20348:is a subnet of the sequence 16234:{\displaystyle f_{\bullet }} 15966:{\displaystyle f_{\bullet }} 15887:{\displaystyle f_{\bullet }} 15156:{\displaystyle f_{\bullet }} 14872:{\displaystyle f_{\bullet }} 14429:", which results in the net 14395:{\displaystyle f_{\bullet }} 13652:{\displaystyle x_{\bullet }} 13111:in a topological space, let 12855:{\displaystyle x_{\bullet }} 12223:{\displaystyle \mathbf {0} } 12167:{\displaystyle \mathbf {0} } 11480:{\displaystyle \{x:f(x)=0\}} 10316:such that for every integer 10199:{\displaystyle \mathbb {N} } 9940:{\displaystyle \mathbb {N} } 9022:{\displaystyle x_{\bullet }} 8259:{\displaystyle x_{\bullet }} 7555:finite intersection property 6869:{\displaystyle b\geq a_{0},} 5823:and thus also eventually in 5691:{\displaystyle x_{\bullet }} 4717:{\displaystyle S\subseteq X} 4668:{\displaystyle X\setminus S} 4642:{\displaystyle S\subseteq X} 4435:{\displaystyle S\subseteq X} 4113:{\displaystyle S\subseteq X} 4034:{\displaystyle x_{\bullet }} 3744:if and only it converges to 3435:{\displaystyle x_{\bullet }} 3388:{\displaystyle x_{\bullet }} 3297:{\displaystyle x_{\bullet }} 3272: 3213:{\displaystyle x_{\bullet }} 2747:{\displaystyle x_{\bullet }} 2708:{\displaystyle s_{\bullet }} 2357:{\displaystyle x_{\bullet }} 1194:{\displaystyle x_{\bullet }} 1097:{\displaystyle x_{\bullet }} 7: 19662: 15654:are cluster points of both 13915:, and that for every index 13292:{\displaystyle S\in N_{x},} 12608: 11242:(by identifying a function 11086:with this net converges to 10749:between topological spaces 10629:{\displaystyle a_{n}\in S,} 10039:can be considered a net in 9298:{\displaystyle x_{a}\in U.} 9203:is an open neighborhood of 7825:would be an open cover for 7490:Bolzano–Weierstrass theorem 7347:This completes the proof. 7304:This is a contradiction so 7107:is an open neighborhood of 6945:{\displaystyle x_{b}\in W.} 5648:is an open neighborhood of 4744:is eventually contained in 3240:is also a cluster point of 2566:, which is as follows: If 2129:{\displaystyle x_{b}\in S.} 1277:; and variously denoted as: 1028:{\displaystyle x_{b}\in S.} 198:, which means that for any 10: 21721: 21658:Willard, Stephen (2004) . 21413:Aliprantis, Charalambos D. 20876:{\displaystyle s_{i}=h(i)} 19646:{\displaystyle c=\omega .} 19501:{\displaystyle f(s)\in V.} 19463:{\displaystyle s\in [r,t)} 19425:{\displaystyle r\in [0,t)} 19354:is frequently in a subset 19135:{\displaystyle s\in [r,t)} 19097:{\displaystyle r\in [0,t)} 18989:This function is a net on 18516:is frequently in a subset 18043:is eventually in a subset 17990:{\displaystyle (I,\leq ).} 16894:partitions of the interval 16160:then the tuple defined by 15867:is not a cluster point of 13404:increases with respect to 12966: 12230:belongs to the closure of 12125:{\displaystyle f\mapsto f} 11549:belongs to the closure of 10574:there exists some integer 9671: 9002:is a limit of a subnet of 8516:{\displaystyle x_{C}\in X} 6387:{\displaystyle f(x)\in U,} 4616: 4287:{\displaystyle s_{a}\in S} 3931:{\displaystyle a,b\geq c,} 2551: 2545: 2541: 346:. A directed set may have 104: 51:Moore–Smith sequence 29: 21415:; Border, Kim C. (2006). 21208:Willard, Stephen (2012), 19954:{\displaystyle \,\leq \,} 19599:the net is frequently in 19394:if and only if for every 18829:the net is frequently in 18556:if and only if for every 11936:{\displaystyle f,g\in E,} 11901:{\displaystyle (E,\geq )} 11198:as the Cartesian product 10546:if and only if for every 10483:the net is eventually in 10237:is taken from sequences. 9962:{\displaystyle \,\leq \,} 8266:has a convergent subnet. 7577:be any non-empty set and 7526:{\displaystyle \implies } 7384:if and only if every net 6684:is not a neighborhood of 6333:is not a neighborhood of 5256:{\displaystyle \implies } 3129:{\displaystyle b\in h(I)} 2337:of all cluster points of 226:{\displaystyle a,b\in A,} 183:{\displaystyle \,\leq \,} 128:was developed in 1937 by 124:The related concept of a 21356:Aliprantis-Border, p. 32 20808:Indeed, this is because 20513:is not a subsequence of 19707: 19698:Ultrafilter (set theory) 19657:ordinal-indexed sequence 16308:is finite or when every 15647:{\displaystyle L_{2}:=1} 15614:{\displaystyle L_{1}:=0} 15521:that alternates between 14422:{\displaystyle \pi _{i}} 13529:does indeed converge to 13421:{\displaystyle \,\geq ,} 12052:{\displaystyle g\geq m.} 11943:their pointwise minimum 10338:{\displaystyle n\geq N,} 10108:is just a function from 9330:{\displaystyle h:B\to A} 9081:Conversely, assume that 8829:Cluster and limit points 6664:(because by assumption, 5062:{\displaystyle f:X\to Y} 4804:{\displaystyle f:X\to Y} 4675:converges to a point of 4050:topological vector space 3724:an ultranet clusters at 3583:{\displaystyle f:X\to Y} 3158:{\displaystyle b\geq a.} 2927:{\displaystyle h:I\to A} 2779:{\displaystyle h:I\to A} 992:{\displaystyle b\geq a,} 733:{\displaystyle \,\leq .} 307:{\displaystyle b\leq c.} 45:and related branches, a 20834:{\displaystyle x_{i}=i} 20274:{\displaystyle r\in R.} 20016:{\displaystyle r\in R.} 19987:{\displaystyle s_{r}=0} 19781:{\displaystyle x_{i}=0} 18966:to a topological space 18063:of a topological space 17795:{\displaystyle i\leq j} 16602:Limit superior/inferior 16028:{\displaystyle i\in I,} 16006:is given but for every 15311:{\displaystyle i\in I.} 14955:{\displaystyle i\in I,} 14246:{\displaystyle i\in I,} 13937:{\displaystyle l\in I,} 13625:{\displaystyle x\in X,} 13599:(where note that every 13211:{\displaystyle S\geq T} 12023:{\displaystyle f\geq m} 11802:{\displaystyle f\geq g} 10979: 10593:{\displaystyle n\geq N} 10019:in a topological space 8975:{\displaystyle y\in X.} 8585:{\displaystyle a\in C.} 8483:{\displaystyle C\in D,} 7533:) First, suppose that 6416:{\displaystyle x\in V.} 5283:be continuous at point 4407:{\displaystyle x\in S.} 4090:Closed sets and closure 4068:sequential completeness 3717:{\displaystyle x\in X,} 3094:{\displaystyle a\in A,} 2963:{\displaystyle i\leq j} 2815:is a cofinal subset of 2093:{\displaystyle b\geq a} 399:{\displaystyle b\leq c} 373:{\displaystyle a\leq c} 278:{\displaystyle a\leq c} 41:, more specifically in 21018: 20982: 20960: 20933: 20908: 20877: 20835: 20802: 20771: 20722: 20683: 20623: 20587: 20507: 20396: 20369: 20342: 20275: 20246: 20153: 20119: 20092: 20051: 20017: 19988: 19955: 19933: 19881: 19813: 19782: 19749: 19647: 19616: 19593: 19570: 19550: 19530: 19529:{\displaystyle y\in X} 19502: 19464: 19426: 19388: 19368: 19348: 19326: 19303: 19284: 19261: 19241: 19188: 19165: 19136: 19098: 19060: 19040: 19018: 19017:{\displaystyle [0,t).} 18983: 18960: 18928: 18908: 18888: 18846: 18823: 18800: 18780: 18760: 18759:{\displaystyle L\in X} 18740:Consequently, a point 18734: 18711: 18682: 18626: 18588: 18550: 18530: 18510: 18463: 18443: 18424: 18401: 18381: 18330: 18329:{\displaystyle L\in X} 18304: 18284: 18264: 18241: 18212: 18153: 18115: 18077: 18057: 18037: 17991: 17956: 17918: 17895: 17875: 17855: 17796: 17770: 17750: 17712: 17682: 17647: 17646:{\displaystyle c\in M} 17621: 17587: 17491: 17466: 17417: 17379: 17338: 17292: 17191: 17166: 17114: 17082: 17049: 16988: 16987:{\displaystyle m\in M} 16958: 16930: 16870: 16784: 16661: 16569: 16509: 16442: 16418: 16391: 16342: 16302: 16282: 16258: 16235: 16208: 16154: 16127: 16069: 16029: 16000: 15999:{\displaystyle L\in X} 15967: 15940: 15908: 15888: 15861: 15793: 15738: 15693: 15648: 15615: 15582: 15581:{\displaystyle (0,0).} 15547: 15515: 15423: 15360: 15312: 15283: 15256: 15211: 15177: 15157: 15130: 15129:{\displaystyle X_{i}.} 15100: 15073: 14956: 14927: 14893: 14873: 14846: 14754: 14655: 14592: 14539: 14490: 14423: 14396: 14369: 14247: 14218: 14198: 14164: 14101: 13965: 13938: 13905: 13839: 13777: 13746: 13723: 13693: 13673: 13653: 13626: 13593: 13573: 13543: 13523: 13496: 13472: 13449: 13422: 13398: 13378: 13343: 13320: 13293: 13257: 13234: 13212: 13186: 13159: 13138:denote the set of all 13132: 13105: 13085: 13062: 13042: 13021:means that the values 13015: 12954: 12920: 12900: 12876: 12856: 12829: 12806: 12766: 12746: 12706: 12679: 12599: 12598:{\displaystyle n>1} 12573: 12500: 12464: 12444: 12417: 12390: 12333: 12278: 12244: 12224: 12202: 12168: 12146: 12126: 12100: 12053: 12024: 11998: 11978: 11937: 11902: 11870: 11847: 11803: 11777: 11746: 11721: 11697: 11672: 11652: 11597: 11563: 11543: 11501: 11481: 11434: 11414: 11368: 11344: 11309: 11256: 11236: 11192: 11156: 11109: 11080: 11060: 11037: 11017: 10994: 10968:first-countable spaces 10949: 10920: 10900: 10877: 10857: 10834: 10807: 10783: 10763: 10743: 10719: 10699: 10679: 10678:{\displaystyle y\in X} 10653: 10630: 10594: 10568: 10540: 10520: 10500: 10477: 10454: 10434: 10389: 10366: 10339: 10310: 10282: 10262: 10231: 10200: 10171: 10148: 10102: 10078: 10053: 10033: 10013: 9963: 9941: 9870: 9850: 9753: 9733: 9646: 9626: 9602: 9582: 9547: 9524: 9475: 9427: 9413:(the neighborhoods of 9403: 9383: 9363: 9331: 9299: 9263: 9262:{\displaystyle a\in A} 9237: 9217: 9197: 9177: 9145: 9125: 9101:is a cluster point of 9095: 9073: 9049:is a cluster point of 9043: 9023: 8996: 8976: 8947: 8927: 8907: 8814: 8771: 8736: 8722:is a neighbourhood of 8716: 8689: 8688:{\displaystyle c\in I} 8663: 8662:{\displaystyle x\in X} 8637: 8586: 8557: 8517: 8484: 8455: 8435: 8372: 8352: 8303: 8283: 8260: 8233: 8203: 8173: 8118: 8059: 7994: 7993:{\displaystyle a\in A} 7968: 7945: 7925: 7862: 7839: 7819: 7766: 7717: 7688: 7639: 7619: 7571: 7547: 7527: 7482: 7459: 7439: 7374: 7341: 7324:must be continuous at 7318: 7298: 7275: 7255: 7217: 7200:and therefore also in 7194: 7168: 7130: 7101: 7075: 6995:and by our assumption 6989: 6946: 6910: 6890: 6870: 6834: 6833:{\displaystyle a_{0}.} 6804: 6781: 6759: 6736: 6698: 6678: 6658: 6638: 6618: 6598: 6572: 6549: 6529: 6465: 6437: 6417: 6388: 6350: 6327: 6305: 6282: 6253: 6230: 6207: 6187: 6102: 6059: 5998: 5978: 5955: 5869: 5846: 5817: 5782: 5721: 5692: 5665: 5642: 5613: 5586: 5566: 5552:(by the continuity of 5546: 5526: 5479: 5456: 5424: 5404: 5361: 5300: 5277: 5257: 5212: 5192: 5169: 5116: 5096: 5063: 5031: 5008: 4950: 4930: 4890: 4829: 4805: 4761: 4738: 4718: 4692: 4669: 4643: 4603: 4583: 4535: 4486: 4485:{\displaystyle x\in X} 4460: 4436: 4408: 4379: 4356: 4314: 4313:{\displaystyle a\in A} 4288: 4255: 4194: 4174: 4154: 4134: 4114: 4035: 4004: 3981: 3932: 3897: 3896:{\displaystyle c\in A} 3871: 3840: 3761: 3738: 3718: 3687: 3664: 3584: 3552: 3532: 3465: 3436: 3409: 3389: 3363: 3318: 3298: 3264: 3234: 3214: 3187: 3186:{\displaystyle x\in X} 3159: 3130: 3095: 3066: 3040: 3011: 2964: 2928: 2896: 2829: 2809: 2780: 2748: 2709: 2682: 2621: 2532: 2455: 2454:{\displaystyle a\in A} 2429: 2378: 2358: 2331: 2283: 2260: 2259:{\displaystyle x\in X} 2234: 2211: 2188: 2156: 2155:{\displaystyle x\in X} 2130: 2094: 2068: 2067:{\displaystyle b\in A} 2042: 2041:{\displaystyle a\in A} 2016: 1981: 1922:Cluster points of nets 1911: 1890: 1854: 1814: 1791: 1666: 1640: 1604: 1565: 1545: 1269: 1246: 1215: 1195: 1168: 1145: 1118: 1098: 1055: 1054:{\displaystyle x\in X} 1029: 993: 964: 963:{\displaystyle b\in A} 938: 937:{\displaystyle a\in A} 912: 881: 812: 811:{\displaystyle a\in A} 782: 734: 710: 686: 662: 613: 590: 547: 486: 452: 451:{\displaystyle b<c} 426: 425:{\displaystyle a<c} 400: 374: 328: 308: 279: 253: 252:{\displaystyle c\in A} 227: 184: 158: 95:FrĂ©chet–Urysohn spaces 87:topological properties 21442:Beer, Gerald (1993). 21235:Joshi, K. D. (1983), 21019: 20983: 20961: 20934: 20909: 20878: 20836: 20803: 20772: 20723: 20684: 20624: 20588: 20508: 20397: 20370: 20343: 20276: 20247: 20154: 20120: 20093: 20052: 20018: 19989: 19956: 19934: 19882: 19814: 19783: 19750: 19648: 19617: 19594: 19571: 19551: 19531: 19503: 19465: 19427: 19389: 19369: 19349: 19327: 19304: 19285: 19262: 19242: 19189: 19166: 19137: 19099: 19061: 19041: 19019: 18984: 18961: 18959:{\displaystyle [0,t)} 18929: 18909: 18889: 18847: 18824: 18801: 18781: 18761: 18735: 18712: 18683: 18627: 18589: 18551: 18531: 18511: 18464: 18444: 18425: 18402: 18382: 18331: 18305: 18285: 18265: 18242: 18213: 18154: 18116: 18078: 18058: 18038: 17992: 17957: 17919: 17896: 17876: 17856: 17797: 17771: 17751: 17713: 17683: 17648: 17622: 17620:{\displaystyle (M,d)} 17588: 17492: 17467: 17418: 17380: 17339: 17293: 17192: 17167: 17115: 17113:{\displaystyle (M,d)} 17083: 17050: 16989: 16959: 16931: 16929:{\displaystyle (M,d)} 16871: 16785: 16662: 16570: 16510: 16443: 16419: 16417:{\displaystyle X_{i}} 16392: 16343: 16303: 16283: 16259: 16236: 16209: 16155: 16153:{\displaystyle X_{i}} 16128: 16070: 16030: 16001: 15968: 15941: 15939:{\displaystyle (0,1)} 15909: 15889: 15862: 15794: 15739: 15694: 15649: 15616: 15583: 15548: 15546:{\displaystyle (1,1)} 15516: 15424: 15361: 15313: 15284: 15282:{\displaystyle L_{i}} 15257: 15212: 15178: 15158: 15136:And whenever the net 15131: 15101: 15099:{\displaystyle L_{i}} 15074: 14957: 14928: 14899:in the product space 14894: 14874: 14847: 14755: 14656: 14593: 14540: 14491: 14424: 14397: 14370: 14248: 14219: 14199: 14165: 14102: 13966: 13964:{\displaystyle X_{l}} 13939: 13906: 13840: 13778: 13760:) of the given point 13754:neighborhood subbases 13747: 13724: 13694: 13674: 13654: 13627: 13594: 13574: 13544: 13524: 13522:{\displaystyle x_{S}} 13497: 13478:. Therefore, in this 13473: 13450: 13448:{\displaystyle x_{S}} 13423: 13399: 13379: 13344: 13321: 13319:{\displaystyle x_{S}} 13294: 13258: 13235: 13213: 13187: 13185:{\displaystyle N_{x}} 13160: 13133: 13131:{\displaystyle N_{x}} 13106: 13086: 13063: 13043: 13041:{\displaystyle x_{a}} 13016: 12955: 12921: 12901: 12877: 12857: 12830: 12807: 12767: 12747: 12707: 12680: 12600: 12574: 12501: 12465: 12445: 12418: 12416:{\displaystyle h_{n}} 12391: 12339:induces the sequence 12334: 12279: 12245: 12225: 12203: 12169: 12147: 12127: 12101: 12054: 12025: 11999: 11979: 11938: 11903: 11871: 11848: 11804: 11778: 11747: 11722: 11698: 11673: 11653: 11598: 11564: 11544: 11502: 11482: 11435: 11415: 11369: 11345: 11310: 11257: 11237: 11193: 11157: 11110: 11081: 11061: 11038: 11018: 10995: 10950: 10921: 10901: 10878: 10858: 10835: 10808: 10784: 10764: 10744: 10720: 10700: 10680: 10654: 10631: 10595: 10569: 10541: 10521: 10501: 10478: 10455: 10435: 10390: 10367: 10365:{\displaystyle a_{n}} 10340: 10311: 10283: 10263: 10232: 10230:{\displaystyle x_{a}} 10201: 10172: 10149: 10103: 10079: 10054: 10034: 10014: 9964: 9942: 9871: 9851: 9754: 9734: 9647: 9627: 9603: 9583: 9548: 9525: 9476: 9428: 9404: 9384: 9364: 9362:{\displaystyle (U,a)} 9332: 9300: 9264: 9238: 9218: 9198: 9178: 9176:{\displaystyle (U,a)} 9146: 9126: 9096: 9074: 9044: 9024: 8997: 8977: 8948: 8928: 8908: 8815: 8772: 8737: 8717: 8715:{\displaystyle U_{c}} 8690: 8664: 8638: 8587: 8558: 8518: 8485: 8456: 8436: 8373: 8353: 8304: 8284: 8261: 8234: 8204: 8174: 8119: 8060: 7995: 7969: 7946: 7926: 7863: 7840: 7820: 7767: 7718: 7689: 7640: 7620: 7572: 7548: 7528: 7483: 7460: 7440: 7375: 7342: 7319: 7299: 7276: 7256: 7218: 7195: 7169: 7131: 7102: 7076: 6990: 6947: 6911: 6891: 6871: 6835: 6805: 6782: 6760: 6737: 6699: 6679: 6659: 6639: 6619: 6599: 6597:{\displaystyle x_{a}} 6573: 6550: 6530: 6466: 6438: 6418: 6389: 6351: 6328: 6306: 6288:whose preimage under 6283: 6254: 6231: 6213:is not continuous at 6208: 6188: 6103: 6060: 5999: 5979: 5956: 5870: 5852:which is a subset of 5847: 5818: 5783: 5722: 5693: 5666: 5643: 5614: 5587: 5567: 5547: 5532:is a neighborhood of 5527: 5480: 5457: 5455:{\displaystyle f(x),} 5425: 5405: 5362: 5301: 5278: 5258: 5220:first-countable space 5213: 5193: 5170: 5117: 5097: 5064: 5032: 5009: 4951: 4931: 4891: 4830: 4806: 4762: 4739: 4719: 4693: 4670: 4644: 4604: 4584: 4536: 4487: 4466:is the set of points 4461: 4437: 4409: 4380: 4357: 4315: 4289: 4256: 4195: 4175: 4155: 4135: 4115: 4036: 4010:More generally, in a 4005: 3982: 3933: 3898: 3872: 3841: 3762: 3739: 3719: 3688: 3665: 3585: 3553: 3533: 3466: 3437: 3410: 3390: 3364: 3319: 3299: 3265: 3235: 3215: 3188: 3160: 3131: 3096: 3072:means that for every 3067: 3041: 3012: 2965: 2929: 2897: 2830: 2810: 2781: 2749: 2710: 2683: 2622: 2533: 2456: 2430: 2379: 2359: 2332: 2284: 2261: 2235: 2212: 2189: 2157: 2131: 2095: 2069: 2043: 2017: 1982: 1912: 1891: 1855: 1815: 1813:{\displaystyle \to .} 1792: 1667: 1641: 1605: 1566: 1546: 1270: 1247: 1216: 1196: 1169: 1146: 1119: 1099: 1056: 1030: 994: 965: 939: 918:if there exists some 913: 882: 813: 783: 735: 711: 687: 663: 614: 591: 548: 487: 453: 427: 401: 375: 329: 309: 280: 254: 228: 185: 159: 21572:Megginson, Robert E. 20992: 20970: 20943: 20918: 20887: 20845: 20812: 20781: 20732: 20693: 20633: 20597: 20517: 20419: 20379: 20352: 20285: 20256: 20163: 20129: 20106: 20061: 20027: 19998: 19965: 19943: 19891: 19823: 19792: 19759: 19724: 19720:For an example, let 19628: 19603: 19580: 19560: 19540: 19514: 19474: 19436: 19398: 19378: 19358: 19338: 19313: 19293: 19271: 19251: 19200: 19175: 19164:{\displaystyle f(s)} 19146: 19108: 19104:such that for every 19070: 19050: 19030: 18993: 18970: 18938: 18918: 18898: 18866: 18833: 18810: 18790: 18770: 18744: 18721: 18710:{\displaystyle f(m)} 18692: 18636: 18598: 18560: 18540: 18520: 18476: 18453: 18433: 18411: 18391: 18340: 18314: 18294: 18274: 18251: 18240:{\displaystyle f(m)} 18222: 18163: 18125: 18121:such that for every 18087: 18067: 18047: 18003: 17966: 17928: 17905: 17885: 17865: 17806: 17780: 17760: 17722: 17711:{\displaystyle c:=0} 17696: 17657: 17631: 17599: 17501: 17476: 17427: 17389: 17356: 17310: 17201: 17176: 17124: 17092: 17059: 16998: 16972: 16964:is endowed with the 16948: 16908: 16796: 16671: 16620: 16519: 16452: 16432: 16401: 16356: 16312: 16292: 16272: 16245: 16218: 16164: 16137: 16079: 16039: 16010: 15984: 15950: 15918: 15898: 15871: 15803: 15748: 15703: 15658: 15625: 15592: 15557: 15525: 15433: 15429:denote the sequence 15370: 15322: 15293: 15266: 15221: 15187: 15167: 15140: 15110: 15083: 14965: 14937: 14903: 14883: 14856: 14766: 14762:For any given point 14665: 14602: 14598:with the projection 14549: 14504: 14498:function composition 14433: 14406: 14379: 14257: 14228: 14224:and for every index 14208: 14174: 14113: 13975: 13948: 13919: 13852: 13801: 13764: 13733: 13703: 13683: 13663: 13636: 13607: 13583: 13579:for the topology on 13559: 13533: 13506: 13486: 13459: 13432: 13408: 13388: 13353: 13330: 13303: 13267: 13244: 13224: 13196: 13169: 13146: 13115: 13095: 13072: 13052: 13025: 12977: 12963:Neighborhood systems 12934: 12910: 12890: 12866: 12839: 12816: 12776: 12756: 12716: 12693: 12685:is endowed with the 12622: 12583: 12510: 12474: 12454: 12427: 12400: 12343: 12295: 12254: 12234: 12212: 12178: 12156: 12136: 12110: 12066: 12034: 12008: 11988: 11947: 11912: 11880: 11857: 11813: 11787: 11756: 11731: 11711: 11682: 11662: 11607: 11573: 11553: 11511: 11491: 11444: 11424: 11378: 11358: 11350:is identical to the 11323: 11266: 11246: 11202: 11166: 11135: 11108:{\displaystyle f(x)} 11090: 11070: 11047: 11027: 11004: 10984: 10948:{\displaystyle f(x)} 10930: 10910: 10887: 10867: 10863:and any sequence in 10844: 10824: 10797: 10773: 10753: 10733: 10709: 10689: 10663: 10640: 10604: 10578: 10550: 10530: 10510: 10487: 10464: 10444: 10399: 10376: 10349: 10320: 10292: 10272: 10252: 10214: 10188: 10158: 10112: 10092: 10063: 10043: 10023: 9977: 9951: 9929: 9860: 9856:where the filter in 9763: 9743: 9695: 9636: 9616: 9592: 9572: 9534: 9485: 9437: 9417: 9393: 9373: 9341: 9309: 9273: 9247: 9227: 9207: 9187: 9155: 9151:be the set of pairs 9135: 9105: 9085: 9053: 9033: 9006: 8986: 8957: 8937: 8917: 8856: 8781: 8746: 8726: 8699: 8673: 8647: 8596: 8567: 8527: 8494: 8465: 8445: 8382: 8362: 8358:be an open cover of 8313: 8293: 8273: 8243: 8213: 8183: 8128: 8069: 8004: 7978: 7955: 7935: 7874: 7849: 7829: 7776: 7772:as well. Otherwise, 7727: 7698: 7649: 7629: 7581: 7561: 7537: 7515: 7469: 7449: 7388: 7364: 7328: 7308: 7285: 7265: 7227: 7223:in contradiction to 7204: 7178: 7140: 7129:{\displaystyle f(x)} 7111: 7085: 6999: 6956: 6920: 6900: 6896:is contained within 6880: 6844: 6814: 6791: 6771: 6746: 6708: 6688: 6668: 6648: 6628: 6608: 6581: 6559: 6539: 6478: 6455: 6427: 6398: 6360: 6337: 6314: 6292: 6281:{\displaystyle f(x)} 6263: 6243: 6217: 6197: 6111: 6069: 6008: 5988: 5968: 5879: 5856: 5845:{\displaystyle f(V)} 5827: 5792: 5731: 5702: 5675: 5652: 5623: 5619:which is denoted by 5600: 5576: 5556: 5536: 5488: 5466: 5434: 5414: 5371: 5310: 5287: 5267: 5245: 5202: 5179: 5126: 5106: 5073: 5041: 5037:Briefly, a function 5018: 4960: 4940: 4900: 4839: 4819: 4783: 4748: 4728: 4702: 4679: 4653: 4627: 4593: 4545: 4496: 4470: 4450: 4420: 4389: 4366: 4324: 4298: 4265: 4204: 4184: 4180:necessarily lies in 4164: 4144: 4124: 4098: 4018: 3991: 3941: 3907: 3881: 3861: 3789: 3748: 3728: 3699: 3674: 3594: 3562: 3542: 3481: 3446: 3419: 3399: 3372: 3344: 3340:if for every subset 3308: 3281: 3244: 3224: 3197: 3171: 3140: 3105: 3076: 3056: 3039:{\displaystyle h(I)} 3021: 2974: 2948: 2906: 2839: 2819: 2808:{\displaystyle h(I)} 2790: 2758: 2731: 2692: 2631: 2570: 2548:Subnet (mathematics) 2465: 2439: 2388: 2368: 2341: 2293: 2270: 2244: 2221: 2198: 2178: 2140: 2104: 2078: 2052: 2026: 2006: 1930: 1901: 1864: 1828: 1801: 1676: 1650: 1614: 1578: 1555: 1281: 1259: 1236: 1205: 1178: 1155: 1135: 1108: 1081: 1039: 1003: 974: 948: 944:such that for every 922: 902: 830: 796: 744: 720: 700: 676: 623: 603: 561: 496: 476: 436: 410: 384: 358: 318: 289: 263: 237: 202: 172: 148: 21172:, pp. 157–168. 19680:Filters in topology 19674:Filter (set theory) 19066:if there exists an 17924:its restriction to 16584:Tychonoff's theorem 16214:will be a limit of 13480:neighborhood system 12969:Neighborhood system 12208:which implies that 11121:neighbourhood basis 11066:the composition of 10906:the composition of 10288:if there exists an 10246:limit of a function 10242:limit of a sequence 9920:totally ordered set 9668:Relation to filters 8742:; however, for all 7798: 7494:Heine–Borel theorem 6704:). It follows that 6474:We construct a net 5462:its preimage under 5367:be a net such that 4442:is any subset, the 4416:More generally, if 4084:limit of a sequence 3778:to nets defined on 3590:is a function then 2877: for all  1665:{\displaystyle x=y} 144:is a non-empty set 21670:Dover Publications 21014: 20978: 20956: 20929: 20904: 20873: 20831: 20798: 20767: 20718: 20679: 20673: 20619: 20583: 20503: 20392: 20365: 20338: 20271: 20242: 20149: 20118:{\displaystyle r.} 20115: 20088: 20047: 20013: 19984: 19951: 19929: 19877: 19809: 19778: 19745: 19643: 19615:{\displaystyle V.} 19612: 19592:{\displaystyle y,} 19589: 19566: 19546: 19526: 19498: 19460: 19432:there exists some 19422: 19384: 19364: 19344: 19325:{\displaystyle V.} 19322: 19299: 19283:{\displaystyle L,} 19280: 19257: 19237: 19218: 19187:{\displaystyle V.} 19184: 19161: 19132: 19094: 19056: 19036: 19014: 18982:{\displaystyle X.} 18979: 18956: 18924: 18904: 18884: 18845:{\displaystyle V.} 18842: 18822:{\displaystyle L,} 18819: 18796: 18776: 18756: 18733:{\displaystyle S.} 18730: 18707: 18678: 18622: 18594:there exists some 18584: 18546: 18526: 18506: 18459: 18439: 18423:{\displaystyle L,} 18420: 18397: 18377: 18358: 18326: 18300: 18280: 18263:{\displaystyle S.} 18260: 18237: 18208: 18149: 18111: 18073: 18053: 18033: 17987: 17952: 17917:{\displaystyle M,} 17914: 17891: 17871: 17851: 17792: 17776:by declaring that 17766: 17746: 17708: 17678: 17643: 17617: 17583: 17487: 17462: 17413: 17375: 17334: 17288: 17187: 17162: 17110: 17078: 17045: 16984: 16954: 16942:pseudometric space 16926: 16866: 16780: 16766: 16750: 16721: 16705: 16657: 16565: 16540: 16505: 16493: 16492: 16460: 16438: 16414: 16387: 16338: 16298: 16278: 16257:{\displaystyle X.} 16254: 16231: 16204: 16150: 16123: 16065: 16035:there exists some 16025: 15996: 15963: 15936: 15904: 15884: 15857: 15789: 15734: 15689: 15644: 15611: 15578: 15543: 15511: 15419: 15356: 15308: 15279: 15252: 15207: 15195: 15173: 15153: 15126: 15096: 15069: 15012: 14952: 14923: 14911: 14889: 14869: 14842: 14827: 14826: 14750: 14714: 14651: 14623: 14588: 14576: 14535: 14486: 14419: 14392: 14365: 14306: 14243: 14214: 14194: 14182: 14160: 14097: 14095: 14004: 13961: 13934: 13901: 13890: 13860: 13835: 13776:{\displaystyle x.} 13773: 13758:neighborhood bases 13745:{\displaystyle x.} 13742: 13719: 13689: 13669: 13649: 13622: 13589: 13569: 13539: 13519: 13492: 13471:{\displaystyle x,} 13468: 13445: 13418: 13394: 13374: 13342:{\displaystyle S.} 13339: 13316: 13289: 13256:{\displaystyle T.} 13253: 13230: 13208: 13182: 13158:{\displaystyle x.} 13155: 13128: 13101: 13084:{\displaystyle a.} 13081: 13058: 13038: 13011: 12950: 12916: 12896: 12872: 12852: 12828:{\displaystyle S.} 12825: 12802: 12785: 12762: 12742: 12725: 12705:{\displaystyle X,} 12702: 12675: 12595: 12579:for every integer 12569: 12496: 12460: 12450:smallest value in 12440: 12423:is defined as the 12413: 12386: 12329: 12274: 12240: 12220: 12198: 12164: 12142: 12122: 12096: 12049: 12020: 11994: 11974: 11933: 11898: 11869:{\displaystyle x.} 11866: 11843: 11799: 11773: 11742: 11727:that converges to 11717: 11693: 11678:that converges to 11668: 11648: 11593: 11559: 11539: 11497: 11477: 11430: 11420:that are equal to 11410: 11364: 11340: 11305: 11252: 11232: 11225: 11224: 11188: 11152: 11105: 11076: 11059:{\displaystyle x,} 11056: 11033: 11016:{\displaystyle X,} 11013: 10990: 10945: 10916: 10899:{\displaystyle x,} 10896: 10873: 10856:{\displaystyle X,} 10853: 10830: 10803: 10779: 10759: 10739: 10715: 10695: 10675: 10652:{\displaystyle S.} 10649: 10626: 10590: 10564: 10536: 10516: 10499:{\displaystyle V.} 10496: 10476:{\displaystyle L,} 10473: 10450: 10430: 10388:{\displaystyle S.} 10385: 10362: 10335: 10306: 10278: 10258: 10227: 10196: 10170:{\displaystyle X.} 10167: 10144: 10098: 10074: 10049: 10029: 10009: 9969:preorder form the 9959: 9937: 9893:algebraic topology 9878:eventuality filter 9866: 9846: 9749: 9729: 9642: 9622: 9598: 9578: 9546:{\displaystyle y.} 9543: 9520: 9471: 9423: 9399: 9379: 9359: 9327: 9295: 9259: 9233: 9213: 9193: 9173: 9141: 9121: 9091: 9069: 9039: 9019: 8992: 8972: 8943: 8923: 8903: 8810: 8767: 8732: 8712: 8685: 8659: 8633: 8582: 8553: 8513: 8480: 8451: 8431: 8368: 8348: 8299: 8279: 8256: 8229: 8199: 8169: 8146: 8114: 8055: 7990: 7967:{\displaystyle A.} 7964: 7941: 7921: 7861:{\displaystyle X.} 7858: 7835: 7815: 7784: 7762: 7745: 7713: 7684: 7667: 7635: 7615: 7567: 7543: 7523: 7481:{\displaystyle X.} 7478: 7455: 7435: 7370: 7340:{\displaystyle x.} 7337: 7314: 7297:{\displaystyle a.} 7294: 7271: 7251: 7216:{\displaystyle U,} 7213: 7190: 7164: 7126: 7097: 7071: 7008: 6985: 6965: 6942: 6906: 6886: 6866: 6830: 6803:{\displaystyle x,} 6800: 6777: 6758:{\displaystyle U.} 6755: 6732: 6694: 6674: 6654: 6634: 6614: 6594: 6571:{\displaystyle a,} 6568: 6545: 6525: 6461: 6433: 6413: 6384: 6349:{\displaystyle x.} 6346: 6326:{\displaystyle V,} 6323: 6304:{\displaystyle f,} 6301: 6278: 6249: 6229:{\displaystyle x.} 6226: 6203: 6183: 6120: 6098: 6078: 6055: 5994: 5974: 5951: 5888: 5868:{\displaystyle U.} 5865: 5842: 5813: 5778: 5717: 5688: 5664:{\displaystyle x,} 5661: 5638: 5612:{\displaystyle V,} 5609: 5582: 5562: 5542: 5522: 5478:{\displaystyle f,} 5475: 5452: 5420: 5400: 5380: 5357: 5299:{\displaystyle x,} 5296: 5273: 5253: 5208: 5191:{\displaystyle Y.} 5188: 5165: 5112: 5092: 5059: 5030:{\displaystyle Y.} 5027: 5004: 4946: 4926: 4909: 4886: 4825: 4801: 4760:{\displaystyle S.} 4757: 4734: 4714: 4691:{\displaystyle S.} 4688: 4665: 4639: 4599: 4579: 4531: 4514: 4482: 4456: 4432: 4404: 4378:{\displaystyle X,} 4375: 4352: 4310: 4284: 4251: 4190: 4170: 4150: 4130: 4110: 4031: 4003:{\displaystyle V.} 4000: 3977: 3928: 3903:such that for all 3893: 3867: 3836: 3760:{\displaystyle x.} 3757: 3734: 3714: 3686:{\displaystyle Y.} 3683: 3670:is an ultranet in 3660: 3580: 3548: 3538:is an ultranet in 3528: 3461: 3432: 3405: 3385: 3359: 3314: 3294: 3260: 3230: 3210: 3183: 3155: 3126: 3101:there exists some 3091: 3062: 3036: 3007: 2960: 2942:order homomorphism 2924: 2892: 2825: 2805: 2776: 2744: 2705: 2678: 2617: 2528: 2451: 2425: 2374: 2354: 2327: 2282:{\displaystyle x.} 2279: 2256: 2233:{\displaystyle U.} 2230: 2210:{\displaystyle x,} 2207: 2184: 2166:accumulation point 2152: 2126: 2090: 2064: 2048:there exists some 2038: 2012: 1977: 1918:is not Hausdorff. 1907: 1886: 1850: 1810: 1787: 1770: 1672:) then one writes: 1662: 1636: 1600: 1561: 1541: 1539: 1492: 1437: 1265: 1242: 1211: 1191: 1167:{\displaystyle x,} 1164: 1141: 1114: 1094: 1051: 1025: 989: 960: 934: 908: 877: 808: 790:algebraic topology 788:. As is common in 778: 730: 706: 696:, and one assumes 682: 658: 609: 586: 543: 482: 448: 422: 396: 370: 324: 304: 275: 249: 233:there exists some 223: 180: 154: 57:whose domain is a 21679:978-0-486-43479-7 21642:978-0-12-622760-4 21533:978-0-387-90125-1 21491:978-0-387-97986-1 21426:978-3-540-32696-0 21335:, pp. 71–72. 21264:, pp. 83–92. 21138:, pp. 73–77. 21113:, pp. 65–72. 21098:Megginson, p. 143 20672: 19569:{\displaystyle V} 19549:{\displaystyle f} 19387:{\displaystyle X} 19367:{\displaystyle V} 19347:{\displaystyle f} 19309:is eventually in 19302:{\displaystyle f} 19260:{\displaystyle V} 19203: 19059:{\displaystyle X} 19039:{\displaystyle V} 18927:{\displaystyle f} 18907:{\displaystyle t} 18894:with limit point 18799:{\displaystyle V} 18779:{\displaystyle f} 18549:{\displaystyle X} 18529:{\displaystyle S} 18462:{\displaystyle V} 18449:is eventually in 18442:{\displaystyle f} 18400:{\displaystyle V} 18343: 18310:to a given point 18303:{\displaystyle X} 18283:{\displaystyle f} 18076:{\displaystyle X} 18056:{\displaystyle S} 17894:{\displaystyle c} 17874:{\displaystyle c} 17769:{\displaystyle c} 16957:{\displaystyle M} 16751: 16735: 16706: 16690: 16588:ultrafilter lemma 16477: 16441:{\displaystyle I} 16352:limit of the net 16301:{\displaystyle I} 16281:{\displaystyle L} 15907:{\displaystyle 1} 15176:{\displaystyle L} 15014: 15010: 14892:{\displaystyle L} 14811: 14721: 14716: 14712: 14698: 14313: 14308: 14304: 14290: 14217:{\displaystyle A} 13875: 13847:Cartesian product 13692:{\displaystyle x} 13672:{\displaystyle X} 13592:{\displaystyle X} 13542:{\displaystyle x} 13495:{\displaystyle x} 13397:{\displaystyle S} 13233:{\displaystyle S} 13104:{\displaystyle x} 13068:for large enough 13061:{\displaystyle x} 12919:{\displaystyle x} 12899:{\displaystyle S} 12875:{\displaystyle x} 12779: 12765:{\displaystyle X} 12719: 12689:induced on it by 12687:subspace topology 12614:Subspace topology 12463:{\displaystyle A} 12437: 12243:{\displaystyle E} 12145:{\displaystyle E} 11997:{\displaystyle E} 11720:{\displaystyle E} 11671:{\displaystyle E} 11562:{\displaystyle E} 11500:{\displaystyle 0} 11433:{\displaystyle 1} 11367:{\displaystyle E} 11255:{\displaystyle f} 11207: 11079:{\displaystyle f} 11036:{\displaystyle X} 10993:{\displaystyle x} 10964:sequential spaces 10919:{\displaystyle f} 10876:{\displaystyle X} 10833:{\displaystyle x} 10806:{\displaystyle f} 10782:{\displaystyle Y} 10762:{\displaystyle X} 10742:{\displaystyle f} 10718:{\displaystyle y} 10698:{\displaystyle V} 10539:{\displaystyle X} 10519:{\displaystyle S} 10453:{\displaystyle V} 10281:{\displaystyle X} 10261:{\displaystyle S} 10240:Similarly, every 10101:{\displaystyle X} 10052:{\displaystyle X} 10032:{\displaystyle X} 9869:{\displaystyle X} 9752:{\displaystyle X} 9645:{\displaystyle X} 9625:{\displaystyle X} 9601:{\displaystyle X} 9581:{\displaystyle X} 9557: 9556: 9426:{\displaystyle y} 9402:{\displaystyle B} 9382:{\displaystyle a} 9236:{\displaystyle X} 9216:{\displaystyle y} 9196:{\displaystyle U} 9144:{\displaystyle B} 9094:{\displaystyle y} 9042:{\displaystyle y} 8995:{\displaystyle y} 8946:{\displaystyle A} 8926:{\displaystyle X} 8825: 8824: 8735:{\displaystyle x} 8592:Consider the net 8454:{\displaystyle D} 8371:{\displaystyle X} 8302:{\displaystyle X} 8131: 7944:{\displaystyle X} 7838:{\displaystyle X} 7730: 7652: 7638:{\displaystyle X} 7570:{\displaystyle I} 7546:{\displaystyle X} 7458:{\displaystyle X} 7373:{\displaystyle X} 7352: 7351: 7317:{\displaystyle f} 7274:{\displaystyle U} 7174:is eventually in 7002: 6959: 6909:{\displaystyle W} 6889:{\displaystyle b} 6780:{\displaystyle W} 6697:{\displaystyle x} 6677:{\displaystyle V} 6657:{\displaystyle V} 6637:{\displaystyle x} 6617:{\displaystyle V} 6548:{\displaystyle x} 6464:{\displaystyle x} 6436:{\displaystyle x} 6252:{\displaystyle U} 6206:{\displaystyle f} 6193:Now suppose that 6114: 6072: 5997:{\displaystyle x} 5882: 5788:is eventually in 5698:is eventually in 5671:and consequently 5585:{\displaystyle x} 5565:{\displaystyle f} 5545:{\displaystyle x} 5423:{\displaystyle U} 5374: 5276:{\displaystyle f} 5211:{\displaystyle X} 5115:{\displaystyle X} 4949:{\displaystyle X} 4903: 4828:{\displaystyle x} 4737:{\displaystyle S} 4602:{\displaystyle S} 4499: 4459:{\displaystyle S} 4193:{\displaystyle S} 4173:{\displaystyle S} 4153:{\displaystyle X} 4133:{\displaystyle X} 3870:{\displaystyle V} 3737:{\displaystyle x} 3551:{\displaystyle X} 3408:{\displaystyle S} 3395:is eventually in 3317:{\displaystyle X} 3233:{\displaystyle x} 3065:{\displaystyle A} 2878: 2828:{\displaystyle A} 2377:{\displaystyle X} 2187:{\displaystyle U} 2162:is said to be an 2015:{\displaystyle S} 1910:{\displaystyle X} 1755: 1753: 1750: 1746: 1742: 1739: 1715: 1712: 1708: 1704: 1701: 1564:{\displaystyle X} 1529: 1483: 1474: 1422: 1413: 1365: 1322: 1268:{\displaystyle x} 1245:{\displaystyle x} 1214:{\displaystyle U} 1201:is eventually in 1144:{\displaystyle U} 1117:{\displaystyle X} 911:{\displaystyle S} 709:{\displaystyle A} 685:{\displaystyle X} 612:{\displaystyle A} 485:{\displaystyle X} 348:greatest elements 327:{\displaystyle A} 157:{\displaystyle A} 91:sequential spaces 67:topological space 16:(Redirected from 21712: 21705:General topology 21691: 21661:General Topology 21654: 21624: 21622: 21620: 21593: 21567: 21554:General Topology 21545: 21520:General Topology 21511: 21472:(23 June 1995). 21470:Howes, Norman R. 21465: 21438: 21408: 21406: 21384: 21381: 21375: 21372: 21366: 21363: 21357: 21354: 21348: 21342: 21336: 21330: 21324: 21321: 21310: 21309: 21303: 21295: 21293: 21292: 21286: 21280:. Archived from 21279: 21271: 21265: 21259: 21253: 21251: 21232: 21226: 21224: 21211:General Topology 21205: 21196: 21190: 21173: 21167: 21158: 21152: 21139: 21133: 21114: 21108: 21099: 21096: 21090: 21083: 21077: 21076: 21041: 21024: 21023: 21021: 21020: 21015: 21004: 21003: 20987: 20985: 20984: 20979: 20977: 20965: 20963: 20962: 20957: 20955: 20954: 20938: 20936: 20935: 20930: 20925: 20913: 20911: 20910: 20905: 20900: 20882: 20880: 20879: 20874: 20857: 20856: 20840: 20838: 20837: 20832: 20824: 20823: 20807: 20805: 20804: 20799: 20794: 20776: 20774: 20773: 20768: 20766: 20765: 20744: 20743: 20727: 20725: 20724: 20719: 20717: 20706: 20688: 20686: 20685: 20680: 20678: 20674: 20668: 20657: 20628: 20626: 20625: 20620: 20618: 20610: 20592: 20590: 20589: 20584: 20552: 20551: 20550: 20538: 20534: 20533: 20512: 20510: 20509: 20504: 20454: 20453: 20452: 20440: 20436: 20435: 20413: 20407: 20401: 20399: 20398: 20393: 20391: 20390: 20374: 20372: 20371: 20366: 20364: 20363: 20347: 20345: 20344: 20339: 20331: 20330: 20318: 20317: 20306: 20302: 20301: 20281:This shows that 20280: 20278: 20277: 20272: 20252:holds for every 20251: 20249: 20248: 20243: 20241: 20240: 20222: 20221: 20191: 20187: 20180: 20179: 20158: 20156: 20155: 20150: 20148: 20124: 20122: 20121: 20116: 20097: 20095: 20094: 20089: 20056: 20054: 20053: 20048: 20046: 20022: 20020: 20019: 20014: 19993: 19991: 19990: 19985: 19977: 19976: 19960: 19958: 19957: 19952: 19938: 19936: 19935: 19930: 19913: 19886: 19884: 19883: 19878: 19870: 19862: 19861: 19860: 19835: 19834: 19818: 19816: 19815: 19810: 19805: 19787: 19785: 19784: 19779: 19771: 19770: 19754: 19752: 19751: 19746: 19744: 19743: 19738: 19718: 19703: 19692:Sequential space 19652: 19650: 19649: 19644: 19621: 19619: 19618: 19613: 19598: 19596: 19595: 19590: 19575: 19573: 19572: 19567: 19555: 19553: 19552: 19547: 19535: 19533: 19532: 19527: 19507: 19505: 19504: 19499: 19469: 19467: 19466: 19461: 19431: 19429: 19428: 19423: 19393: 19391: 19390: 19385: 19373: 19371: 19370: 19365: 19353: 19351: 19350: 19345: 19331: 19329: 19328: 19323: 19308: 19306: 19305: 19300: 19289: 19287: 19286: 19281: 19266: 19264: 19263: 19258: 19246: 19244: 19243: 19238: 19217: 19193: 19191: 19190: 19185: 19170: 19168: 19167: 19162: 19141: 19139: 19138: 19133: 19103: 19101: 19100: 19095: 19065: 19063: 19062: 19057: 19045: 19043: 19042: 19037: 19023: 19021: 19020: 19015: 18988: 18986: 18985: 18980: 18965: 18963: 18962: 18957: 18933: 18931: 18930: 18925: 18913: 18911: 18910: 18905: 18893: 18891: 18890: 18887:{\displaystyle } 18885: 18861:well-ordered set 18851: 18849: 18848: 18843: 18828: 18826: 18825: 18820: 18805: 18803: 18802: 18797: 18785: 18783: 18782: 18777: 18765: 18763: 18762: 18757: 18739: 18737: 18736: 18731: 18716: 18714: 18713: 18708: 18687: 18685: 18684: 18679: 18631: 18629: 18628: 18623: 18593: 18591: 18590: 18585: 18555: 18553: 18552: 18547: 18535: 18533: 18532: 18527: 18515: 18513: 18512: 18507: 18468: 18466: 18465: 18460: 18448: 18446: 18445: 18440: 18429: 18427: 18426: 18421: 18406: 18404: 18403: 18398: 18386: 18384: 18383: 18378: 18357: 18335: 18333: 18332: 18327: 18309: 18307: 18306: 18301: 18289: 18287: 18286: 18281: 18269: 18267: 18266: 18261: 18246: 18244: 18243: 18238: 18217: 18215: 18214: 18209: 18158: 18156: 18155: 18150: 18120: 18118: 18117: 18112: 18082: 18080: 18079: 18074: 18062: 18060: 18059: 18054: 18042: 18040: 18039: 18034: 17996: 17994: 17993: 17988: 17961: 17959: 17958: 17953: 17923: 17921: 17920: 17915: 17900: 17898: 17897: 17892: 17880: 17878: 17877: 17872: 17860: 17858: 17857: 17852: 17801: 17799: 17798: 17793: 17775: 17773: 17772: 17767: 17755: 17753: 17752: 17747: 17717: 17715: 17714: 17709: 17690:Euclidean metric 17687: 17685: 17684: 17679: 17677: 17676: 17671: 17652: 17650: 17649: 17644: 17626: 17624: 17623: 17618: 17592: 17590: 17589: 17584: 17579: 17578: 17567: 17563: 17559: 17558: 17557: 17529: 17525: 17524: 17523: 17496: 17494: 17493: 17488: 17483: 17471: 17469: 17468: 17463: 17455: 17451: 17450: 17449: 17422: 17420: 17419: 17414: 17384: 17382: 17381: 17376: 17368: 17367: 17350:seminormed space 17343: 17341: 17340: 17335: 17297: 17295: 17294: 17289: 17287: 17286: 17275: 17271: 17270: 17266: 17265: 17264: 17232: 17228: 17227: 17226: 17196: 17194: 17193: 17188: 17183: 17171: 17169: 17168: 17163: 17155: 17151: 17150: 17149: 17119: 17117: 17116: 17111: 17087: 17085: 17084: 17079: 17071: 17070: 17054: 17052: 17051: 17046: 17044: 17043: 17032: 17028: 17027: 17010: 17009: 16993: 16991: 16990: 16985: 16963: 16961: 16960: 16955: 16935: 16933: 16932: 16927: 16886:Riemann integral 16880:Riemann integral 16875: 16873: 16872: 16867: 16862: 16861: 16846: 16845: 16827: 16826: 16814: 16813: 16789: 16787: 16786: 16781: 16776: 16775: 16765: 16749: 16731: 16730: 16720: 16704: 16686: 16685: 16666: 16664: 16663: 16658: 16653: 16652: 16641: 16637: 16636: 16574: 16572: 16571: 16566: 16564: 16563: 16551: 16550: 16541: 16531: 16530: 16514: 16512: 16511: 16506: 16504: 16503: 16494: 16491: 16471: 16470: 16461: 16448:is infinite and 16447: 16445: 16444: 16439: 16423: 16421: 16420: 16415: 16413: 16412: 16396: 16394: 16393: 16388: 16386: 16382: 16381: 16368: 16367: 16347: 16345: 16344: 16339: 16337: 16336: 16324: 16323: 16307: 16305: 16304: 16299: 16287: 16285: 16284: 16279: 16263: 16261: 16260: 16255: 16240: 16238: 16237: 16232: 16230: 16229: 16213: 16211: 16210: 16205: 16203: 16202: 16191: 16187: 16186: 16159: 16157: 16156: 16151: 16149: 16148: 16132: 16130: 16129: 16124: 16122: 16121: 16109: 16105: 16104: 16091: 16090: 16074: 16072: 16071: 16066: 16064: 16063: 16051: 16050: 16034: 16032: 16031: 16026: 16005: 16003: 16002: 15997: 15972: 15970: 15969: 15964: 15962: 15961: 15945: 15943: 15942: 15937: 15913: 15911: 15910: 15905: 15893: 15891: 15890: 15885: 15883: 15882: 15866: 15864: 15863: 15858: 15838: 15834: 15833: 15832: 15820: 15819: 15798: 15796: 15795: 15790: 15788: 15787: 15782: 15773: 15772: 15760: 15759: 15743: 15741: 15740: 15735: 15733: 15729: 15728: 15715: 15714: 15698: 15696: 15695: 15690: 15688: 15684: 15683: 15670: 15669: 15653: 15651: 15650: 15645: 15637: 15636: 15620: 15618: 15617: 15612: 15604: 15603: 15587: 15585: 15584: 15579: 15552: 15550: 15549: 15544: 15520: 15518: 15517: 15512: 15428: 15426: 15425: 15420: 15418: 15417: 15416: 15404: 15400: 15399: 15382: 15381: 15365: 15363: 15362: 15357: 15355: 15347: 15346: 15334: 15333: 15317: 15315: 15314: 15309: 15289:for every index 15288: 15286: 15285: 15280: 15278: 15277: 15261: 15259: 15258: 15253: 15251: 15247: 15246: 15233: 15232: 15216: 15214: 15213: 15208: 15206: 15205: 15196: 15182: 15180: 15179: 15174: 15162: 15160: 15159: 15154: 15152: 15151: 15135: 15133: 15132: 15127: 15122: 15121: 15105: 15103: 15102: 15097: 15095: 15094: 15078: 15076: 15075: 15070: 15068: 15067: 15056: 15052: 15051: 15047: 15046: 15033: 15032: 15016: 15015: 15013: 15011: 15008: 15004: 14999: 14995: 14991: 14990: 14977: 14976: 14961: 14959: 14958: 14953: 14932: 14930: 14929: 14924: 14922: 14921: 14912: 14898: 14896: 14895: 14890: 14878: 14876: 14875: 14870: 14868: 14867: 14851: 14849: 14848: 14843: 14838: 14837: 14828: 14825: 14805: 14804: 14793: 14789: 14788: 14759: 14757: 14756: 14751: 14746: 14745: 14731: 14730: 14719: 14718: 14717: 14715: 14713: 14710: 14706: 14701: 14696: 14695: 14691: 14690: 14677: 14676: 14660: 14658: 14657: 14652: 14647: 14646: 14634: 14633: 14624: 14614: 14613: 14597: 14595: 14594: 14589: 14587: 14586: 14577: 14561: 14560: 14544: 14542: 14541: 14536: 14534: 14530: 14529: 14516: 14515: 14495: 14493: 14492: 14487: 14482: 14481: 14463: 14459: 14458: 14445: 14444: 14428: 14426: 14425: 14420: 14418: 14417: 14401: 14399: 14398: 14393: 14391: 14390: 14374: 14372: 14371: 14366: 14364: 14363: 14352: 14348: 14347: 14343: 14342: 14329: 14328: 14311: 14310: 14309: 14307: 14305: 14302: 14298: 14293: 14288: 14287: 14283: 14282: 14269: 14268: 14252: 14250: 14249: 14244: 14223: 14221: 14220: 14215: 14203: 14201: 14200: 14195: 14193: 14192: 14183: 14169: 14167: 14166: 14161: 14159: 14158: 14147: 14143: 14142: 14125: 14124: 14106: 14104: 14103: 14098: 14096: 14092: 14091: 14074: 14072: 14071: 14060: 14056: 14055: 14040: 14039: 14035: 14034: 14017: 14015: 14014: 14005: 13997: 13991: 13990: 13970: 13968: 13967: 13962: 13960: 13959: 13943: 13941: 13940: 13935: 13913:product topology 13910: 13908: 13907: 13902: 13900: 13899: 13889: 13871: 13870: 13861: 13844: 13842: 13841: 13836: 13834: 13833: 13822: 13818: 13817: 13797:Explicitly, let 13782: 13780: 13779: 13774: 13751: 13749: 13748: 13743: 13728: 13726: 13725: 13720: 13718: 13717: 13698: 13696: 13695: 13690: 13678: 13676: 13675: 13670: 13658: 13656: 13655: 13650: 13648: 13647: 13631: 13629: 13628: 13623: 13598: 13596: 13595: 13590: 13578: 13576: 13575: 13570: 13568: 13567: 13548: 13546: 13545: 13540: 13528: 13526: 13525: 13520: 13518: 13517: 13501: 13499: 13498: 13493: 13477: 13475: 13474: 13469: 13454: 13452: 13451: 13446: 13444: 13443: 13427: 13425: 13424: 13419: 13403: 13401: 13400: 13395: 13383: 13381: 13380: 13375: 13373: 13369: 13368: 13348: 13346: 13345: 13340: 13325: 13323: 13322: 13317: 13315: 13314: 13298: 13296: 13295: 13290: 13285: 13284: 13262: 13260: 13259: 13254: 13240:is contained in 13239: 13237: 13236: 13231: 13217: 13215: 13214: 13209: 13191: 13189: 13188: 13183: 13181: 13180: 13164: 13162: 13161: 13156: 13137: 13135: 13134: 13129: 13127: 13126: 13110: 13108: 13107: 13102: 13090: 13088: 13087: 13082: 13067: 13065: 13064: 13059: 13047: 13045: 13044: 13039: 13037: 13036: 13020: 13018: 13017: 13012: 13010: 13009: 12998: 12994: 12993: 12959: 12957: 12956: 12951: 12946: 12945: 12925: 12923: 12922: 12917: 12905: 12903: 12902: 12897: 12881: 12879: 12878: 12873: 12861: 12859: 12858: 12853: 12851: 12850: 12834: 12832: 12831: 12826: 12811: 12809: 12808: 12803: 12795: 12794: 12784: 12771: 12769: 12768: 12763: 12751: 12749: 12748: 12743: 12735: 12734: 12724: 12711: 12709: 12708: 12703: 12684: 12682: 12681: 12676: 12674: 12670: 12657: 12656: 12604: 12602: 12601: 12596: 12578: 12576: 12575: 12570: 12565: 12564: 12522: 12521: 12505: 12503: 12502: 12497: 12486: 12485: 12469: 12467: 12466: 12461: 12449: 12447: 12446: 12441: 12439: 12438: 12435: 12422: 12420: 12419: 12414: 12412: 12411: 12395: 12393: 12392: 12387: 12385: 12384: 12383: 12371: 12367: 12366: 12365: 12364: 12338: 12336: 12335: 12330: 12328: 12327: 12316: 12312: 12311: 12283: 12281: 12280: 12275: 12270: 12269: 12268: 12262: 12249: 12247: 12246: 12241: 12229: 12227: 12226: 12221: 12219: 12207: 12205: 12204: 12199: 12194: 12193: 12192: 12186: 12173: 12171: 12170: 12165: 12163: 12151: 12149: 12148: 12143: 12131: 12129: 12128: 12123: 12105: 12103: 12102: 12097: 12058: 12056: 12055: 12050: 12029: 12027: 12026: 12021: 12003: 12001: 12000: 11995: 11983: 11981: 11980: 11975: 11942: 11940: 11939: 11934: 11907: 11905: 11904: 11899: 11875: 11873: 11872: 11867: 11852: 11850: 11849: 11844: 11808: 11806: 11805: 11800: 11782: 11780: 11779: 11774: 11772: 11771: 11770: 11764: 11751: 11749: 11748: 11743: 11738: 11726: 11724: 11723: 11718: 11702: 11700: 11699: 11694: 11689: 11677: 11675: 11674: 11669: 11657: 11655: 11654: 11649: 11638: 11637: 11636: 11635: 11634: 11628: 11614: 11602: 11600: 11599: 11594: 11589: 11588: 11587: 11581: 11568: 11566: 11565: 11560: 11548: 11546: 11545: 11540: 11526: 11518: 11506: 11504: 11503: 11498: 11486: 11484: 11483: 11478: 11439: 11437: 11436: 11431: 11419: 11417: 11416: 11411: 11391: 11373: 11371: 11370: 11365: 11349: 11347: 11346: 11341: 11339: 11338: 11337: 11331: 11317:product topology 11314: 11312: 11311: 11306: 11301: 11300: 11299: 11261: 11259: 11258: 11253: 11241: 11239: 11238: 11233: 11231: 11226: 11223: 11222: 11197: 11195: 11194: 11189: 11187: 11179: 11161: 11159: 11158: 11153: 11151: 11150: 11149: 11143: 11114: 11112: 11111: 11106: 11085: 11083: 11082: 11077: 11065: 11063: 11062: 11057: 11042: 11040: 11039: 11034: 11022: 11020: 11019: 11014: 10999: 10997: 10996: 10991: 10980:Given any point 10954: 10952: 10951: 10946: 10925: 10923: 10922: 10917: 10905: 10903: 10902: 10897: 10882: 10880: 10879: 10874: 10862: 10860: 10859: 10854: 10839: 10837: 10836: 10831: 10820:Given any point 10812: 10810: 10809: 10804: 10788: 10786: 10785: 10780: 10768: 10766: 10765: 10760: 10748: 10746: 10745: 10740: 10724: 10722: 10721: 10716: 10704: 10702: 10701: 10696: 10684: 10682: 10681: 10676: 10658: 10656: 10655: 10650: 10635: 10633: 10632: 10627: 10616: 10615: 10599: 10597: 10596: 10591: 10573: 10571: 10570: 10565: 10563: 10545: 10543: 10542: 10537: 10525: 10523: 10522: 10517: 10505: 10503: 10502: 10497: 10482: 10480: 10479: 10474: 10459: 10457: 10456: 10451: 10439: 10437: 10436: 10431: 10423: 10422: 10413: 10412: 10407: 10394: 10392: 10391: 10386: 10371: 10369: 10368: 10363: 10361: 10360: 10344: 10342: 10341: 10336: 10315: 10313: 10312: 10307: 10305: 10287: 10285: 10284: 10279: 10267: 10265: 10264: 10259: 10236: 10234: 10233: 10228: 10226: 10225: 10205: 10203: 10202: 10197: 10195: 10182:linearly ordered 10176: 10174: 10173: 10168: 10153: 10151: 10150: 10145: 10119: 10107: 10105: 10104: 10099: 10083: 10081: 10080: 10075: 10070: 10058: 10056: 10055: 10050: 10038: 10036: 10035: 10030: 10018: 10016: 10015: 10010: 10002: 10001: 9989: 9988: 9968: 9966: 9965: 9960: 9946: 9944: 9943: 9938: 9936: 9918:Every non-empty 9897:general topology 9884:Robert G. Bartle 9875: 9873: 9872: 9867: 9855: 9853: 9852: 9847: 9845: 9841: 9834: 9833: 9821: 9817: 9810: 9809: 9785: 9784: 9758: 9756: 9755: 9750: 9738: 9736: 9735: 9730: 9728: 9727: 9716: 9712: 9711: 9651: 9649: 9648: 9643: 9631: 9629: 9628: 9623: 9607: 9605: 9604: 9599: 9587: 9585: 9584: 9579: 9564:Other properties 9552: 9550: 9549: 9544: 9529: 9527: 9526: 9521: 9519: 9518: 9497: 9496: 9480: 9478: 9477: 9472: 9470: 9469: 9458: 9454: 9453: 9432: 9430: 9429: 9424: 9408: 9406: 9405: 9400: 9388: 9386: 9385: 9380: 9368: 9366: 9365: 9360: 9336: 9334: 9333: 9328: 9304: 9302: 9301: 9296: 9285: 9284: 9268: 9266: 9265: 9260: 9242: 9240: 9239: 9234: 9222: 9220: 9219: 9214: 9202: 9200: 9199: 9194: 9182: 9180: 9179: 9174: 9150: 9148: 9147: 9142: 9130: 9128: 9127: 9122: 9117: 9116: 9100: 9098: 9097: 9092: 9078: 9076: 9075: 9070: 9065: 9064: 9048: 9046: 9045: 9040: 9028: 9026: 9025: 9020: 9018: 9017: 9001: 8999: 8998: 8993: 8981: 8979: 8978: 8973: 8952: 8950: 8949: 8944: 8933:(where as usual 8932: 8930: 8929: 8924: 8912: 8910: 8909: 8904: 8902: 8901: 8890: 8886: 8885: 8868: 8867: 8841: 8840: 8819: 8817: 8816: 8811: 8806: 8805: 8793: 8792: 8776: 8774: 8773: 8768: 8741: 8739: 8738: 8733: 8721: 8719: 8718: 8713: 8711: 8710: 8694: 8692: 8691: 8686: 8668: 8666: 8665: 8660: 8642: 8640: 8639: 8634: 8629: 8628: 8617: 8613: 8612: 8591: 8589: 8588: 8583: 8562: 8560: 8559: 8554: 8552: 8551: 8539: 8538: 8522: 8520: 8519: 8514: 8506: 8505: 8490:there exists an 8489: 8487: 8486: 8481: 8460: 8458: 8457: 8452: 8440: 8438: 8437: 8432: 8418: 8410: 8377: 8375: 8374: 8369: 8357: 8355: 8354: 8349: 8347: 8343: 8330: 8329: 8308: 8306: 8305: 8300: 8288: 8286: 8285: 8280: 8265: 8263: 8262: 8257: 8255: 8254: 8238: 8236: 8235: 8230: 8225: 8224: 8208: 8206: 8205: 8200: 8195: 8194: 8178: 8176: 8175: 8170: 8162: 8161: 8145: 8123: 8121: 8120: 8115: 8098: 8094: 8093: 8064: 8062: 8061: 8056: 8051: 8047: 8034: 8033: 8016: 8015: 7999: 7997: 7996: 7991: 7973: 7971: 7970: 7965: 7950: 7948: 7947: 7942: 7930: 7928: 7927: 7922: 7920: 7919: 7908: 7904: 7903: 7886: 7885: 7867: 7865: 7864: 7859: 7844: 7842: 7841: 7836: 7824: 7822: 7821: 7816: 7814: 7813: 7802: 7797: 7792: 7771: 7769: 7768: 7763: 7755: 7754: 7744: 7722: 7720: 7719: 7714: 7694:for each finite 7693: 7691: 7690: 7685: 7677: 7676: 7666: 7644: 7642: 7641: 7636: 7624: 7622: 7621: 7616: 7614: 7613: 7602: 7598: 7597: 7576: 7574: 7573: 7568: 7552: 7550: 7549: 7544: 7532: 7530: 7529: 7524: 7500: 7499: 7487: 7485: 7484: 7479: 7464: 7462: 7461: 7456: 7444: 7442: 7441: 7436: 7434: 7433: 7422: 7418: 7417: 7400: 7399: 7379: 7377: 7376: 7371: 7346: 7344: 7343: 7338: 7323: 7321: 7320: 7315: 7303: 7301: 7300: 7295: 7280: 7278: 7277: 7272: 7260: 7258: 7257: 7252: 7250: 7246: 7245: 7222: 7220: 7219: 7214: 7199: 7197: 7196: 7191: 7173: 7171: 7170: 7165: 7163: 7159: 7158: 7135: 7133: 7132: 7127: 7106: 7104: 7103: 7098: 7080: 7078: 7077: 7072: 7052: 7051: 7040: 7036: 7035: 7031: 7030: 7007: 6994: 6992: 6991: 6986: 6975: 6974: 6964: 6951: 6949: 6948: 6943: 6932: 6931: 6915: 6913: 6912: 6907: 6895: 6893: 6892: 6887: 6875: 6873: 6872: 6867: 6862: 6861: 6839: 6837: 6836: 6831: 6826: 6825: 6809: 6807: 6806: 6801: 6786: 6784: 6783: 6778: 6764: 6762: 6761: 6756: 6741: 6739: 6738: 6733: 6731: 6727: 6726: 6703: 6701: 6700: 6695: 6683: 6681: 6680: 6675: 6663: 6661: 6660: 6655: 6643: 6641: 6640: 6635: 6623: 6621: 6620: 6615: 6603: 6601: 6600: 6595: 6593: 6592: 6577: 6575: 6574: 6569: 6554: 6552: 6551: 6546: 6534: 6532: 6531: 6526: 6524: 6523: 6512: 6508: 6507: 6490: 6489: 6470: 6468: 6467: 6462: 6442: 6440: 6439: 6434: 6422: 6420: 6419: 6414: 6393: 6391: 6390: 6385: 6355: 6353: 6352: 6347: 6332: 6330: 6329: 6324: 6310: 6308: 6307: 6302: 6287: 6285: 6284: 6279: 6258: 6256: 6255: 6250: 6236:Then there is a 6235: 6233: 6232: 6227: 6212: 6210: 6209: 6204: 6192: 6190: 6189: 6184: 6164: 6163: 6152: 6148: 6147: 6143: 6142: 6119: 6107: 6105: 6104: 6099: 6088: 6087: 6077: 6064: 6062: 6061: 6056: 6054: 6053: 6042: 6038: 6037: 6020: 6019: 6003: 6001: 6000: 5995: 5983: 5981: 5980: 5975: 5960: 5958: 5957: 5952: 5932: 5931: 5920: 5916: 5915: 5911: 5910: 5887: 5874: 5872: 5871: 5866: 5851: 5849: 5848: 5843: 5822: 5820: 5819: 5814: 5787: 5785: 5784: 5779: 5777: 5776: 5765: 5761: 5760: 5756: 5755: 5726: 5724: 5723: 5718: 5697: 5695: 5694: 5689: 5687: 5686: 5670: 5668: 5667: 5662: 5647: 5645: 5644: 5639: 5618: 5616: 5615: 5610: 5591: 5589: 5588: 5583: 5571: 5569: 5568: 5563: 5551: 5549: 5548: 5543: 5531: 5529: 5528: 5523: 5509: 5508: 5484: 5482: 5481: 5476: 5461: 5459: 5458: 5453: 5429: 5427: 5426: 5421: 5409: 5407: 5406: 5401: 5390: 5389: 5379: 5366: 5364: 5363: 5358: 5356: 5355: 5344: 5340: 5339: 5322: 5321: 5305: 5303: 5302: 5297: 5282: 5280: 5279: 5274: 5262: 5260: 5259: 5254: 5230: 5229: 5224:sequential space 5217: 5215: 5214: 5209: 5197: 5195: 5194: 5189: 5174: 5172: 5171: 5166: 5149: 5145: 5144: 5121: 5119: 5118: 5113: 5101: 5099: 5098: 5093: 5085: 5084: 5068: 5066: 5065: 5060: 5036: 5034: 5033: 5028: 5013: 5011: 5010: 5005: 4988: 4984: 4983: 4967: 4955: 4953: 4952: 4947: 4935: 4933: 4932: 4927: 4919: 4918: 4908: 4895: 4893: 4892: 4887: 4885: 4884: 4873: 4869: 4868: 4851: 4850: 4834: 4832: 4831: 4826: 4810: 4808: 4807: 4802: 4766: 4764: 4763: 4758: 4743: 4741: 4740: 4735: 4723: 4721: 4720: 4715: 4697: 4695: 4694: 4689: 4674: 4672: 4671: 4666: 4648: 4646: 4645: 4640: 4608: 4606: 4605: 4600: 4588: 4586: 4585: 4580: 4578: 4577: 4566: 4562: 4561: 4540: 4538: 4537: 4532: 4524: 4523: 4513: 4491: 4489: 4488: 4483: 4465: 4463: 4462: 4457: 4441: 4439: 4438: 4433: 4413: 4411: 4410: 4405: 4384: 4382: 4381: 4376: 4361: 4359: 4358: 4353: 4345: 4344: 4335: 4334: 4332: 4319: 4317: 4316: 4311: 4293: 4291: 4290: 4285: 4277: 4276: 4260: 4258: 4257: 4252: 4250: 4249: 4238: 4234: 4233: 4216: 4215: 4199: 4197: 4196: 4191: 4179: 4177: 4176: 4171: 4159: 4157: 4156: 4151: 4139: 4137: 4136: 4131: 4119: 4117: 4116: 4111: 4052:(TVS) is called 4040: 4038: 4037: 4032: 4030: 4029: 4009: 4007: 4006: 4001: 3986: 3984: 3983: 3978: 3976: 3972: 3971: 3970: 3958: 3957: 3937: 3935: 3934: 3929: 3902: 3900: 3899: 3894: 3876: 3874: 3873: 3868: 3852: 3851: 3845: 3843: 3842: 3837: 3835: 3834: 3823: 3819: 3818: 3801: 3800: 3766: 3764: 3763: 3758: 3743: 3741: 3740: 3735: 3723: 3721: 3720: 3715: 3692: 3690: 3689: 3684: 3669: 3667: 3666: 3661: 3659: 3658: 3647: 3643: 3642: 3638: 3637: 3612: 3611: 3589: 3587: 3586: 3581: 3557: 3555: 3554: 3549: 3537: 3535: 3534: 3529: 3527: 3526: 3515: 3511: 3510: 3493: 3492: 3470: 3468: 3467: 3462: 3441: 3439: 3438: 3433: 3431: 3430: 3414: 3412: 3411: 3406: 3394: 3392: 3391: 3386: 3384: 3383: 3368: 3366: 3365: 3360: 3338: 3337: 3330: 3329: 3323: 3321: 3320: 3315: 3303: 3301: 3300: 3295: 3293: 3292: 3269: 3267: 3266: 3261: 3256: 3255: 3239: 3237: 3236: 3231: 3219: 3217: 3216: 3211: 3209: 3208: 3192: 3190: 3189: 3184: 3164: 3162: 3161: 3156: 3135: 3133: 3132: 3127: 3100: 3098: 3097: 3092: 3071: 3069: 3068: 3063: 3045: 3043: 3042: 3037: 3016: 3014: 3013: 3008: 2969: 2967: 2966: 2961: 2937:order-preserving 2933: 2931: 2930: 2925: 2901: 2899: 2898: 2893: 2879: 2876: 2873: 2872: 2851: 2850: 2834: 2832: 2831: 2826: 2814: 2812: 2811: 2806: 2785: 2783: 2782: 2777: 2753: 2751: 2750: 2745: 2743: 2742: 2725: 2724: 2714: 2712: 2711: 2706: 2704: 2703: 2687: 2685: 2684: 2679: 2677: 2676: 2665: 2661: 2660: 2643: 2642: 2626: 2624: 2623: 2618: 2616: 2615: 2604: 2600: 2599: 2582: 2581: 2537: 2535: 2534: 2529: 2527: 2523: 2498: 2497: 2480: 2479: 2460: 2458: 2457: 2452: 2434: 2432: 2431: 2426: 2424: 2420: 2419: 2400: 2399: 2383: 2381: 2380: 2375: 2363: 2361: 2360: 2355: 2353: 2352: 2336: 2334: 2333: 2328: 2326: 2322: 2321: 2305: 2304: 2288: 2286: 2285: 2280: 2265: 2263: 2262: 2257: 2239: 2237: 2236: 2231: 2216: 2214: 2213: 2208: 2193: 2191: 2190: 2185: 2168: 2167: 2161: 2159: 2158: 2153: 2135: 2133: 2132: 2127: 2116: 2115: 2099: 2097: 2096: 2091: 2073: 2071: 2070: 2065: 2047: 2045: 2044: 2039: 2021: 2019: 2018: 2013: 2001: 2000: 1993: 1992: 1986: 1984: 1983: 1978: 1976: 1975: 1964: 1960: 1959: 1942: 1941: 1916: 1914: 1913: 1908: 1895: 1893: 1892: 1887: 1879: 1878: 1859: 1857: 1856: 1851: 1843: 1842: 1819: 1817: 1816: 1811: 1796: 1794: 1793: 1788: 1780: 1779: 1769: 1751: 1748: 1747: 1744: 1740: 1737: 1729: 1728: 1713: 1710: 1709: 1706: 1702: 1699: 1691: 1690: 1671: 1669: 1668: 1663: 1645: 1643: 1642: 1637: 1629: 1628: 1609: 1607: 1606: 1601: 1593: 1592: 1570: 1568: 1567: 1562: 1550: 1548: 1547: 1542: 1540: 1530: 1527: 1522: 1516: 1507: 1505: 1504: 1491: 1475: 1472: 1467: 1461: 1452: 1450: 1449: 1436: 1414: 1411: 1406: 1400: 1391: 1389: 1388: 1366: 1363: 1358: 1352: 1343: 1341: 1340: 1330: 1323: 1320: 1315: 1309: 1300: 1298: 1297: 1287: 1274: 1272: 1271: 1266: 1251: 1249: 1248: 1243: 1231: 1230: 1220: 1218: 1217: 1212: 1200: 1198: 1197: 1192: 1190: 1189: 1173: 1171: 1170: 1165: 1150: 1148: 1147: 1142: 1123: 1121: 1120: 1115: 1103: 1101: 1100: 1095: 1093: 1092: 1075: 1074: 1067: 1066: 1060: 1058: 1057: 1052: 1034: 1032: 1031: 1026: 1015: 1014: 998: 996: 995: 990: 969: 967: 966: 961: 943: 941: 940: 935: 917: 915: 914: 909: 886: 884: 883: 878: 876: 875: 864: 860: 859: 842: 841: 817: 815: 814: 809: 787: 785: 784: 779: 777: 776: 765: 761: 760: 739: 737: 736: 731: 715: 713: 712: 707: 691: 689: 688: 683: 667: 665: 664: 659: 657: 656: 635: 634: 618: 616: 615: 610: 595: 593: 592: 587: 573: 572: 552: 550: 549: 544: 542: 541: 530: 526: 525: 508: 507: 491: 489: 488: 483: 457: 455: 454: 449: 431: 429: 428: 423: 405: 403: 402: 397: 379: 377: 376: 371: 352:maximal elements 333: 331: 330: 325: 313: 311: 310: 305: 284: 282: 281: 276: 258: 256: 255: 250: 232: 230: 229: 224: 189: 187: 186: 181: 164:together with a 163: 161: 160: 155: 43:general topology 32:Net (polyhedron) 21: 21720: 21719: 21715: 21714: 21713: 21711: 21710: 21709: 21695: 21694: 21680: 21643: 21629:Schechter, Eric 21618: 21616: 21614: 21598:Schechter, Eric 21590: 21564: 21550:Kelley, John L. 21534: 21516:Kelley, John L. 21492: 21482:Springer-Verlag 21454: 21427: 21393: 21388: 21387: 21382: 21378: 21373: 21369: 21364: 21360: 21355: 21351: 21343: 21339: 21331: 21327: 21322: 21313: 21297: 21296: 21290: 21288: 21284: 21277: 21275:"Archived copy" 21273: 21272: 21268: 21260: 21256: 21249: 21233: 21229: 21222: 21206: 21199: 21191: 21176: 21168: 21161: 21153: 21142: 21134: 21117: 21109: 21102: 21097: 21093: 21084: 21080: 21065:10.2307/2370388 21042: 21038: 21033: 21028: 21027: 20999: 20995: 20993: 20990: 20989: 20973: 20971: 20968: 20967: 20950: 20946: 20944: 20941: 20940: 20921: 20919: 20916: 20915: 20896: 20888: 20885: 20884: 20852: 20848: 20846: 20843: 20842: 20819: 20815: 20813: 20810: 20809: 20790: 20782: 20779: 20778: 20752: 20748: 20739: 20735: 20733: 20730: 20729: 20713: 20702: 20694: 20691: 20690: 20658: 20655: 20651: 20634: 20631: 20630: 20614: 20606: 20598: 20595: 20594: 20546: 20539: 20529: 20525: 20521: 20520: 20518: 20515: 20514: 20448: 20441: 20431: 20427: 20423: 20422: 20420: 20417: 20416: 20414: 20410: 20404:uncountable set 20386: 20382: 20380: 20377: 20376: 20359: 20355: 20353: 20350: 20349: 20326: 20322: 20307: 20297: 20293: 20289: 20288: 20286: 20283: 20282: 20257: 20254: 20253: 20236: 20232: 20208: 20204: 20175: 20171: 20170: 20166: 20164: 20161: 20160: 20144: 20130: 20127: 20126: 20107: 20104: 20103: 20062: 20059: 20058: 20042: 20028: 20025: 20024: 19999: 19996: 19995: 19972: 19968: 19966: 19963: 19962: 19944: 19941: 19940: 19909: 19892: 19889: 19888: 19866: 19856: 19849: 19845: 19830: 19826: 19824: 19821: 19820: 19801: 19793: 19790: 19789: 19766: 19762: 19760: 19757: 19756: 19739: 19734: 19733: 19725: 19722: 19721: 19719: 19715: 19710: 19701: 19665: 19629: 19626: 19625: 19604: 19601: 19600: 19581: 19578: 19577: 19561: 19558: 19557: 19541: 19538: 19537: 19515: 19512: 19511: 19475: 19472: 19471: 19437: 19434: 19433: 19399: 19396: 19395: 19379: 19376: 19375: 19359: 19356: 19355: 19339: 19336: 19335: 19314: 19311: 19310: 19294: 19291: 19290: 19272: 19269: 19268: 19252: 19249: 19248: 19207: 19201: 19198: 19197: 19176: 19173: 19172: 19147: 19144: 19143: 19109: 19106: 19105: 19071: 19068: 19067: 19051: 19048: 19047: 19031: 19028: 19027: 18994: 18991: 18990: 18971: 18968: 18967: 18939: 18936: 18935: 18919: 18916: 18915: 18914:and a function 18899: 18896: 18895: 18867: 18864: 18863: 18857: 18834: 18831: 18830: 18811: 18808: 18807: 18791: 18788: 18787: 18771: 18768: 18767: 18745: 18742: 18741: 18722: 18719: 18718: 18693: 18690: 18689: 18637: 18634: 18633: 18599: 18596: 18595: 18561: 18558: 18557: 18541: 18538: 18537: 18521: 18518: 18517: 18477: 18474: 18473: 18454: 18451: 18450: 18434: 18431: 18430: 18412: 18409: 18408: 18392: 18389: 18388: 18347: 18341: 18338: 18337: 18336:if and only if 18315: 18312: 18311: 18295: 18292: 18291: 18275: 18272: 18271: 18252: 18249: 18248: 18223: 18220: 18219: 18164: 18161: 18160: 18126: 18123: 18122: 18088: 18085: 18084: 18068: 18065: 18064: 18048: 18045: 18044: 18004: 18001: 18000: 17967: 17964: 17963: 17929: 17926: 17925: 17906: 17903: 17902: 17886: 17883: 17882: 17866: 17863: 17862: 17807: 17804: 17803: 17802:if and only if 17781: 17778: 17777: 17761: 17758: 17757: 17723: 17720: 17719: 17697: 17694: 17693: 17672: 17667: 17666: 17658: 17655: 17654: 17632: 17629: 17628: 17600: 17597: 17596: 17568: 17553: 17549: 17542: 17538: 17534: 17533: 17519: 17515: 17508: 17504: 17502: 17499: 17498: 17479: 17477: 17474: 17473: 17445: 17441: 17434: 17430: 17428: 17425: 17424: 17423:if and only if 17390: 17387: 17386: 17363: 17359: 17357: 17354: 17353: 17311: 17308: 17307: 17276: 17260: 17256: 17249: 17245: 17241: 17237: 17236: 17222: 17218: 17211: 17207: 17202: 17199: 17198: 17179: 17177: 17174: 17173: 17145: 17141: 17134: 17130: 17125: 17122: 17121: 17120:if and only if 17093: 17090: 17089: 17066: 17062: 17060: 17057: 17056: 17055:is a net, then 17033: 17023: 17019: 17015: 17014: 17005: 17001: 16999: 16996: 16995: 16994:is a point and 16973: 16970: 16969: 16966:metric topology 16949: 16946: 16945: 16909: 16906: 16905: 16902: 16882: 16857: 16853: 16841: 16837: 16822: 16818: 16809: 16805: 16797: 16794: 16793: 16771: 16767: 16755: 16739: 16726: 16722: 16710: 16694: 16681: 16677: 16672: 16669: 16668: 16642: 16632: 16628: 16624: 16623: 16621: 16618: 16617: 16604: 16592:axiom of choice 16577:surjective maps 16559: 16555: 16546: 16542: 16535: 16526: 16522: 16520: 16517: 16516: 16499: 16495: 16481: 16475: 16466: 16462: 16455: 16453: 16450: 16449: 16433: 16430: 16429: 16426:Hausdorff space 16408: 16404: 16402: 16399: 16398: 16377: 16373: 16369: 16363: 16359: 16357: 16354: 16353: 16332: 16328: 16319: 16315: 16313: 16310: 16309: 16293: 16290: 16289: 16273: 16270: 16269: 16266:axiom of choice 16246: 16243: 16242: 16225: 16221: 16219: 16216: 16215: 16192: 16182: 16178: 16174: 16173: 16165: 16162: 16161: 16144: 16140: 16138: 16135: 16134: 16117: 16113: 16100: 16096: 16092: 16086: 16082: 16080: 16077: 16076: 16059: 16055: 16046: 16042: 16040: 16037: 16036: 16011: 16008: 16007: 15985: 15982: 15981: 15978: 15957: 15953: 15951: 15948: 15947: 15919: 15916: 15915: 15899: 15896: 15895: 15878: 15874: 15872: 15869: 15868: 15828: 15824: 15815: 15811: 15810: 15806: 15804: 15801: 15800: 15783: 15778: 15777: 15768: 15764: 15755: 15751: 15749: 15746: 15745: 15724: 15720: 15716: 15710: 15706: 15704: 15701: 15700: 15679: 15675: 15671: 15665: 15661: 15659: 15656: 15655: 15632: 15628: 15626: 15623: 15622: 15599: 15595: 15593: 15590: 15589: 15558: 15555: 15554: 15526: 15523: 15522: 15434: 15431: 15430: 15412: 15405: 15395: 15391: 15387: 15386: 15377: 15373: 15371: 15368: 15367: 15351: 15342: 15338: 15329: 15325: 15323: 15320: 15319: 15294: 15291: 15290: 15273: 15269: 15267: 15264: 15263: 15242: 15238: 15234: 15228: 15224: 15222: 15219: 15218: 15201: 15197: 15190: 15188: 15185: 15184: 15168: 15165: 15164: 15147: 15143: 15141: 15138: 15137: 15117: 15113: 15111: 15108: 15107: 15090: 15086: 15084: 15081: 15080: 15057: 15042: 15038: 15034: 15028: 15024: 15023: 15019: 15018: 15007: 15005: 15000: 14998: 14997: 14986: 14982: 14978: 14972: 14968: 14966: 14963: 14962: 14938: 14935: 14934: 14917: 14913: 14906: 14904: 14901: 14900: 14884: 14881: 14880: 14863: 14859: 14857: 14854: 14853: 14833: 14829: 14815: 14809: 14794: 14784: 14780: 14776: 14775: 14767: 14764: 14763: 14741: 14737: 14726: 14722: 14709: 14707: 14702: 14700: 14699: 14686: 14682: 14678: 14672: 14668: 14666: 14663: 14662: 14642: 14638: 14629: 14625: 14618: 14609: 14605: 14603: 14600: 14599: 14582: 14578: 14571: 14556: 14552: 14550: 14547: 14546: 14525: 14521: 14517: 14511: 14507: 14505: 14502: 14501: 14477: 14473: 14454: 14450: 14446: 14440: 14436: 14434: 14431: 14430: 14413: 14409: 14407: 14404: 14403: 14386: 14382: 14380: 14377: 14376: 14353: 14338: 14334: 14330: 14324: 14320: 14319: 14315: 14314: 14301: 14299: 14294: 14292: 14291: 14278: 14274: 14270: 14264: 14260: 14258: 14255: 14254: 14229: 14226: 14225: 14209: 14206: 14205: 14188: 14184: 14177: 14175: 14172: 14171: 14148: 14138: 14134: 14130: 14129: 14120: 14116: 14114: 14111: 14110: 14094: 14093: 14087: 14083: 14081: 14073: 14061: 14051: 14047: 14043: 14042: 14037: 14036: 14030: 14026: 14024: 14016: 14010: 14006: 13999: 13996: 13986: 13982: 13978: 13976: 13973: 13972: 13955: 13951: 13949: 13946: 13945: 13920: 13917: 13916: 13895: 13891: 13879: 13866: 13862: 13855: 13853: 13850: 13849: 13823: 13813: 13809: 13805: 13804: 13802: 13799: 13798: 13788: 13765: 13762: 13761: 13734: 13731: 13730: 13713: 13712: 13704: 13701: 13700: 13684: 13681: 13680: 13664: 13661: 13660: 13643: 13639: 13637: 13634: 13633: 13608: 13605: 13604: 13584: 13581: 13580: 13563: 13562: 13560: 13557: 13556: 13534: 13531: 13530: 13513: 13509: 13507: 13504: 13503: 13487: 13484: 13483: 13460: 13457: 13456: 13439: 13435: 13433: 13430: 13429: 13409: 13406: 13405: 13389: 13386: 13385: 13364: 13360: 13356: 13354: 13351: 13350: 13331: 13328: 13327: 13310: 13306: 13304: 13301: 13300: 13280: 13276: 13268: 13265: 13264: 13245: 13242: 13241: 13225: 13222: 13221: 13197: 13194: 13193: 13176: 13172: 13170: 13167: 13166: 13147: 13144: 13143: 13122: 13118: 13116: 13113: 13112: 13096: 13093: 13092: 13073: 13070: 13069: 13053: 13050: 13049: 13032: 13028: 13026: 13023: 13022: 12999: 12989: 12985: 12981: 12980: 12978: 12975: 12974: 12971: 12965: 12941: 12937: 12935: 12932: 12931: 12911: 12908: 12907: 12891: 12888: 12887: 12867: 12864: 12863: 12846: 12842: 12840: 12837: 12836: 12817: 12814: 12813: 12790: 12786: 12783: 12777: 12774: 12773: 12772:if and only if 12757: 12754: 12753: 12730: 12726: 12723: 12717: 12714: 12713: 12694: 12691: 12690: 12652: 12648: 12647: 12643: 12623: 12620: 12619: 12616: 12611: 12584: 12581: 12580: 12554: 12550: 12517: 12513: 12511: 12508: 12507: 12481: 12477: 12475: 12472: 12471: 12455: 12452: 12451: 12434: 12430: 12428: 12425: 12424: 12407: 12403: 12401: 12398: 12397: 12379: 12372: 12360: 12356: 12355: 12351: 12347: 12346: 12344: 12341: 12340: 12317: 12307: 12303: 12299: 12298: 12296: 12293: 12292: 12264: 12263: 12258: 12257: 12255: 12252: 12251: 12235: 12232: 12231: 12215: 12213: 12210: 12209: 12188: 12187: 12182: 12181: 12179: 12176: 12175: 12159: 12157: 12154: 12153: 12137: 12134: 12133: 12111: 12108: 12107: 12067: 12064: 12063: 12035: 12032: 12031: 12009: 12006: 12005: 11989: 11986: 11985: 11948: 11945: 11944: 11913: 11910: 11909: 11881: 11878: 11877: 11858: 11855: 11854: 11814: 11811: 11810: 11809:if and only if 11788: 11785: 11784: 11766: 11765: 11760: 11759: 11757: 11754: 11753: 11734: 11732: 11729: 11728: 11712: 11709: 11708: 11685: 11683: 11680: 11679: 11663: 11660: 11659: 11630: 11629: 11624: 11623: 11622: 11618: 11610: 11608: 11605: 11604: 11583: 11582: 11577: 11576: 11574: 11571: 11570: 11554: 11551: 11550: 11522: 11514: 11512: 11509: 11508: 11492: 11489: 11488: 11445: 11442: 11441: 11425: 11422: 11421: 11387: 11379: 11376: 11375: 11359: 11356: 11355: 11333: 11332: 11327: 11326: 11324: 11321: 11320: 11295: 11288: 11284: 11267: 11264: 11263: 11262:with the tuple 11247: 11244: 11243: 11227: 11218: 11211: 11205: 11203: 11200: 11199: 11183: 11175: 11167: 11164: 11163: 11145: 11144: 11139: 11138: 11136: 11133: 11132: 11091: 11088: 11087: 11071: 11068: 11067: 11048: 11045: 11044: 11028: 11025: 11024: 11023:and any net in 11005: 11002: 11001: 10985: 10982: 10981: 10931: 10928: 10927: 10911: 10908: 10907: 10888: 10885: 10884: 10868: 10865: 10864: 10845: 10842: 10841: 10825: 10822: 10821: 10798: 10795: 10794: 10774: 10771: 10770: 10754: 10751: 10750: 10734: 10731: 10730: 10710: 10707: 10706: 10690: 10687: 10686: 10664: 10661: 10660: 10641: 10638: 10637: 10611: 10607: 10605: 10602: 10601: 10579: 10576: 10575: 10559: 10551: 10548: 10547: 10531: 10528: 10527: 10511: 10508: 10507: 10488: 10485: 10484: 10465: 10462: 10461: 10445: 10442: 10441: 10418: 10414: 10408: 10406: 10405: 10400: 10397: 10396: 10377: 10374: 10373: 10356: 10352: 10350: 10347: 10346: 10321: 10318: 10317: 10301: 10293: 10290: 10289: 10273: 10270: 10269: 10253: 10250: 10249: 10221: 10217: 10215: 10212: 10211: 10191: 10189: 10186: 10185: 10159: 10156: 10155: 10115: 10113: 10110: 10109: 10093: 10090: 10089: 10066: 10064: 10061: 10060: 10044: 10041: 10040: 10024: 10021: 10020: 9997: 9993: 9984: 9980: 9978: 9975: 9974: 9952: 9949: 9948: 9932: 9930: 9927: 9926: 9924:natural numbers 9916: 9861: 9858: 9857: 9829: 9825: 9805: 9801: 9780: 9776: 9775: 9771: 9770: 9766: 9764: 9761: 9760: 9744: 9741: 9740: 9717: 9707: 9703: 9699: 9698: 9696: 9693: 9692: 9676: 9670: 9637: 9634: 9633: 9617: 9614: 9613: 9610:Hausdorff space 9593: 9590: 9589: 9573: 9570: 9569: 9566: 9558: 9535: 9532: 9531: 9505: 9501: 9492: 9488: 9486: 9483: 9482: 9459: 9449: 9445: 9441: 9440: 9438: 9435: 9434: 9418: 9415: 9414: 9394: 9391: 9390: 9374: 9371: 9370: 9342: 9339: 9338: 9310: 9307: 9306: 9280: 9276: 9274: 9271: 9270: 9248: 9245: 9244: 9228: 9225: 9224: 9208: 9205: 9204: 9188: 9185: 9184: 9156: 9153: 9152: 9136: 9133: 9132: 9112: 9108: 9106: 9103: 9102: 9086: 9083: 9082: 9060: 9056: 9054: 9051: 9050: 9034: 9031: 9030: 9013: 9009: 9007: 9004: 9003: 8987: 8984: 8983: 8958: 8955: 8954: 8938: 8935: 8934: 8918: 8915: 8914: 8891: 8881: 8877: 8873: 8872: 8863: 8859: 8857: 8854: 8853: 8846: 8831: 8826: 8801: 8797: 8788: 8784: 8782: 8779: 8778: 8747: 8744: 8743: 8727: 8724: 8723: 8706: 8702: 8700: 8697: 8696: 8674: 8671: 8670: 8648: 8645: 8644: 8618: 8608: 8604: 8600: 8599: 8597: 8594: 8593: 8568: 8565: 8564: 8547: 8543: 8534: 8530: 8528: 8525: 8524: 8501: 8497: 8495: 8492: 8491: 8466: 8463: 8462: 8446: 8443: 8442: 8414: 8406: 8383: 8380: 8379: 8363: 8360: 8359: 8325: 8321: 8320: 8316: 8314: 8311: 8310: 8294: 8291: 8290: 8274: 8271: 8270: 8250: 8246: 8244: 8241: 8240: 8220: 8216: 8214: 8211: 8210: 8190: 8186: 8184: 8181: 8180: 8157: 8153: 8135: 8129: 8126: 8125: 8089: 8085: 8081: 8070: 8067: 8066: 8065:The collection 8029: 8025: 8024: 8020: 8011: 8007: 8005: 8002: 8001: 7979: 7976: 7975: 7956: 7953: 7952: 7936: 7933: 7932: 7909: 7899: 7895: 7891: 7890: 7881: 7877: 7875: 7872: 7871: 7850: 7847: 7846: 7830: 7827: 7826: 7803: 7793: 7788: 7780: 7779: 7777: 7774: 7773: 7750: 7746: 7734: 7728: 7725: 7724: 7699: 7696: 7695: 7672: 7668: 7656: 7650: 7647: 7646: 7630: 7627: 7626: 7603: 7593: 7589: 7585: 7584: 7582: 7579: 7578: 7562: 7559: 7558: 7538: 7535: 7534: 7516: 7513: 7512: 7505: 7470: 7467: 7466: 7450: 7447: 7446: 7423: 7413: 7409: 7405: 7404: 7395: 7391: 7389: 7386: 7385: 7365: 7362: 7361: 7358: 7353: 7329: 7326: 7325: 7309: 7306: 7305: 7286: 7283: 7282: 7266: 7263: 7262: 7241: 7237: 7233: 7228: 7225: 7224: 7205: 7202: 7201: 7179: 7176: 7175: 7154: 7150: 7146: 7141: 7138: 7137: 7112: 7109: 7108: 7086: 7083: 7082: 7041: 7026: 7022: 7018: 7014: 7010: 7009: 7006: 7000: 6997: 6996: 6970: 6966: 6963: 6957: 6954: 6953: 6927: 6923: 6921: 6918: 6917: 6901: 6898: 6897: 6881: 6878: 6877: 6857: 6853: 6845: 6842: 6841: 6821: 6817: 6815: 6812: 6811: 6792: 6789: 6788: 6772: 6769: 6768: 6747: 6744: 6743: 6722: 6718: 6714: 6709: 6706: 6705: 6689: 6686: 6685: 6669: 6666: 6665: 6649: 6646: 6645: 6644:is included in 6629: 6626: 6625: 6609: 6606: 6605: 6588: 6584: 6582: 6579: 6578: 6560: 6557: 6556: 6555:whose index is 6540: 6537: 6536: 6513: 6503: 6499: 6495: 6494: 6485: 6481: 6479: 6476: 6475: 6456: 6453: 6452: 6428: 6425: 6424: 6399: 6396: 6395: 6361: 6358: 6357: 6338: 6335: 6334: 6315: 6312: 6311: 6293: 6290: 6289: 6264: 6261: 6260: 6244: 6241: 6240: 6218: 6215: 6214: 6198: 6195: 6194: 6153: 6138: 6134: 6130: 6126: 6122: 6121: 6118: 6112: 6109: 6108: 6083: 6079: 6076: 6070: 6067: 6066: 6043: 6033: 6029: 6025: 6024: 6015: 6011: 6009: 6006: 6005: 5989: 5986: 5985: 5969: 5966: 5965: 5921: 5906: 5902: 5898: 5894: 5890: 5889: 5886: 5880: 5877: 5876: 5857: 5854: 5853: 5828: 5825: 5824: 5793: 5790: 5789: 5766: 5751: 5747: 5743: 5739: 5735: 5734: 5732: 5729: 5728: 5703: 5700: 5699: 5682: 5678: 5676: 5673: 5672: 5653: 5650: 5649: 5624: 5621: 5620: 5601: 5598: 5597: 5577: 5574: 5573: 5557: 5554: 5553: 5537: 5534: 5533: 5501: 5497: 5489: 5486: 5485: 5467: 5464: 5463: 5435: 5432: 5431: 5415: 5412: 5411: 5385: 5381: 5378: 5372: 5369: 5368: 5345: 5335: 5331: 5327: 5326: 5317: 5313: 5311: 5308: 5307: 5288: 5285: 5284: 5268: 5265: 5264: 5246: 5243: 5242: 5235: 5203: 5200: 5199: 5180: 5177: 5176: 5140: 5136: 5132: 5127: 5124: 5123: 5107: 5104: 5103: 5080: 5076: 5074: 5071: 5070: 5042: 5039: 5038: 5019: 5016: 5015: 4979: 4975: 4971: 4966: 4961: 4958: 4957: 4941: 4938: 4937: 4914: 4910: 4907: 4901: 4898: 4897: 4896:in the domain, 4874: 4864: 4860: 4856: 4855: 4846: 4842: 4840: 4837: 4836: 4820: 4817: 4816: 4784: 4781: 4780: 4777: 4749: 4746: 4745: 4729: 4726: 4725: 4703: 4700: 4699: 4680: 4677: 4676: 4654: 4651: 4650: 4628: 4625: 4624: 4621: 4615: 4594: 4591: 4590: 4567: 4557: 4553: 4549: 4548: 4546: 4543: 4542: 4519: 4515: 4503: 4497: 4494: 4493: 4471: 4468: 4467: 4451: 4448: 4447: 4421: 4418: 4417: 4390: 4387: 4386: 4367: 4364: 4363: 4340: 4336: 4333: 4331: 4330: 4325: 4322: 4321: 4299: 4296: 4295: 4272: 4268: 4266: 4263: 4262: 4239: 4229: 4225: 4221: 4220: 4211: 4207: 4205: 4202: 4201: 4185: 4182: 4181: 4165: 4162: 4161: 4145: 4142: 4141: 4125: 4122: 4121: 4099: 4096: 4095: 4092: 4080: 4025: 4021: 4019: 4016: 4015: 3992: 3989: 3988: 3987:is a member of 3966: 3962: 3953: 3949: 3948: 3944: 3942: 3939: 3938: 3908: 3905: 3904: 3882: 3879: 3878: 3862: 3859: 3858: 3849: 3848: 3824: 3814: 3810: 3806: 3805: 3796: 3792: 3790: 3787: 3786: 3776:Cauchy sequence 3772: 3749: 3746: 3745: 3729: 3726: 3725: 3700: 3697: 3696: 3675: 3672: 3671: 3648: 3633: 3629: 3625: 3621: 3617: 3616: 3607: 3603: 3595: 3592: 3591: 3563: 3560: 3559: 3543: 3540: 3539: 3516: 3506: 3502: 3498: 3497: 3488: 3484: 3482: 3479: 3478: 3475:axiom of choice 3447: 3444: 3443: 3426: 3422: 3420: 3417: 3416: 3400: 3397: 3396: 3379: 3375: 3373: 3370: 3369: 3345: 3342: 3341: 3335: 3334: 3327: 3326: 3309: 3306: 3305: 3288: 3284: 3282: 3279: 3278: 3275: 3251: 3247: 3245: 3242: 3241: 3225: 3222: 3221: 3204: 3200: 3198: 3195: 3194: 3172: 3169: 3168: 3141: 3138: 3137: 3106: 3103: 3102: 3077: 3074: 3073: 3057: 3054: 3053: 3022: 3019: 3018: 2975: 2972: 2971: 2949: 2946: 2945: 2907: 2904: 2903: 2875: 2859: 2855: 2846: 2842: 2840: 2837: 2836: 2820: 2817: 2816: 2791: 2788: 2787: 2759: 2756: 2755: 2738: 2734: 2732: 2729: 2728: 2722: 2721: 2699: 2695: 2693: 2690: 2689: 2666: 2656: 2652: 2648: 2647: 2638: 2634: 2632: 2629: 2628: 2605: 2595: 2591: 2587: 2586: 2577: 2573: 2571: 2568: 2567: 2564:Stephen Willard 2556: 2550: 2544: 2493: 2489: 2488: 2484: 2472: 2468: 2466: 2463: 2462: 2440: 2437: 2436: 2412: 2408: 2404: 2395: 2391: 2389: 2386: 2385: 2369: 2366: 2365: 2348: 2344: 2342: 2339: 2338: 2317: 2313: 2309: 2300: 2296: 2294: 2291: 2290: 2271: 2268: 2267: 2245: 2242: 2241: 2222: 2219: 2218: 2199: 2196: 2195: 2179: 2176: 2175: 2165: 2164: 2141: 2138: 2137: 2111: 2107: 2105: 2102: 2101: 2079: 2076: 2075: 2053: 2050: 2049: 2027: 2024: 2023: 2007: 2004: 2003: 1998: 1997: 1990: 1989: 1965: 1955: 1951: 1947: 1946: 1937: 1933: 1931: 1928: 1927: 1924: 1902: 1899: 1898: 1874: 1870: 1865: 1862: 1861: 1838: 1834: 1829: 1826: 1825: 1822:Hausdorff space 1802: 1799: 1798: 1775: 1771: 1759: 1743: 1724: 1720: 1705: 1686: 1682: 1677: 1674: 1673: 1651: 1648: 1647: 1624: 1620: 1615: 1612: 1611: 1588: 1584: 1579: 1576: 1575: 1556: 1553: 1552: 1538: 1537: 1526: 1521: 1515: 1506: 1500: 1496: 1494: 1487: 1480: 1479: 1471: 1466: 1460: 1451: 1445: 1441: 1439: 1426: 1419: 1418: 1410: 1405: 1399: 1390: 1384: 1380: 1378: 1371: 1370: 1362: 1357: 1351: 1342: 1336: 1332: 1328: 1327: 1319: 1314: 1308: 1299: 1293: 1289: 1284: 1282: 1279: 1278: 1260: 1257: 1256: 1237: 1234: 1233: 1228: 1227: 1206: 1203: 1202: 1185: 1181: 1179: 1176: 1175: 1156: 1153: 1152: 1136: 1133: 1132: 1128:for every open 1109: 1106: 1105: 1088: 1084: 1082: 1079: 1078: 1072: 1071: 1064: 1063: 1040: 1037: 1036: 1010: 1006: 1004: 1001: 1000: 975: 972: 971: 949: 946: 945: 923: 920: 919: 903: 900: 899: 865: 855: 851: 847: 846: 837: 833: 831: 828: 827: 824: 797: 794: 793: 766: 756: 752: 748: 747: 745: 742: 741: 721: 718: 717: 701: 698: 697: 677: 674: 673: 672:. When the set 652: 648: 630: 626: 624: 621: 620: 604: 601: 600: 568: 564: 562: 559: 558: 531: 521: 517: 513: 512: 503: 499: 497: 494: 493: 477: 474: 473: 437: 434: 433: 411: 408: 407: 385: 382: 381: 359: 356: 355: 338:required to be 319: 316: 315: 290: 287: 286: 264: 261: 260: 238: 235: 234: 203: 200: 199: 173: 170: 169: 149: 146: 145: 138: 115:Herman L. Smith 107: 35: 28: 23: 22: 15: 12: 11: 5: 21718: 21708: 21707: 21693: 21692: 21678: 21655: 21641: 21625: 21612: 21594: 21588: 21568: 21562: 21546: 21532: 21512: 21490: 21466: 21452: 21439: 21425: 21409: 21392: 21389: 21386: 21385: 21376: 21367: 21358: 21349: 21337: 21325: 21311: 21266: 21254: 21247: 21227: 21220: 21197: 21174: 21170:Schechter 1996 21159: 21140: 21115: 21100: 21091: 21089:, p. 16n) 21087:Sundström 2010 21078: 21059:(2): 102–121. 21035: 21034: 21032: 21029: 21026: 21025: 21013: 21010: 21007: 21002: 20998: 20976: 20953: 20949: 20928: 20924: 20903: 20899: 20895: 20892: 20872: 20869: 20866: 20863: 20860: 20855: 20851: 20830: 20827: 20822: 20818: 20797: 20793: 20789: 20786: 20764: 20761: 20758: 20755: 20751: 20747: 20742: 20738: 20728:and satisfies 20716: 20712: 20709: 20705: 20701: 20698: 20677: 20671: 20667: 20664: 20661: 20654: 20650: 20647: 20644: 20641: 20638: 20617: 20613: 20609: 20605: 20602: 20582: 20579: 20576: 20573: 20570: 20567: 20564: 20561: 20558: 20555: 20549: 20545: 20542: 20537: 20532: 20528: 20524: 20502: 20499: 20496: 20493: 20490: 20487: 20484: 20481: 20478: 20475: 20472: 20469: 20466: 20463: 20460: 20457: 20451: 20447: 20444: 20439: 20434: 20430: 20426: 20408: 20389: 20385: 20362: 20358: 20337: 20334: 20329: 20325: 20321: 20316: 20313: 20310: 20305: 20300: 20296: 20292: 20270: 20267: 20264: 20261: 20239: 20235: 20231: 20228: 20225: 20220: 20217: 20214: 20211: 20207: 20203: 20200: 20197: 20194: 20190: 20186: 20183: 20178: 20174: 20169: 20147: 20143: 20140: 20137: 20134: 20114: 20111: 20087: 20084: 20081: 20078: 20075: 20072: 20069: 20066: 20045: 20041: 20038: 20035: 20032: 20012: 20009: 20006: 20003: 19983: 19980: 19975: 19971: 19949: 19928: 19925: 19922: 19919: 19916: 19912: 19908: 19905: 19902: 19899: 19896: 19876: 19873: 19869: 19865: 19859: 19855: 19852: 19848: 19844: 19841: 19838: 19833: 19829: 19808: 19804: 19800: 19797: 19777: 19774: 19769: 19765: 19742: 19737: 19732: 19729: 19712: 19711: 19709: 19706: 19705: 19704: 19695: 19689: 19683: 19677: 19671: 19664: 19661: 19642: 19639: 19636: 19633: 19611: 19608: 19588: 19585: 19565: 19545: 19525: 19522: 19519: 19497: 19494: 19491: 19488: 19485: 19482: 19479: 19459: 19456: 19453: 19450: 19447: 19444: 19441: 19421: 19418: 19415: 19412: 19409: 19406: 19403: 19383: 19363: 19343: 19321: 19318: 19298: 19279: 19276: 19256: 19236: 19233: 19230: 19227: 19224: 19221: 19216: 19213: 19210: 19206: 19183: 19180: 19160: 19157: 19154: 19151: 19131: 19128: 19125: 19122: 19119: 19116: 19113: 19093: 19090: 19087: 19084: 19081: 19078: 19075: 19055: 19035: 19013: 19010: 19007: 19004: 19001: 18998: 18978: 18975: 18955: 18952: 18949: 18946: 18943: 18923: 18903: 18883: 18880: 18877: 18874: 18871: 18856: 18853: 18841: 18838: 18818: 18815: 18795: 18775: 18755: 18752: 18749: 18729: 18726: 18706: 18703: 18700: 18697: 18677: 18674: 18671: 18668: 18665: 18662: 18659: 18656: 18653: 18650: 18647: 18644: 18641: 18621: 18618: 18615: 18612: 18609: 18606: 18603: 18583: 18580: 18577: 18574: 18571: 18568: 18565: 18545: 18525: 18505: 18502: 18499: 18496: 18493: 18490: 18487: 18484: 18481: 18458: 18438: 18419: 18416: 18396: 18376: 18373: 18370: 18367: 18364: 18361: 18356: 18353: 18350: 18346: 18325: 18322: 18319: 18299: 18279: 18259: 18256: 18236: 18233: 18230: 18227: 18207: 18204: 18201: 18198: 18195: 18192: 18189: 18186: 18183: 18180: 18177: 18174: 18171: 18168: 18148: 18145: 18142: 18139: 18136: 18133: 18130: 18110: 18107: 18104: 18101: 18098: 18095: 18092: 18072: 18052: 18032: 18029: 18026: 18023: 18020: 18017: 18014: 18011: 18008: 17986: 17983: 17980: 17977: 17974: 17971: 17951: 17948: 17945: 17942: 17939: 17936: 17933: 17913: 17910: 17890: 17870: 17850: 17847: 17844: 17841: 17838: 17835: 17832: 17829: 17826: 17823: 17820: 17817: 17814: 17811: 17791: 17788: 17785: 17765: 17745: 17742: 17739: 17736: 17733: 17730: 17727: 17707: 17704: 17701: 17675: 17670: 17665: 17662: 17642: 17639: 17636: 17616: 17613: 17610: 17607: 17604: 17582: 17577: 17574: 17571: 17566: 17562: 17556: 17552: 17548: 17545: 17541: 17537: 17532: 17528: 17522: 17518: 17514: 17511: 17507: 17486: 17482: 17461: 17458: 17454: 17448: 17444: 17440: 17437: 17433: 17412: 17409: 17406: 17403: 17400: 17397: 17394: 17374: 17371: 17366: 17362: 17333: 17330: 17327: 17324: 17321: 17318: 17315: 17285: 17282: 17279: 17274: 17269: 17263: 17259: 17255: 17252: 17248: 17244: 17240: 17235: 17231: 17225: 17221: 17217: 17214: 17210: 17206: 17186: 17182: 17161: 17158: 17154: 17148: 17144: 17140: 17137: 17133: 17129: 17109: 17106: 17103: 17100: 17097: 17077: 17074: 17069: 17065: 17042: 17039: 17036: 17031: 17026: 17022: 17018: 17013: 17008: 17004: 16983: 16980: 16977: 16953: 16925: 16922: 16919: 16916: 16913: 16901: 16898: 16881: 16878: 16865: 16860: 16856: 16852: 16851:lim sup 16849: 16844: 16840: 16836: 16835:lim sup 16833: 16830: 16825: 16821: 16817: 16812: 16808: 16804: 16801: 16800:lim sup 16779: 16774: 16770: 16764: 16761: 16758: 16754: 16748: 16745: 16742: 16738: 16734: 16729: 16725: 16719: 16716: 16713: 16709: 16703: 16700: 16697: 16693: 16689: 16684: 16680: 16676: 16675:lim sup 16656: 16651: 16648: 16645: 16640: 16635: 16631: 16627: 16611:limit inferior 16607:Limit superior 16603: 16600: 16562: 16558: 16554: 16549: 16545: 16539: 16534: 16529: 16525: 16502: 16498: 16490: 16487: 16484: 16480: 16474: 16469: 16465: 16459: 16437: 16411: 16407: 16385: 16380: 16376: 16372: 16366: 16362: 16351: 16335: 16331: 16327: 16322: 16318: 16297: 16277: 16253: 16250: 16228: 16224: 16201: 16198: 16195: 16190: 16185: 16181: 16177: 16172: 16169: 16147: 16143: 16120: 16116: 16112: 16108: 16103: 16099: 16095: 16089: 16085: 16062: 16058: 16054: 16049: 16045: 16024: 16021: 16018: 16015: 15995: 15992: 15989: 15977: 15974: 15960: 15956: 15935: 15932: 15929: 15926: 15923: 15903: 15881: 15877: 15856: 15853: 15850: 15847: 15844: 15841: 15837: 15831: 15827: 15823: 15818: 15814: 15809: 15786: 15781: 15776: 15771: 15767: 15763: 15758: 15754: 15732: 15727: 15723: 15719: 15713: 15709: 15687: 15682: 15678: 15674: 15668: 15664: 15643: 15640: 15635: 15631: 15610: 15607: 15602: 15598: 15577: 15574: 15571: 15568: 15565: 15562: 15542: 15539: 15536: 15533: 15530: 15510: 15507: 15504: 15501: 15498: 15495: 15492: 15489: 15486: 15483: 15480: 15477: 15474: 15471: 15468: 15465: 15462: 15459: 15456: 15453: 15450: 15447: 15444: 15441: 15438: 15415: 15411: 15408: 15403: 15398: 15394: 15390: 15385: 15380: 15376: 15354: 15350: 15345: 15341: 15337: 15332: 15328: 15307: 15304: 15301: 15298: 15276: 15272: 15250: 15245: 15241: 15237: 15231: 15227: 15204: 15200: 15194: 15172: 15150: 15146: 15125: 15120: 15116: 15093: 15089: 15066: 15063: 15060: 15055: 15050: 15045: 15041: 15037: 15031: 15027: 15022: 15003: 14994: 14989: 14985: 14981: 14975: 14971: 14951: 14948: 14945: 14942: 14920: 14916: 14910: 14888: 14866: 14862: 14841: 14836: 14832: 14824: 14821: 14818: 14814: 14808: 14803: 14800: 14797: 14792: 14787: 14783: 14779: 14774: 14771: 14749: 14744: 14740: 14735: 14729: 14725: 14705: 14694: 14689: 14685: 14681: 14675: 14671: 14650: 14645: 14641: 14637: 14632: 14628: 14622: 14617: 14612: 14608: 14585: 14581: 14575: 14570: 14567: 14564: 14559: 14555: 14533: 14528: 14524: 14520: 14514: 14510: 14485: 14480: 14476: 14472: 14469: 14466: 14462: 14457: 14453: 14449: 14443: 14439: 14416: 14412: 14389: 14385: 14362: 14359: 14356: 14351: 14346: 14341: 14337: 14333: 14327: 14323: 14318: 14297: 14286: 14281: 14277: 14273: 14267: 14263: 14242: 14239: 14236: 14233: 14213: 14191: 14187: 14181: 14157: 14154: 14151: 14146: 14141: 14137: 14133: 14128: 14123: 14119: 14090: 14086: 14082: 14079: 14075: 14070: 14067: 14064: 14059: 14054: 14050: 14046: 14041: 14038: 14033: 14029: 14025: 14022: 14018: 14013: 14009: 14003: 13998: 13994: 13989: 13985: 13981: 13980: 13958: 13954: 13933: 13930: 13927: 13924: 13898: 13894: 13888: 13885: 13882: 13878: 13874: 13869: 13865: 13859: 13832: 13829: 13826: 13821: 13816: 13812: 13808: 13787: 13784: 13772: 13769: 13741: 13738: 13716: 13711: 13708: 13688: 13668: 13646: 13642: 13621: 13618: 13615: 13612: 13588: 13566: 13538: 13516: 13512: 13491: 13467: 13464: 13442: 13438: 13417: 13414: 13393: 13372: 13367: 13363: 13359: 13338: 13335: 13326:be a point in 13313: 13309: 13288: 13283: 13279: 13275: 13272: 13252: 13249: 13229: 13219:if and only if 13207: 13204: 13201: 13179: 13175: 13154: 13151: 13140:neighbourhoods 13125: 13121: 13100: 13091:Given a point 13080: 13077: 13057: 13035: 13031: 13008: 13005: 13002: 12997: 12992: 12988: 12984: 12967:Main article: 12964: 12961: 12949: 12944: 12940: 12915: 12906:consisting of 12895: 12885: 12871: 12849: 12845: 12824: 12821: 12801: 12798: 12793: 12789: 12782: 12761: 12741: 12738: 12733: 12729: 12722: 12701: 12698: 12673: 12669: 12666: 12663: 12660: 12655: 12651: 12646: 12642: 12639: 12636: 12633: 12630: 12627: 12615: 12612: 12610: 12607: 12594: 12591: 12588: 12568: 12563: 12560: 12557: 12553: 12549: 12546: 12543: 12540: 12537: 12534: 12531: 12528: 12525: 12520: 12516: 12495: 12492: 12489: 12484: 12480: 12459: 12433: 12410: 12406: 12382: 12378: 12375: 12370: 12363: 12359: 12354: 12350: 12326: 12323: 12320: 12315: 12310: 12306: 12302: 12289: 12273: 12267: 12261: 12239: 12218: 12197: 12191: 12185: 12162: 12141: 12121: 12118: 12115: 12095: 12092: 12089: 12086: 12083: 12080: 12077: 12074: 12071: 12048: 12045: 12042: 12039: 12019: 12016: 12013: 12004:and satisfies 11993: 11973: 11970: 11967: 11964: 11961: 11958: 11955: 11952: 11932: 11929: 11926: 11923: 11920: 11917: 11897: 11894: 11891: 11888: 11885: 11865: 11862: 11842: 11839: 11836: 11833: 11830: 11827: 11824: 11821: 11818: 11798: 11795: 11792: 11769: 11763: 11741: 11737: 11716: 11706: 11692: 11688: 11667: 11647: 11644: 11641: 11633: 11627: 11621: 11617: 11613: 11592: 11586: 11580: 11558: 11538: 11535: 11532: 11529: 11525: 11521: 11517: 11496: 11476: 11473: 11470: 11467: 11464: 11461: 11458: 11455: 11452: 11449: 11429: 11409: 11406: 11403: 11400: 11397: 11394: 11390: 11386: 11383: 11363: 11336: 11330: 11304: 11298: 11294: 11291: 11287: 11283: 11280: 11277: 11274: 11271: 11251: 11230: 11221: 11217: 11214: 11210: 11186: 11182: 11178: 11174: 11171: 11148: 11142: 11117: 11116: 11104: 11101: 11098: 11095: 11075: 11055: 11052: 11043:converging to 11032: 11012: 11009: 10989: 10978: 10960: 10959: 10944: 10941: 10938: 10935: 10915: 10895: 10892: 10883:converging to 10872: 10852: 10849: 10829: 10818: 10802: 10778: 10758: 10738: 10714: 10694: 10674: 10671: 10668: 10648: 10645: 10625: 10622: 10619: 10614: 10610: 10589: 10586: 10583: 10562: 10558: 10555: 10535: 10515: 10495: 10492: 10472: 10469: 10449: 10429: 10426: 10421: 10417: 10411: 10404: 10384: 10381: 10359: 10355: 10334: 10331: 10328: 10325: 10304: 10300: 10297: 10277: 10257: 10224: 10220: 10194: 10166: 10163: 10143: 10140: 10137: 10134: 10131: 10128: 10125: 10122: 10118: 10097: 10073: 10069: 10048: 10028: 10008: 10005: 10000: 9996: 9992: 9987: 9983: 9957: 9935: 9915: 9912: 9879: 9865: 9844: 9840: 9837: 9832: 9828: 9824: 9820: 9816: 9813: 9808: 9804: 9800: 9797: 9794: 9791: 9788: 9783: 9779: 9774: 9769: 9748: 9726: 9723: 9720: 9715: 9710: 9706: 9702: 9690: 9689:associated net 9669: 9666: 9655: 9641: 9621: 9597: 9577: 9565: 9562: 9555: 9554: 9542: 9539: 9517: 9514: 9511: 9508: 9504: 9500: 9495: 9491: 9468: 9465: 9462: 9457: 9452: 9448: 9444: 9422: 9398: 9378: 9358: 9355: 9352: 9349: 9346: 9326: 9323: 9320: 9317: 9314: 9294: 9291: 9288: 9283: 9279: 9258: 9255: 9252: 9232: 9212: 9192: 9172: 9169: 9166: 9163: 9160: 9140: 9120: 9115: 9111: 9090: 9068: 9063: 9059: 9038: 9016: 9012: 8991: 8971: 8968: 8965: 8962: 8942: 8922: 8900: 8897: 8894: 8889: 8884: 8880: 8876: 8871: 8866: 8862: 8848: 8847: 8844: 8839: 8830: 8827: 8823: 8822: 8809: 8804: 8800: 8796: 8791: 8787: 8766: 8763: 8760: 8757: 8754: 8751: 8731: 8709: 8705: 8684: 8681: 8678: 8658: 8655: 8652: 8632: 8627: 8624: 8621: 8616: 8611: 8607: 8603: 8581: 8578: 8575: 8572: 8550: 8546: 8542: 8537: 8533: 8512: 8509: 8504: 8500: 8479: 8476: 8473: 8470: 8450: 8430: 8427: 8424: 8421: 8417: 8413: 8409: 8405: 8402: 8399: 8396: 8393: 8390: 8387: 8367: 8346: 8342: 8339: 8336: 8333: 8328: 8324: 8319: 8298: 8278: 8253: 8249: 8228: 8223: 8219: 8198: 8193: 8189: 8168: 8165: 8160: 8156: 8152: 8149: 8144: 8141: 8138: 8134: 8113: 8110: 8107: 8104: 8101: 8097: 8092: 8088: 8084: 8080: 8077: 8074: 8054: 8050: 8046: 8043: 8040: 8037: 8032: 8028: 8023: 8019: 8014: 8010: 7989: 7986: 7983: 7963: 7960: 7940: 7918: 7915: 7912: 7907: 7902: 7898: 7894: 7889: 7884: 7880: 7857: 7854: 7834: 7812: 7809: 7806: 7801: 7796: 7791: 7787: 7783: 7761: 7758: 7753: 7749: 7743: 7740: 7737: 7733: 7712: 7709: 7706: 7703: 7683: 7680: 7675: 7671: 7665: 7662: 7659: 7655: 7634: 7612: 7609: 7606: 7601: 7596: 7592: 7588: 7566: 7542: 7521: 7507: 7506: 7503: 7498: 7477: 7474: 7454: 7432: 7429: 7426: 7421: 7416: 7412: 7408: 7403: 7398: 7394: 7369: 7357: 7354: 7350: 7349: 7336: 7333: 7313: 7293: 7290: 7270: 7249: 7244: 7240: 7236: 7232: 7212: 7209: 7189: 7186: 7183: 7162: 7157: 7153: 7149: 7145: 7125: 7122: 7119: 7116: 7096: 7093: 7090: 7070: 7067: 7064: 7061: 7058: 7055: 7050: 7047: 7044: 7039: 7034: 7029: 7025: 7021: 7017: 7013: 7005: 6984: 6981: 6978: 6973: 6969: 6962: 6941: 6938: 6935: 6930: 6926: 6905: 6885: 6865: 6860: 6856: 6852: 6849: 6829: 6824: 6820: 6799: 6796: 6776: 6754: 6751: 6730: 6725: 6721: 6717: 6713: 6693: 6673: 6653: 6633: 6613: 6591: 6587: 6567: 6564: 6544: 6522: 6519: 6516: 6511: 6506: 6502: 6498: 6493: 6488: 6484: 6460: 6447:preorder is a 6432: 6412: 6409: 6406: 6403: 6383: 6380: 6377: 6374: 6371: 6368: 6365: 6345: 6342: 6322: 6319: 6300: 6297: 6277: 6274: 6271: 6268: 6248: 6225: 6222: 6202: 6182: 6179: 6176: 6173: 6170: 6167: 6162: 6159: 6156: 6151: 6146: 6141: 6137: 6133: 6129: 6125: 6117: 6097: 6094: 6091: 6086: 6082: 6075: 6052: 6049: 6046: 6041: 6036: 6032: 6028: 6023: 6018: 6014: 5993: 5973: 5950: 5947: 5944: 5941: 5938: 5935: 5930: 5927: 5924: 5919: 5914: 5909: 5905: 5901: 5897: 5893: 5885: 5864: 5861: 5841: 5838: 5835: 5832: 5812: 5809: 5806: 5803: 5800: 5797: 5775: 5772: 5769: 5764: 5759: 5754: 5750: 5746: 5742: 5738: 5716: 5713: 5710: 5707: 5685: 5681: 5660: 5657: 5637: 5634: 5631: 5628: 5608: 5605: 5581: 5561: 5541: 5521: 5518: 5515: 5512: 5507: 5504: 5500: 5496: 5493: 5474: 5471: 5451: 5448: 5445: 5442: 5439: 5419: 5399: 5396: 5393: 5388: 5384: 5377: 5354: 5351: 5348: 5343: 5338: 5334: 5330: 5325: 5320: 5316: 5295: 5292: 5272: 5251: 5237: 5236: 5233: 5228: 5207: 5187: 5184: 5164: 5161: 5158: 5155: 5152: 5148: 5143: 5139: 5135: 5131: 5111: 5091: 5088: 5083: 5079: 5058: 5055: 5052: 5049: 5046: 5026: 5023: 5003: 5000: 4997: 4994: 4991: 4987: 4982: 4978: 4974: 4970: 4965: 4945: 4925: 4922: 4917: 4913: 4906: 4883: 4880: 4877: 4872: 4867: 4863: 4859: 4854: 4849: 4845: 4824: 4800: 4797: 4794: 4791: 4788: 4776: 4773: 4756: 4753: 4733: 4713: 4710: 4707: 4687: 4684: 4664: 4661: 4658: 4638: 4635: 4632: 4614: 4611: 4598: 4576: 4573: 4570: 4565: 4560: 4556: 4552: 4530: 4527: 4522: 4518: 4512: 4509: 4506: 4502: 4481: 4478: 4475: 4455: 4431: 4428: 4425: 4403: 4400: 4397: 4394: 4374: 4371: 4351: 4348: 4343: 4339: 4329: 4309: 4306: 4303: 4283: 4280: 4275: 4271: 4261:is a net with 4248: 4245: 4242: 4237: 4232: 4228: 4224: 4219: 4214: 4210: 4189: 4169: 4149: 4129: 4109: 4106: 4103: 4091: 4088: 4079: 4076: 4069: 4057: 4028: 4024: 3999: 3996: 3975: 3969: 3965: 3961: 3956: 3952: 3947: 3927: 3924: 3921: 3918: 3915: 3912: 3892: 3889: 3886: 3866: 3853: 3833: 3830: 3827: 3822: 3817: 3813: 3809: 3804: 3799: 3795: 3780:uniform spaces 3771: 3768: 3756: 3753: 3733: 3713: 3710: 3707: 3704: 3682: 3679: 3657: 3654: 3651: 3646: 3641: 3636: 3632: 3628: 3624: 3620: 3615: 3610: 3606: 3602: 3599: 3579: 3576: 3573: 3570: 3567: 3547: 3525: 3522: 3519: 3514: 3509: 3505: 3501: 3496: 3491: 3487: 3460: 3457: 3454: 3451: 3429: 3425: 3404: 3382: 3378: 3358: 3355: 3352: 3349: 3339: 3331: 3313: 3291: 3287: 3274: 3271: 3259: 3254: 3250: 3229: 3207: 3203: 3182: 3179: 3176: 3154: 3151: 3148: 3145: 3125: 3122: 3119: 3116: 3113: 3110: 3090: 3087: 3084: 3081: 3061: 3051: 3035: 3032: 3029: 3026: 3006: 3003: 3000: 2997: 2994: 2991: 2988: 2985: 2982: 2979: 2959: 2956: 2953: 2943: 2939: 2923: 2920: 2917: 2914: 2911: 2891: 2888: 2885: 2882: 2871: 2868: 2865: 2862: 2858: 2854: 2849: 2845: 2824: 2804: 2801: 2798: 2795: 2775: 2772: 2769: 2766: 2763: 2741: 2737: 2726: 2723:Willard-subnet 2718: 2702: 2698: 2688:are nets then 2675: 2672: 2669: 2664: 2659: 2655: 2651: 2646: 2641: 2637: 2614: 2611: 2608: 2603: 2598: 2594: 2590: 2585: 2580: 2576: 2546:Main article: 2543: 2540: 2526: 2522: 2519: 2516: 2513: 2510: 2507: 2504: 2501: 2496: 2492: 2487: 2483: 2478: 2475: 2471: 2450: 2447: 2444: 2423: 2418: 2415: 2411: 2407: 2403: 2398: 2394: 2373: 2351: 2347: 2325: 2320: 2316: 2312: 2308: 2303: 2299: 2278: 2275: 2255: 2252: 2249: 2229: 2226: 2206: 2203: 2183: 2169: 2151: 2148: 2145: 2125: 2122: 2119: 2114: 2110: 2089: 2086: 2083: 2063: 2060: 2057: 2037: 2034: 2031: 2011: 2002: 1994: 1987:is said to be 1974: 1971: 1968: 1963: 1958: 1954: 1950: 1945: 1940: 1936: 1923: 1920: 1906: 1885: 1882: 1877: 1873: 1869: 1849: 1846: 1841: 1837: 1833: 1809: 1806: 1786: 1783: 1778: 1774: 1768: 1765: 1762: 1758: 1745: or  1735: 1732: 1727: 1723: 1719: 1707: or  1697: 1694: 1689: 1685: 1681: 1661: 1658: 1655: 1635: 1632: 1627: 1623: 1619: 1599: 1596: 1591: 1587: 1583: 1560: 1536: 1533: 1528: in  1523: 1520: 1517: 1513: 1510: 1508: 1503: 1499: 1495: 1490: 1486: 1482: 1481: 1478: 1473: in  1468: 1465: 1462: 1458: 1455: 1453: 1448: 1444: 1440: 1435: 1432: 1429: 1425: 1421: 1420: 1417: 1412: in  1407: 1404: 1401: 1397: 1394: 1392: 1387: 1383: 1379: 1376: 1373: 1372: 1369: 1364: in  1359: 1356: 1353: 1349: 1346: 1344: 1339: 1335: 1331: 1329: 1326: 1321: in  1316: 1313: 1310: 1306: 1303: 1301: 1296: 1292: 1288: 1286: 1276: 1264: 1252: 1241: 1223: 1222: 1210: 1188: 1184: 1163: 1160: 1140: 1113: 1091: 1087: 1076: 1068: 1050: 1047: 1044: 1024: 1021: 1018: 1013: 1009: 988: 985: 982: 979: 959: 956: 953: 933: 930: 927: 907: 897: 894: 890: 887:is said to be 874: 871: 868: 863: 858: 854: 850: 845: 840: 836: 823: 822:Limits of nets 820: 807: 804: 801: 775: 772: 769: 764: 759: 755: 751: 729: 726: 705: 681: 671: 655: 651: 647: 644: 641: 638: 633: 629: 608: 585: 582: 579: 576: 571: 567: 540: 537: 534: 529: 524: 520: 516: 511: 506: 502: 481: 447: 444: 441: 421: 418: 415: 395: 392: 389: 369: 366: 363: 344:partial orders 337: 323: 303: 300: 297: 294: 274: 271: 268: 248: 245: 242: 222: 219: 216: 213: 210: 207: 197: 193: 178: 153: 137: 134: 119:John L. Kelley 106: 103: 26: 18:Convergent net 9: 6: 4: 3: 2: 21717: 21706: 21703: 21702: 21700: 21689: 21685: 21681: 21675: 21671: 21667: 21666:Mineola, N.Y. 21663: 21662: 21656: 21652: 21648: 21644: 21638: 21634: 21630: 21626: 21615: 21613:9780080532998 21609: 21605: 21604: 21599: 21595: 21591: 21589:0-387-98431-3 21585: 21581: 21577: 21573: 21569: 21565: 21563:3-540-90125-6 21559: 21555: 21551: 21547: 21543: 21539: 21535: 21529: 21525: 21521: 21517: 21513: 21509: 21505: 21501: 21497: 21493: 21487: 21483: 21479: 21475: 21471: 21467: 21463: 21459: 21455: 21453:0-7923-2531-1 21449: 21445: 21440: 21436: 21432: 21428: 21422: 21418: 21414: 21410: 21405: 21400: 21395: 21394: 21380: 21371: 21362: 21353: 21347:, p. 76. 21346: 21341: 21334: 21329: 21320: 21318: 21316: 21307: 21301: 21287:on 2015-04-24 21283: 21276: 21270: 21263: 21258: 21250: 21248:9780852264447 21244: 21240: 21239: 21231: 21223: 21221:9780486131788 21217: 21213: 21212: 21204: 21202: 21195:, p. 77. 21194: 21189: 21187: 21185: 21183: 21181: 21179: 21171: 21166: 21164: 21157:, p. 75. 21156: 21151: 21149: 21147: 21145: 21137: 21132: 21130: 21128: 21126: 21124: 21122: 21120: 21112: 21107: 21105: 21095: 21088: 21082: 21074: 21070: 21066: 21062: 21058: 21054: 21050: 21046: 21040: 21036: 21011: 21008: 21005: 21000: 20996: 20951: 20947: 20939:the sequence 20926: 20901: 20893: 20890: 20867: 20861: 20858: 20853: 20849: 20828: 20825: 20820: 20816: 20795: 20787: 20784: 20759: 20753: 20749: 20745: 20740: 20736: 20710: 20696: 20675: 20669: 20665: 20662: 20659: 20652: 20648: 20642: 20636: 20603: 20600: 20577: 20574: 20571: 20568: 20565: 20562: 20559: 20553: 20543: 20540: 20535: 20530: 20526: 20522: 20497: 20494: 20491: 20488: 20485: 20482: 20479: 20476: 20473: 20470: 20467: 20464: 20461: 20455: 20445: 20442: 20437: 20432: 20428: 20424: 20415:The sequence 20412: 20405: 20387: 20383: 20360: 20356: 20335: 20332: 20327: 20323: 20319: 20314: 20311: 20308: 20303: 20298: 20294: 20290: 20268: 20265: 20262: 20259: 20237: 20233: 20229: 20226: 20223: 20215: 20209: 20205: 20201: 20195: 20188: 20184: 20181: 20176: 20172: 20167: 20138: 20135: 20132: 20112: 20109: 20101: 20082: 20076: 20070: 20064: 20036: 20033: 20030: 20010: 20007: 20004: 20001: 19981: 19978: 19973: 19969: 19947: 19923: 19920: 19917: 19914: 19906: 19903: 19897: 19894: 19874: 19863: 19853: 19850: 19842: 19836: 19831: 19827: 19806: 19798: 19795: 19775: 19772: 19767: 19763: 19740: 19730: 19727: 19717: 19713: 19699: 19696: 19693: 19690: 19687: 19684: 19681: 19678: 19675: 19672: 19670: 19667: 19666: 19660: 19658: 19653: 19640: 19637: 19634: 19631: 19622: 19609: 19606: 19586: 19583: 19563: 19543: 19523: 19520: 19517: 19508: 19495: 19492: 19489: 19483: 19477: 19454: 19451: 19448: 19442: 19439: 19416: 19413: 19410: 19404: 19401: 19381: 19361: 19341: 19332: 19319: 19316: 19296: 19277: 19274: 19254: 19234: 19225: 19219: 19214: 19208: 19194: 19181: 19178: 19155: 19149: 19126: 19123: 19120: 19114: 19111: 19088: 19085: 19082: 19076: 19073: 19053: 19033: 19024: 19011: 19005: 19002: 18999: 18976: 18973: 18950: 18947: 18944: 18921: 18901: 18878: 18875: 18872: 18862: 18852: 18839: 18836: 18816: 18813: 18793: 18773: 18753: 18750: 18747: 18727: 18724: 18701: 18695: 18672: 18669: 18666: 18660: 18657: 18651: 18648: 18645: 18639: 18616: 18607: 18604: 18601: 18578: 18569: 18566: 18563: 18543: 18523: 18503: 18494: 18485: 18482: 18479: 18470: 18456: 18436: 18417: 18414: 18394: 18374: 18365: 18359: 18354: 18348: 18323: 18320: 18317: 18297: 18290:converges in 18277: 18257: 18254: 18231: 18225: 18205: 18199: 18196: 18193: 18187: 18184: 18178: 18175: 18172: 18166: 18143: 18134: 18131: 18128: 18105: 18096: 18093: 18090: 18070: 18050: 18030: 18021: 18012: 18009: 18006: 17997: 17984: 17978: 17975: 17972: 17946: 17937: 17934: 17931: 17911: 17908: 17888: 17868: 17848: 17842: 17839: 17836: 17830: 17827: 17821: 17818: 17815: 17809: 17789: 17786: 17783: 17763: 17740: 17731: 17728: 17725: 17705: 17702: 17699: 17691: 17673: 17663: 17660: 17640: 17637: 17634: 17611: 17608: 17605: 17593: 17580: 17575: 17572: 17569: 17564: 17554: 17550: 17546: 17543: 17535: 17530: 17520: 17516: 17512: 17509: 17484: 17459: 17446: 17442: 17438: 17435: 17404: 17398: 17395: 17372: 17364: 17360: 17351: 17347: 17325: 17319: 17316: 17305: 17304:plain English 17301: 17283: 17280: 17277: 17272: 17267: 17261: 17257: 17253: 17250: 17246: 17242: 17238: 17233: 17229: 17223: 17219: 17215: 17212: 17208: 17204: 17184: 17159: 17152: 17146: 17142: 17138: 17135: 17131: 17127: 17104: 17101: 17098: 17075: 17067: 17063: 17040: 17037: 17034: 17029: 17024: 17020: 17016: 17011: 17006: 17002: 16981: 16978: 16975: 16967: 16951: 16943: 16939: 16920: 16917: 16914: 16900:Metric spaces 16897: 16895: 16891: 16887: 16877: 16863: 16858: 16854: 16847: 16842: 16838: 16831: 16823: 16819: 16815: 16810: 16806: 16790: 16777: 16772: 16768: 16762: 16759: 16756: 16746: 16743: 16740: 16732: 16727: 16723: 16717: 16714: 16711: 16701: 16698: 16695: 16687: 16682: 16678: 16654: 16649: 16646: 16643: 16638: 16633: 16629: 16625: 16614: 16612: 16608: 16599: 16597: 16593: 16589: 16585: 16580: 16578: 16560: 16556: 16547: 16543: 16537: 16532: 16527: 16523: 16500: 16496: 16488: 16485: 16482: 16472: 16467: 16463: 16457: 16435: 16427: 16409: 16405: 16383: 16378: 16374: 16370: 16364: 16360: 16349: 16333: 16329: 16325: 16320: 16316: 16295: 16275: 16267: 16264:However, the 16251: 16248: 16226: 16222: 16199: 16196: 16193: 16188: 16183: 16179: 16175: 16170: 16167: 16145: 16141: 16118: 16114: 16106: 16101: 16097: 16093: 16087: 16083: 16060: 16056: 16052: 16047: 16043: 16022: 16019: 16016: 16013: 15993: 15990: 15987: 15973: 15958: 15954: 15930: 15927: 15924: 15901: 15879: 15875: 15851: 15848: 15845: 15839: 15835: 15829: 15825: 15821: 15816: 15812: 15807: 15784: 15774: 15769: 15765: 15761: 15756: 15752: 15730: 15725: 15721: 15717: 15711: 15707: 15685: 15680: 15676: 15672: 15666: 15662: 15641: 15638: 15633: 15629: 15608: 15605: 15600: 15596: 15575: 15569: 15566: 15563: 15537: 15534: 15531: 15508: 15505: 15499: 15496: 15493: 15487: 15481: 15478: 15475: 15469: 15463: 15460: 15457: 15451: 15445: 15442: 15439: 15409: 15406: 15401: 15396: 15392: 15388: 15383: 15378: 15374: 15348: 15343: 15339: 15335: 15330: 15326: 15305: 15302: 15299: 15296: 15274: 15270: 15248: 15243: 15239: 15235: 15229: 15225: 15202: 15198: 15192: 15170: 15148: 15144: 15123: 15118: 15114: 15091: 15087: 15079:converges to 15064: 15061: 15058: 15053: 15048: 15043: 15039: 15035: 15029: 15025: 15020: 15001: 14992: 14987: 14983: 14979: 14973: 14969: 14949: 14946: 14943: 14940: 14918: 14914: 14908: 14886: 14879:converges to 14864: 14860: 14839: 14834: 14830: 14822: 14819: 14816: 14806: 14801: 14798: 14795: 14790: 14785: 14781: 14777: 14772: 14769: 14760: 14747: 14742: 14738: 14733: 14727: 14723: 14703: 14692: 14687: 14683: 14679: 14673: 14669: 14648: 14643: 14639: 14630: 14626: 14620: 14615: 14610: 14606: 14583: 14579: 14573: 14565: 14562: 14557: 14553: 14531: 14526: 14522: 14518: 14512: 14508: 14499: 14483: 14478: 14474: 14467: 14464: 14460: 14455: 14451: 14447: 14441: 14437: 14414: 14410: 14387: 14383: 14360: 14357: 14354: 14349: 14344: 14339: 14335: 14331: 14325: 14321: 14316: 14295: 14284: 14279: 14275: 14271: 14265: 14261: 14240: 14237: 14234: 14231: 14211: 14189: 14185: 14179: 14155: 14152: 14149: 14144: 14139: 14135: 14131: 14126: 14121: 14117: 14107: 14088: 14084: 14068: 14065: 14062: 14057: 14052: 14048: 14044: 14031: 14027: 14011: 14007: 14001: 13992: 13987: 13983: 13956: 13952: 13931: 13928: 13925: 13922: 13914: 13896: 13892: 13886: 13883: 13880: 13876: 13872: 13867: 13863: 13857: 13848: 13830: 13827: 13824: 13819: 13814: 13810: 13806: 13795: 13793: 13792:product space 13790:A net in the 13783: 13770: 13767: 13759: 13756:(and so also 13755: 13739: 13736: 13709: 13706: 13686: 13679:converges to 13666: 13644: 13640: 13619: 13616: 13613: 13610: 13602: 13586: 13555: 13550: 13536: 13514: 13510: 13489: 13481: 13465: 13462: 13440: 13436: 13415: 13412: 13391: 13384:is a net. As 13370: 13365: 13361: 13357: 13336: 13333: 13311: 13307: 13286: 13281: 13277: 13273: 13270: 13250: 13247: 13227: 13220: 13205: 13202: 13199: 13177: 13173: 13152: 13149: 13141: 13123: 13119: 13098: 13078: 13075: 13055: 13033: 13029: 13006: 13003: 13000: 12995: 12990: 12986: 12982: 12970: 12960: 12947: 12942: 12938: 12929: 12913: 12893: 12883: 12869: 12847: 12843: 12822: 12819: 12799: 12791: 12787: 12759: 12739: 12731: 12727: 12699: 12696: 12688: 12671: 12667: 12664: 12661: 12658: 12653: 12649: 12644: 12640: 12634: 12628: 12625: 12606: 12592: 12589: 12586: 12561: 12558: 12555: 12551: 12547: 12544: 12541: 12538: 12535: 12532: 12523: 12518: 12514: 12493: 12487: 12482: 12478: 12457: 12431: 12408: 12404: 12376: 12373: 12368: 12361: 12357: 12352: 12348: 12324: 12321: 12318: 12313: 12308: 12304: 12300: 12287: 12284: 12271: 12237: 12195: 12139: 12119: 12113: 12093: 12084: 12081: 12078: 12072: 12069: 12062: 12046: 12043: 12040: 12037: 12017: 12014: 12011: 11991: 11968: 11965: 11962: 11953: 11950: 11930: 11927: 11924: 11921: 11918: 11915: 11892: 11889: 11886: 11863: 11860: 11837: 11831: 11828: 11822: 11816: 11796: 11793: 11790: 11739: 11714: 11704: 11690: 11665: 11645: 11642: 11639: 11619: 11615: 11590: 11556: 11533: 11519: 11494: 11471: 11468: 11462: 11456: 11453: 11450: 11427: 11404: 11401: 11398: 11384: 11381: 11361: 11353: 11318: 11302: 11292: 11289: 11278: 11272: 11249: 11215: 11212: 11172: 11169: 11129: 11128:in behavior. 11127: 11126:directed sets 11122: 11099: 11093: 11073: 11053: 11050: 11030: 11010: 11007: 10987: 10977: 10976: 10975: 10973: 10972:metric spaces 10969: 10965: 10957: 10939: 10933: 10913: 10893: 10890: 10870: 10850: 10847: 10827: 10819: 10816: 10800: 10792: 10791: 10790: 10776: 10756: 10736: 10726: 10712: 10692: 10672: 10669: 10666: 10659:Thus a point 10646: 10643: 10623: 10620: 10617: 10612: 10608: 10587: 10584: 10581: 10556: 10553: 10533: 10513: 10493: 10490: 10470: 10467: 10447: 10427: 10419: 10415: 10409: 10382: 10379: 10357: 10353: 10332: 10329: 10326: 10323: 10298: 10295: 10275: 10255: 10247: 10243: 10238: 10222: 10218: 10209: 10183: 10180: 10164: 10161: 10138: 10135: 10132: 10129: 10126: 10120: 10095: 10087: 10071: 10046: 10026: 10006: 10003: 9998: 9994: 9990: 9985: 9981: 9972: 9955: 9925: 9921: 9911: 9909: 9905: 9900: 9898: 9894: 9890: 9885: 9881: 9877: 9863: 9842: 9838: 9835: 9830: 9826: 9822: 9818: 9814: 9811: 9806: 9802: 9798: 9795: 9792: 9789: 9786: 9781: 9777: 9772: 9767: 9746: 9724: 9721: 9718: 9713: 9708: 9704: 9700: 9688: 9686: 9681: 9675: 9665: 9663: 9662:partial order 9659: 9653: 9639: 9619: 9611: 9595: 9575: 9561: 9553: 9540: 9537: 9530:converges to 9512: 9506: 9502: 9498: 9493: 9489: 9466: 9463: 9460: 9455: 9450: 9446: 9442: 9420: 9412: 9411:product order 9396: 9376: 9353: 9350: 9347: 9324: 9318: 9315: 9312: 9292: 9289: 9286: 9281: 9277: 9269:is such that 9256: 9253: 9250: 9230: 9210: 9190: 9167: 9164: 9161: 9138: 9118: 9113: 9109: 9088: 9079: 9066: 9061: 9057: 9036: 9014: 9010: 8989: 8969: 8966: 8963: 8960: 8940: 8920: 8898: 8895: 8892: 8887: 8882: 8878: 8874: 8869: 8864: 8860: 8850: 8849: 8843: 8842: 8838: 8836: 8821: 8807: 8802: 8798: 8794: 8789: 8785: 8777:we have that 8764: 8758: 8752: 8749: 8729: 8707: 8703: 8682: 8679: 8676: 8669:there exists 8656: 8653: 8650: 8630: 8625: 8622: 8619: 8614: 8609: 8605: 8601: 8579: 8576: 8573: 8570: 8548: 8544: 8540: 8535: 8531: 8510: 8507: 8502: 8498: 8477: 8474: 8471: 8468: 8448: 8441:Observe that 8428: 8419: 8411: 8403: 8400: 8397: 8394: 8388: 8385: 8365: 8344: 8340: 8337: 8334: 8331: 8326: 8322: 8317: 8296: 8267: 8251: 8247: 8226: 8221: 8217: 8196: 8191: 8187: 8163: 8158: 8154: 8150: 8147: 8142: 8139: 8136: 8132: 8108: 8105: 8102: 8099: 8095: 8090: 8086: 8082: 8078: 8075: 8052: 8048: 8044: 8041: 8038: 8035: 8030: 8026: 8021: 8017: 8012: 8008: 7987: 7984: 7981: 7961: 7958: 7938: 7916: 7913: 7910: 7905: 7900: 7896: 7892: 7887: 7882: 7878: 7868: 7855: 7852: 7832: 7810: 7807: 7804: 7799: 7794: 7789: 7785: 7781: 7756: 7751: 7747: 7741: 7738: 7735: 7731: 7710: 7707: 7704: 7701: 7678: 7673: 7669: 7663: 7660: 7657: 7653: 7632: 7610: 7607: 7604: 7599: 7594: 7590: 7586: 7564: 7556: 7540: 7509: 7508: 7502: 7501: 7497: 7495: 7491: 7475: 7472: 7452: 7430: 7427: 7424: 7419: 7414: 7410: 7406: 7401: 7396: 7392: 7383: 7367: 7348: 7334: 7331: 7311: 7291: 7288: 7268: 7261:not being in 7247: 7242: 7238: 7234: 7230: 7210: 7207: 7187: 7184: 7181: 7160: 7155: 7151: 7147: 7143: 7120: 7114: 7094: 7091: 7088: 7068: 7062: 7056: 7048: 7045: 7042: 7037: 7032: 7027: 7023: 7019: 7015: 7011: 6982: 6979: 6971: 6967: 6939: 6936: 6933: 6928: 6924: 6903: 6883: 6863: 6858: 6854: 6850: 6847: 6827: 6822: 6818: 6797: 6794: 6774: 6765: 6752: 6749: 6728: 6723: 6719: 6715: 6711: 6691: 6671: 6651: 6631: 6611: 6589: 6585: 6565: 6562: 6542: 6520: 6517: 6514: 6509: 6504: 6500: 6496: 6491: 6486: 6482: 6472: 6458: 6450: 6446: 6430: 6410: 6407: 6404: 6401: 6381: 6378: 6375: 6369: 6363: 6343: 6340: 6320: 6317: 6298: 6295: 6272: 6266: 6246: 6239: 6223: 6220: 6200: 6180: 6174: 6168: 6160: 6157: 6154: 6149: 6144: 6139: 6135: 6131: 6127: 6123: 6095: 6092: 6084: 6080: 6050: 6047: 6044: 6039: 6034: 6030: 6026: 6021: 6016: 6012: 5991: 5962: 5948: 5942: 5936: 5928: 5925: 5922: 5917: 5912: 5907: 5903: 5899: 5895: 5891: 5862: 5859: 5836: 5830: 5807: 5804: 5801: 5795: 5773: 5770: 5767: 5762: 5757: 5752: 5748: 5744: 5740: 5736: 5714: 5711: 5708: 5705: 5683: 5679: 5658: 5655: 5635: 5632: 5629: 5626: 5606: 5603: 5595: 5579: 5559: 5539: 5519: 5513: 5505: 5502: 5498: 5494: 5491: 5472: 5469: 5449: 5443: 5437: 5417: 5397: 5394: 5386: 5382: 5352: 5349: 5346: 5341: 5336: 5332: 5328: 5323: 5318: 5314: 5293: 5290: 5270: 5239: 5238: 5232: 5231: 5227: 5225: 5221: 5205: 5185: 5182: 5159: 5153: 5146: 5141: 5137: 5133: 5129: 5109: 5089: 5081: 5077: 5056: 5050: 5047: 5044: 5024: 5021: 4998: 4992: 4985: 4980: 4976: 4972: 4968: 4943: 4923: 4915: 4911: 4881: 4878: 4875: 4870: 4865: 4861: 4857: 4852: 4847: 4843: 4822: 4814: 4798: 4792: 4789: 4786: 4772: 4770: 4754: 4751: 4731: 4711: 4708: 4705: 4698:Also, subset 4685: 4682: 4662: 4656: 4636: 4633: 4630: 4620: 4610: 4596: 4574: 4571: 4568: 4563: 4558: 4554: 4550: 4541:for some net 4528: 4520: 4516: 4510: 4507: 4504: 4479: 4476: 4473: 4453: 4445: 4429: 4426: 4423: 4414: 4401: 4398: 4395: 4392: 4372: 4369: 4349: 4341: 4337: 4307: 4304: 4301: 4281: 4278: 4273: 4269: 4246: 4243: 4240: 4235: 4230: 4226: 4222: 4217: 4212: 4208: 4187: 4167: 4147: 4127: 4120:is closed in 4107: 4104: 4101: 4087: 4085: 4075: 4073: 4067: 4065: 4061: 4056: 4053: 4051: 4046: 4044: 4043:Cauchy filter 4026: 4022: 4013: 3997: 3994: 3973: 3967: 3963: 3959: 3954: 3950: 3945: 3925: 3922: 3919: 3916: 3913: 3910: 3890: 3887: 3884: 3877:there exists 3864: 3857: 3854:if for every 3847: 3831: 3828: 3825: 3820: 3815: 3811: 3807: 3802: 3797: 3793: 3783: 3781: 3777: 3767: 3754: 3751: 3731: 3711: 3708: 3705: 3702: 3693: 3680: 3677: 3655: 3652: 3649: 3644: 3639: 3634: 3630: 3626: 3622: 3618: 3613: 3608: 3604: 3600: 3597: 3577: 3571: 3568: 3565: 3545: 3523: 3520: 3517: 3512: 3507: 3503: 3499: 3494: 3489: 3485: 3476: 3471: 3458: 3455: 3449: 3427: 3423: 3402: 3380: 3376: 3356: 3353: 3350: 3347: 3333: 3328:universal net 3325: 3311: 3289: 3285: 3270: 3257: 3252: 3248: 3227: 3205: 3201: 3180: 3177: 3174: 3165: 3152: 3149: 3146: 3143: 3120: 3114: 3111: 3108: 3088: 3085: 3082: 3079: 3059: 3050: 3047: 3030: 3024: 3004: 2998: 2992: 2989: 2983: 2977: 2957: 2954: 2951: 2941: 2938: 2935: 2921: 2915: 2912: 2909: 2889: 2886: 2883: 2880: 2866: 2860: 2856: 2852: 2847: 2843: 2822: 2799: 2793: 2773: 2767: 2764: 2761: 2739: 2735: 2720: 2716: 2700: 2696: 2673: 2670: 2667: 2662: 2657: 2653: 2649: 2644: 2639: 2635: 2612: 2609: 2606: 2601: 2596: 2592: 2588: 2583: 2578: 2574: 2565: 2561: 2555: 2549: 2539: 2524: 2520: 2517: 2514: 2511: 2508: 2505: 2502: 2499: 2494: 2490: 2485: 2481: 2476: 2473: 2469: 2448: 2445: 2442: 2421: 2416: 2413: 2409: 2405: 2401: 2396: 2392: 2371: 2349: 2345: 2323: 2318: 2314: 2310: 2306: 2301: 2297: 2276: 2273: 2253: 2250: 2247: 2227: 2224: 2204: 2201: 2181: 2173: 2172:cluster point 2163: 2149: 2146: 2143: 2123: 2120: 2117: 2112: 2108: 2087: 2084: 2081: 2061: 2058: 2055: 2035: 2032: 2029: 2022:if for every 2009: 1996: 1988: 1972: 1969: 1966: 1961: 1956: 1952: 1948: 1943: 1938: 1934: 1919: 1917: 1904: 1883: 1875: 1871: 1847: 1844: 1839: 1835: 1823: 1807: 1784: 1781: 1776: 1772: 1766: 1763: 1760: 1733: 1730: 1725: 1721: 1695: 1692: 1687: 1683: 1659: 1656: 1653: 1633: 1625: 1621: 1597: 1589: 1585: 1572: 1558: 1534: 1531: 1518: 1509: 1501: 1497: 1488: 1476: 1463: 1454: 1446: 1442: 1433: 1430: 1427: 1415: 1402: 1393: 1385: 1381: 1367: 1354: 1345: 1337: 1333: 1324: 1311: 1302: 1294: 1290: 1262: 1254: 1239: 1226: 1208: 1186: 1182: 1161: 1158: 1138: 1131: 1127: 1126: 1125: 1111: 1089: 1085: 1070: 1062: 1048: 1045: 1042: 1022: 1019: 1016: 1011: 1007: 986: 983: 980: 977: 957: 954: 951: 931: 928: 925: 905: 895: 892: 888: 872: 869: 866: 861: 856: 852: 848: 843: 838: 834: 819: 805: 802: 799: 791: 773: 770: 767: 762: 757: 753: 749: 727: 724: 703: 695: 679: 669: 653: 649: 645: 639: 631: 627: 606: 599: 583: 577: 574: 569: 565: 556: 538: 535: 532: 527: 522: 518: 514: 509: 504: 500: 479: 472: 467: 465: 461: 445: 442: 439: 419: 416: 413: 393: 390: 387: 367: 364: 361: 353: 349: 345: 341: 335: 321: 301: 298: 295: 292: 272: 269: 266: 246: 243: 240: 220: 217: 214: 211: 208: 205: 195: 191: 176: 167: 151: 143: 133: 131: 127: 122: 120: 116: 112: 102: 100: 96: 92: 88: 84: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 40: 33: 19: 21660: 21632: 21617:. Retrieved 21602: 21575: 21556:. Springer. 21553: 21519: 21480:. New York: 21473: 21443: 21416: 21379: 21370: 21361: 21352: 21345:Willard 2004 21340: 21333:Willard 2004 21328: 21289:. Retrieved 21282:the original 21269: 21257: 21237: 21230: 21210: 21193:Willard 2004 21155:Willard 2004 21136:Willard 2004 21094: 21081: 21056: 21052: 21049:Smith, H. L. 21045:Moore, E. H. 21039: 20411: 19716: 19654: 19623: 19509: 19333: 19195: 19025: 18858: 18471: 17998: 17594: 17346:normed space 17300:real numbers 17298:is a net of 16938:metric space 16903: 16890:Riemann sums 16883: 16791: 16615: 16605: 16581: 15979: 15914:centered at 15262:clusters at 15163:clusters at 14761: 14204:directed by 14170:be a net in 14108: 13796: 13789: 13551: 12972: 12617: 12285: 12106:(defined by 12061:identity map 11130: 11118: 10970:, including 10961: 10727: 10239: 10208:directed set 9971:archetypical 9917: 9908:ultrafilters 9901: 9882: 9677: 9567: 9559: 9080: 8851: 8832: 8268: 7951:directed by 7931:be a net in 7869: 7510: 7359: 6916:; therefore 6766: 6473: 6449:directed set 6394:necessarily 6238:neighborhood 5963: 5592:). Thus the 5240: 4778: 4622: 4415: 4160:of a net in 4093: 4081: 4064:Banach space 4060:normed space 4047: 4012:Cauchy space 3784: 3773: 3694: 3472: 3324:is called a 3276: 3166: 2944:if whenever 2715:is called a 2557: 2384:is equal to 2171: 1999:cofinally in 1925: 1897: 1573: 1224: 1130:neighborhood 1061:is called a 825: 693: 557:of the form 470: 468: 466:is maximal. 463: 459: 340:total orders 142:directed set 139: 130:Henri Cartan 123: 108: 75:metric space 59:directed set 50: 46: 36: 21404:1006.4131v1 21111:Kelley 1975 20629:defined by 20057:by letting 18859:Consider a 18270:Such a net 18159:satisfying 13482:of a point 13428:the points 13142:containing 12618:If the set 11984:belongs to 10059:defined on 9687:induces an 9685:filter base 9481:defined by 7356:Compactness 6445:containment 4815:at a point 4779:A function 3770:Cauchy nets 1232:to/towards 1077:of the net 1065:limit point 136:Definitions 111:E. H. Moore 39:mathematics 21391:References 21374:Beer, p. 2 21291:2013-01-15 21262:Howes 1995 20883:for every 19788:for every 19470:such that 19142:the point 18688:such that 18218:the point 16616:For a net 16075:such that 14500:: the net 12132:) into an 10600:such that 10345:the point 9672:See also: 9654:equivalent 8695:such that 8523:such that 7974:For every 7645:such that 7281:for every 6840:For every 6742:is not in 6471:as well). 6065:such that 5727:Therefore 5222:(or not a 4813:continuous 4775:Continuity 4769:topologies 4617:See also: 3850:Cauchy net 3136:such that 2934:is called 2786:such that 2552:See also: 2074:such that 1991:frequently 1275:as a limit 1124:whenever: 999:the point 893:residually 889:eventually 492:, denoted 259:such that 21651:175294365 21031:Citations 21001:∙ 20952:∙ 20894:∈ 20788:∈ 20612:→ 20578:… 20544:∈ 20498:… 20446:∈ 20388:∙ 20361:∙ 20336:φ 20333:∘ 20328:∙ 20312:∈ 20263:∈ 20210:φ 20185:φ 20182:∘ 20177:∙ 20142:→ 20133:φ 20086:⌉ 20080:⌈ 20065:φ 20040:→ 20031:φ 20005:∈ 19994:for each 19948:≤ 19907:∈ 19872:→ 19854:∈ 19832:∙ 19799:∈ 19655:See also 19638:ω 19521:∈ 19490:∈ 19443:∈ 19405:∈ 19232:→ 19212:→ 19115:∈ 19077:∈ 18751:∈ 18658:≤ 18611:∖ 18605:∈ 18573:∖ 18567:∈ 18501:→ 18489:∖ 18372:→ 18352:→ 18321:∈ 18185:≤ 18138:∖ 18132:∈ 18100:∖ 18094:∈ 18028:→ 18016:∖ 17979:≤ 17941:∖ 17828:≤ 17787:≤ 17735:∖ 17688:with the 17653:(such as 17638:∈ 17573:∈ 17547:− 17521:∙ 17513:− 17457:→ 17447:∙ 17439:− 17408:‖ 17405:⋅ 17402:‖ 17370:→ 17365:∙ 17329:‖ 17326:⋅ 17323:‖ 17281:∈ 17224:∙ 17157:→ 17147:∙ 17073:→ 17068:∙ 17038:∈ 17007:∙ 16979:∈ 16832:≤ 16760:⪰ 16744:∈ 16715:⪰ 16699:∈ 16647:∈ 16553:→ 16548:∙ 16538:∏ 16524:π 16486:∈ 16479:∏ 16468:∙ 16458:∏ 16379:∙ 16361:π 16326:∈ 16227:∙ 16197:∈ 16111:→ 16102:∙ 16084:π 16053:∈ 16017:∈ 15991:∈ 15959:∙ 15880:∙ 15762:× 15726:∙ 15708:π 15681:∙ 15663:π 15509:… 15410:∈ 15379:∙ 15300:∈ 15244:∙ 15226:π 15203:∙ 15193:∏ 15149:∙ 15062:∈ 15026:π 14988:∙ 14970:π 14944:∈ 14919:∙ 14909:∏ 14865:∙ 14820:∈ 14813:∏ 14807:∈ 14799:∈ 14743:∙ 14734:∘ 14724:π 14688:∙ 14670:π 14661:that is, 14636:→ 14631:∙ 14621:∏ 14607:π 14584:∙ 14574:∏ 14569:→ 14558:∙ 14527:∙ 14509:π 14471:→ 14456:∙ 14438:π 14411:π 14388:∙ 14358:∈ 14322:π 14280:∙ 14262:π 14235:∈ 14190:∙ 14180:∏ 14153:∈ 14122:∙ 14078:↦ 14066:∈ 14021:→ 14012:∙ 14002:∏ 13984:π 13926:∈ 13911:with the 13884:∈ 13877:∏ 13868:∙ 13858:∏ 13828:∈ 13710:∈ 13645:∙ 13614:∈ 13413:≥ 13274:∈ 13203:≥ 13004:∈ 12943:∙ 12848:∙ 12797:→ 12792:∙ 12737:→ 12732:∙ 12665:∈ 12641:∪ 12559:− 12536:∈ 12377:∈ 12322:∈ 12117:↦ 12091:→ 12085:≥ 12041:≥ 12015:≥ 11925:∈ 11893:≥ 11829:≥ 11794:≥ 11640:⁡ 11616:∈ 11603:that is, 11528:→ 11507:function 11393:→ 11293:∈ 11216:∈ 11209:∏ 11181:→ 10670:∈ 10618:∈ 10585:≥ 10557:∈ 10425:→ 10327:≥ 10299:∈ 10179:countable 10139:… 10007:… 9956:≤ 9836:∈ 9812:≤ 9793:∈ 9722:∈ 9464:∈ 9322:→ 9287:∈ 9254:∈ 9114:∙ 9062:∙ 9015:∙ 8964:∈ 8896:∈ 8865:∙ 8795:∉ 8753:⊇ 8680:∈ 8654:∈ 8623:∈ 8574:∈ 8541:∉ 8508:∈ 8472:∈ 8423:∞ 8398:⊂ 8389:≜ 8338:∈ 8277:⟸ 8252:∙ 8222:∙ 8192:∙ 8167:∅ 8164:≠ 8151:⁡ 8140:∈ 8133:⋂ 8106:∈ 8079:⁡ 8042:≥ 8018:≜ 7985:∈ 7914:∈ 7883:∙ 7808:∈ 7760:∅ 7757:≠ 7739:∈ 7732:⋂ 7705:⊆ 7682:∅ 7679:≠ 7661:∈ 7654:⋂ 7608:∈ 7520:⟹ 7428:∈ 7397:∙ 7185:⁡ 7136:and thus 7092:⁡ 7054:→ 7046:∈ 6977:→ 6972:∙ 6934:∈ 6851:≥ 6518:∈ 6487:∙ 6443:with the 6405:∈ 6376:∈ 6166:→ 6158:∈ 6090:→ 6085:∙ 6048:∈ 6017:∙ 5972:⟸ 5934:→ 5926:∈ 5805:⁡ 5771:∈ 5709:⁡ 5684:∙ 5630:⁡ 5503:− 5392:→ 5387:∙ 5350:∈ 5319:∙ 5250:⟹ 5218:is not a 5151:→ 5142:∙ 5087:→ 5082:∙ 5054:→ 4990:→ 4981:∙ 4921:→ 4916:∙ 4879:∈ 4848:∙ 4796:→ 4709:⊆ 4660:∖ 4634:⊆ 4623:A subset 4572:∈ 4526:→ 4521:∙ 4508:∈ 4477:∈ 4427:⊆ 4396:∈ 4347:→ 4342:∙ 4305:∈ 4279:∈ 4244:∈ 4213:∙ 4105:⊆ 4094:A subset 4027:∙ 3920:≥ 3888:∈ 3856:entourage 3829:∈ 3798:∙ 3706:∈ 3653:∈ 3609:∙ 3601:∘ 3575:→ 3521:∈ 3490:∙ 3453:∖ 3428:∙ 3381:∙ 3351:⊆ 3290:∙ 3273:Ultranets 3253:∙ 3206:∙ 3178:∈ 3147:≥ 3112:∈ 3083:∈ 2990:≤ 2955:≤ 2919:→ 2884:∈ 2771:→ 2740:∙ 2701:∙ 2671:∈ 2640:∙ 2610:∈ 2579:∙ 2518:∈ 2506:≥ 2474:≥ 2446:∈ 2435:for each 2414:≥ 2402:⁡ 2350:∙ 2319:∙ 2307:⁡ 2251:∈ 2240:In fact, 2147:∈ 2118:∈ 2085:≥ 2059:∈ 2033:∈ 1970:∈ 1939:∙ 1881:→ 1876:∙ 1840:∙ 1805:→ 1764:∈ 1688:∙ 1646:only for 1631:→ 1626:∙ 1595:→ 1590:∙ 1512:→ 1457:→ 1431:∈ 1396:→ 1386:∙ 1348:→ 1305:→ 1295:∙ 1229:converges 1187:∙ 1090:∙ 1046:∈ 1017:∈ 981:≥ 955:∈ 929:∈ 870:∈ 839:∙ 803:∈ 771:∈ 725:≤ 632:∙ 581:→ 570:∙ 536:∈ 505:∙ 391:≤ 365:≤ 296:≤ 270:≤ 244:∈ 215:∈ 177:≤ 21699:Category 21631:(1996). 21600:(1997). 21574:(1998). 21552:(1991). 21518:(1975). 21508:1272666M 21500:31969970 21300:cite web 20777:for all 20676:⌋ 20653:⌊ 20125:The map 19961:and let 19819:so that 19755:and let 19686:Preorder 19663:See also 19510:A point 19334:The net 18472:The net 17561:‖ 17540:‖ 17527:‖ 17506:‖ 17453:‖ 17432:‖ 16904:Suppose 15366:and let 14852:the net 13552:Given a 12926:and the 12882:depends 12609:Examples 12506:and let 11853:for all 11705:sequence 10793:The map 10086:sequence 9904:analysts 9889:analysis 9658:preorder 9337:mapping 9305:The map 8563:for all 7360:A space 6356:Because 5594:interior 5306:and let 5122:implies 4956:implies 4294:for all 4072:normable 4055:complete 4014:, a net 3336:ultranet 3017:The set 2902:The map 2461:, where 2289:The set 2136:A point 1174:the net 1035:A point 763:⟩ 750:⟨ 555:function 342:or even 196:directed 166:preorder 83:topology 79:analysis 71:sequence 63:codomain 55:function 21619:22 June 21462:1269778 21435:2378491 21073:2370388 20100:ceiling 20098:be the 20023:Define 17352:) then 16348:is the 13554:subbase 8835:subnets 8000:define 7557:). Let 7382:compact 5984:) Let 5263:) Let 4444:closure 3304:in set 3049:cofinal 2940:and an 2542:Subnets 670:indices 553:, is a 350:and/or 105:History 99:filters 21688:115240 21686:  21676:  21649:  21639:  21610:  21586:  21560:  21542:338047 21540:  21530:  21506:  21498:  21488:  21460:  21450:  21433:  21423:  21245:  21218:  21071:  20988:while 19171:is in 18717:is in 18247:is in 17999:A net 17497:where 17348:(or a 17302:. In 17197:where 16944:) and 16940:(or a 16596:subnet 16350:unique 15980:If no 14720:  14697:  14312:  14289:  13632:a net 12884:solely 12396:where 11354:. Let 10966:. All 10372:is in 9680:filter 9183:where 4320:, and 3785:A net 3695:Given 3332:or an 3277:A net 3046:being 2717:subnet 1926:A net 1752:  1749:  1741:  1738:  1714:  1711:  1703:  1700:  898:a set 826:A net 598:domain 596:whose 471:net in 192:upward 126:filter 61:. The 21399:arXiv 21285:(PDF) 21278:(PDF) 21069:JSTOR 19708:Notes 18934:from 18632:with 17692:with 17344:is a 16968:. If 16936:is a 16428:. If 16424:is a 15588:Then 15217:then 14402:into 14253:let 13349:Then 13165:Then 12928:image 12712:then 10184:set ( 10154:into 9608:is a 9029:then 8845:Proof 8239:Thus 7723:Then 7504:Proof 6952:Thus 5875:Thus 5234:Proof 4492:with 4385:then 3846:is a 3220:then 2970:then 2835:and 1820:In a 1073:limit 970:with 73:in a 53:is a 21684:OCLC 21674:ISBN 21647:OCLC 21637:ISBN 21621:2013 21608:ISBN 21584:ISBN 21558:ISBN 21538:OCLC 21528:ISBN 21496:OCLC 21486:ISBN 21448:ISBN 21421:ISBN 21306:link 21243:ISBN 21216:ISBN 20841:and 19921:> 18469:). 16667:put 16609:and 16575:are 15799:but 15699:and 15621:and 15553:and 14109:Let 13601:base 13299:let 13263:For 12590:> 12548:> 12030:and 10769:and 10244:and 9409:the 9243:and 9131:Let 8852:Let 8420:< 7870:Let 7492:and 7081:But 3558:and 2627:and 2560:1970 2100:and 1860:and 1255:has 443:< 432:and 417:< 380:and 285:and 113:and 93:and 81:and 21061:doi 20102:of 19576:of 19374:of 19267:of 19205:lim 19196:So 19046:of 18806:of 18536:of 18407:of 18345:lim 17595:If 17472:in 17385:in 17172:in 17088:in 16753:sup 16737:inf 16708:sup 16692:lim 16241:in 16133:in 15744:in 15183:in 15106:in 15009:def 14711:def 14303:def 13971:by 13729:of 13659:in 12812:in 12781:lim 12752:in 12721:lim 12527:inf 12491:inf 12288:not 12250:in 12174:in 11957:min 11707:in 11569:in 11000:in 10840:in 10813:is 10705:of 10526:of 10460:of 10403:lim 10395:So 10268:of 9739:in 9660:or 9369:to 9223:in 8982:If 7445:in 7380:is 7182:int 7089:int 7004:lim 6961:lim 6787:of 6259:of 6116:lim 6074:lim 5884:lim 5802:int 5706:int 5627:int 5596:of 5572:at 5430:of 5376:lim 5226:). 5175:in 5102:in 5014:in 4964:lim 4936:in 4905:lim 4609:. 4589:in 4501:lim 4446:of 4362:in 4328:lim 3415:or 3167:If 3052:in 2727:of 2719:or 2562:by 2364:in 2194:of 2170:or 1995:or 1868:lim 1832:lim 1757:lim 1718:lim 1680:lim 1618:lim 1582:lim 1574:If 1551:If 1485:lim 1424:lim 1375:lim 1253:or 1151:of 1104:in 1069:or 891:or 694:net 462:or 336:not 49:or 47:net 37:In 21701:: 21682:. 21672:. 21668:: 21664:. 21645:. 21578:. 21536:. 21522:. 21504:OL 21502:. 21494:. 21476:. 21458:MR 21456:. 21431:MR 21429:. 21314:^ 21302:}} 21298:{{ 21200:^ 21177:^ 21162:^ 21143:^ 21118:^ 21103:^ 21067:. 21057:44 21055:. 21047:; 20649::= 20554::= 20456::= 20406:). 19659:. 17935::= 17729::= 17703::= 17664::= 17531::= 17234::= 16598:. 16579:. 15639::= 15606::= 13873::= 13502:, 12605:. 12524::= 12488::= 12436:th 12070:Id 11954::= 11620:cl 10789:: 9899:. 9678:A 8837:. 8148:cl 8076:cl 7496:. 5495::= 4048:A 4045:. 3782:. 2538:. 2482::= 2393:cl 2298:cl 896:in 818:. 469:A 194:) 140:A 132:. 121:. 101:. 21690:. 21653:. 21623:. 21592:. 21566:. 21544:. 21510:. 21464:. 21437:. 21407:. 21401:: 21308:) 21294:. 21252:. 21225:. 21085:( 21075:. 21063:: 21012:. 21009:h 21006:= 20997:s 20975:N 20948:x 20927:, 20923:N 20902:; 20898:N 20891:i 20871:) 20868:i 20865:( 20862:h 20859:= 20854:i 20850:s 20829:i 20826:= 20821:i 20817:x 20796:. 20792:N 20785:i 20763:) 20760:i 20757:( 20754:h 20750:x 20746:= 20741:i 20737:s 20715:N 20711:= 20708:) 20704:N 20700:( 20697:h 20670:2 20666:1 20663:+ 20660:i 20646:) 20643:i 20640:( 20637:h 20616:N 20608:N 20604:: 20601:h 20581:) 20575:, 20572:3 20569:, 20566:2 20563:, 20560:1 20557:( 20548:N 20541:i 20536:) 20531:i 20527:x 20523:( 20501:) 20495:, 20492:3 20489:, 20486:3 20483:, 20480:2 20477:, 20474:2 20471:, 20468:1 20465:, 20462:1 20459:( 20450:N 20443:i 20438:) 20433:i 20429:s 20425:( 20384:x 20357:x 20324:x 20320:= 20315:R 20309:r 20304:) 20299:r 20295:s 20291:( 20269:. 20266:R 20260:r 20238:r 20234:s 20230:= 20227:0 20224:= 20219:) 20216:r 20213:( 20206:x 20202:= 20199:) 20196:r 20193:( 20189:) 20173:x 20168:( 20146:N 20139:I 20136:: 20113:. 20110:r 20083:r 20077:= 20074:) 20071:r 20068:( 20044:N 20037:I 20034:: 20011:. 20008:R 20002:r 19982:0 19979:= 19974:r 19970:s 19927:} 19924:0 19918:r 19915:: 19911:R 19904:r 19901:{ 19898:= 19895:I 19875:X 19868:N 19864:: 19858:N 19851:i 19847:) 19843:0 19840:( 19837:= 19828:x 19807:, 19803:N 19796:i 19776:0 19773:= 19768:i 19764:x 19741:n 19736:R 19731:= 19728:X 19641:. 19635:= 19632:c 19610:. 19607:V 19587:, 19584:y 19564:V 19544:f 19524:X 19518:y 19496:. 19493:V 19487:) 19484:s 19481:( 19478:f 19458:) 19455:t 19452:, 19449:r 19446:[ 19440:s 19420:) 19417:t 19414:, 19411:0 19408:[ 19402:r 19382:X 19362:V 19342:f 19320:. 19317:V 19297:f 19278:, 19275:L 19255:V 19235:L 19229:) 19226:x 19223:( 19220:f 19215:t 19209:x 19182:. 19179:V 19159:) 19156:s 19153:( 19150:f 19130:) 19127:t 19124:, 19121:r 19118:[ 19112:s 19092:) 19089:t 19086:, 19083:0 19080:[ 19074:r 19054:X 19034:V 19012:. 19009:) 19006:t 19003:, 19000:0 18997:[ 18977:. 18974:X 18954:) 18951:t 18948:, 18945:0 18942:[ 18922:f 18902:t 18882:] 18879:c 18876:, 18873:0 18870:[ 18840:. 18837:V 18817:, 18814:L 18794:V 18774:f 18754:X 18748:L 18728:. 18725:S 18705:) 18702:m 18699:( 18696:f 18676:) 18673:c 18670:, 18667:n 18664:( 18661:d 18655:) 18652:c 18649:, 18646:m 18643:( 18640:d 18620:} 18617:c 18614:{ 18608:M 18602:m 18582:} 18579:c 18576:{ 18570:M 18564:n 18544:X 18524:S 18504:X 18498:} 18495:c 18492:{ 18486:M 18483:: 18480:f 18457:V 18437:f 18418:, 18415:L 18395:V 18375:L 18369:) 18366:m 18363:( 18360:f 18355:c 18349:m 18324:X 18318:L 18298:X 18278:f 18258:. 18255:S 18235:) 18232:m 18229:( 18226:f 18206:, 18203:) 18200:c 18197:, 18194:n 18191:( 18188:d 18182:) 18179:c 18176:, 18173:m 18170:( 18167:d 18147:} 18144:c 18141:{ 18135:M 18129:m 18109:} 18106:c 18103:{ 18097:M 18091:n 18071:X 18051:S 18031:X 18025:} 18022:c 18019:{ 18013:M 18010:: 18007:f 17985:. 17982:) 17976:, 17973:I 17970:( 17950:} 17947:c 17944:{ 17938:M 17932:I 17912:, 17909:M 17889:c 17869:c 17849:. 17846:) 17843:c 17840:, 17837:i 17834:( 17831:d 17825:) 17822:c 17819:, 17816:j 17813:( 17810:d 17790:j 17784:i 17764:c 17744:} 17741:c 17738:{ 17732:M 17726:I 17706:0 17700:c 17674:n 17669:R 17661:M 17641:M 17635:c 17615:) 17612:d 17609:, 17606:M 17603:( 17581:. 17576:A 17570:a 17565:) 17555:a 17551:m 17544:m 17536:( 17517:m 17510:m 17485:, 17481:R 17460:0 17443:m 17436:m 17411:) 17399:, 17396:M 17393:( 17373:m 17361:m 17332:) 17320:, 17317:M 17314:( 17284:A 17278:a 17273:) 17268:) 17262:a 17258:m 17254:, 17251:m 17247:( 17243:d 17239:( 17230:) 17220:m 17216:, 17213:m 17209:( 17205:d 17185:, 17181:R 17160:0 17153:) 17143:m 17139:, 17136:m 17132:( 17128:d 17108:) 17105:d 17102:, 17099:M 17096:( 17076:m 17064:m 17041:A 17035:a 17030:) 17025:i 17021:m 17017:( 17012:= 17003:m 16982:M 16976:m 16952:M 16924:) 16921:d 16918:, 16915:M 16912:( 16864:, 16859:a 16855:y 16848:+ 16843:a 16839:x 16829:) 16824:a 16820:y 16816:+ 16811:a 16807:x 16803:( 16778:. 16773:b 16769:x 16763:a 16757:b 16747:A 16741:a 16733:= 16728:b 16724:x 16718:a 16712:b 16702:A 16696:a 16688:= 16683:a 16679:x 16655:, 16650:A 16644:a 16639:) 16634:a 16630:x 16626:( 16561:i 16557:X 16544:X 16533:: 16528:i 16501:j 16497:X 16489:I 16483:j 16473:= 16464:X 16436:I 16410:i 16406:X 16384:) 16375:f 16371:( 16365:i 16334:i 16330:X 16321:i 16317:L 16296:I 16276:L 16252:. 16249:X 16223:f 16200:I 16194:i 16189:) 16184:i 16180:L 16176:( 16171:= 16168:L 16146:i 16142:X 16119:i 16115:L 16107:) 16098:f 16094:( 16088:i 16061:i 16057:X 16048:i 16044:L 16023:, 16020:I 16014:i 15994:X 15988:L 15955:f 15934:) 15931:1 15928:, 15925:0 15922:( 15902:1 15876:f 15855:) 15852:1 15849:, 15846:0 15843:( 15840:= 15836:) 15830:2 15826:L 15822:, 15817:1 15813:L 15808:( 15785:2 15780:R 15775:= 15770:2 15766:X 15757:1 15753:X 15731:) 15722:f 15718:( 15712:2 15686:) 15677:f 15673:( 15667:1 15642:1 15634:2 15630:L 15609:0 15601:1 15597:L 15576:. 15573:) 15570:0 15567:, 15564:0 15561:( 15541:) 15538:1 15535:, 15532:1 15529:( 15506:, 15503:) 15500:0 15497:, 15494:0 15491:( 15488:, 15485:) 15482:1 15479:, 15476:1 15473:( 15470:, 15467:) 15464:0 15461:, 15458:0 15455:( 15452:, 15449:) 15446:1 15443:, 15440:1 15437:( 15414:N 15407:a 15402:) 15397:a 15393:f 15389:( 15384:= 15375:f 15353:R 15349:= 15344:2 15340:X 15336:= 15331:1 15327:X 15306:. 15303:I 15297:i 15275:i 15271:L 15249:) 15240:f 15236:( 15230:i 15199:X 15171:L 15145:f 15124:. 15119:i 15115:X 15092:i 15088:L 15065:A 15059:a 15054:) 15049:) 15044:a 15040:f 15036:( 15030:i 15021:( 15002:= 14993:) 14984:f 14980:( 14974:i 14950:, 14947:I 14941:i 14915:X 14887:L 14861:f 14840:, 14835:i 14831:X 14823:I 14817:i 14802:I 14796:i 14791:) 14786:i 14782:L 14778:( 14773:= 14770:L 14748:. 14739:f 14728:i 14704:= 14693:) 14684:f 14680:( 14674:i 14649:; 14644:i 14640:X 14627:X 14616:: 14611:i 14580:X 14566:A 14563:: 14554:f 14532:) 14523:f 14519:( 14513:i 14484:. 14479:i 14475:X 14468:A 14465:: 14461:) 14452:f 14448:( 14442:i 14415:i 14384:f 14361:A 14355:a 14350:) 14345:) 14340:a 14336:f 14332:( 14326:i 14317:( 14296:= 14285:) 14276:f 14272:( 14266:i 14241:, 14238:I 14232:i 14212:A 14186:X 14156:A 14150:a 14145:) 14140:a 14136:f 14132:( 14127:= 14118:f 14089:l 14085:x 14069:I 14063:i 14058:) 14053:i 14049:x 14045:( 14032:l 14028:X 14008:X 13993:: 13988:l 13957:l 13953:X 13932:, 13929:I 13923:l 13897:i 13893:X 13887:I 13881:i 13864:X 13831:I 13825:i 13820:) 13815:i 13811:X 13807:( 13771:. 13768:x 13740:. 13737:x 13715:B 13707:U 13687:x 13667:X 13641:x 13620:, 13617:X 13611:x 13587:X 13565:B 13537:x 13515:S 13511:x 13490:x 13466:, 13463:x 13441:S 13437:x 13416:, 13392:S 13371:) 13366:S 13362:x 13358:( 13337:. 13334:S 13312:S 13308:x 13287:, 13282:x 13278:N 13271:S 13251:. 13248:T 13228:S 13206:T 13200:S 13178:x 13174:N 13153:. 13150:x 13124:x 13120:N 13099:x 13079:. 13076:a 13056:x 13034:a 13030:x 13007:A 13001:a 12996:) 12991:a 12987:x 12983:( 12948:. 12939:x 12914:x 12894:S 12870:x 12844:x 12823:. 12820:S 12800:x 12788:x 12760:X 12740:x 12728:x 12700:, 12697:X 12672:} 12668:A 12662:a 12659:: 12654:a 12650:x 12645:{ 12638:} 12635:x 12632:{ 12629:= 12626:S 12593:1 12587:n 12567:} 12562:1 12556:n 12552:h 12545:a 12542:: 12539:A 12533:a 12530:{ 12519:n 12515:h 12494:A 12483:1 12479:h 12458:A 12432:n 12409:n 12405:h 12381:N 12374:n 12369:) 12362:n 12358:h 12353:x 12349:( 12325:A 12319:a 12314:) 12309:a 12305:x 12301:( 12272:. 12266:R 12260:R 12238:E 12217:0 12196:, 12190:R 12184:R 12161:0 12140:E 12120:f 12114:f 12094:E 12088:) 12082:, 12079:E 12076:( 12073:: 12047:. 12044:m 12038:g 12018:m 12012:f 11992:E 11972:} 11969:g 11966:, 11963:f 11960:{ 11951:m 11931:, 11928:E 11922:g 11919:, 11916:f 11896:) 11890:, 11887:E 11884:( 11864:. 11861:x 11841:) 11838:x 11835:( 11832:g 11826:) 11823:x 11820:( 11817:f 11797:g 11791:f 11768:R 11762:R 11740:, 11736:0 11715:E 11691:. 11687:0 11666:E 11646:. 11643:E 11632:R 11626:R 11612:0 11591:; 11585:R 11579:R 11557:E 11537:} 11534:0 11531:{ 11524:R 11520:: 11516:0 11495:0 11475:} 11472:0 11469:= 11466:) 11463:x 11460:( 11457:f 11454:: 11451:x 11448:{ 11428:1 11408:} 11405:1 11402:, 11399:0 11396:{ 11389:R 11385:: 11382:f 11362:E 11335:R 11329:R 11303:, 11297:R 11290:x 11286:) 11282:) 11279:x 11276:( 11273:f 11270:( 11250:f 11229:R 11220:R 11213:x 11185:R 11177:R 11173:: 11170:f 11147:R 11141:R 11103:) 11100:x 11097:( 11094:f 11074:f 11054:, 11051:x 11031:X 11011:, 11008:X 10988:x 10958:. 10943:) 10940:x 10937:( 10934:f 10914:f 10894:, 10891:x 10871:X 10851:, 10848:X 10828:x 10817:; 10801:f 10777:Y 10757:X 10737:f 10713:y 10693:V 10673:X 10667:y 10647:. 10644:S 10624:, 10621:S 10613:n 10609:a 10588:N 10582:n 10561:N 10554:N 10534:X 10514:S 10494:. 10491:V 10471:, 10468:L 10448:V 10428:L 10420:n 10416:a 10410:n 10383:. 10380:S 10358:n 10354:a 10333:, 10330:N 10324:n 10303:N 10296:N 10276:X 10256:S 10223:a 10219:x 10193:N 10165:. 10162:X 10142:} 10136:, 10133:2 10130:, 10127:1 10124:{ 10121:= 10117:N 10096:X 10072:. 10068:N 10047:X 10027:X 10004:, 9999:2 9995:a 9991:, 9986:1 9982:a 9934:N 9864:X 9843:} 9839:A 9831:0 9827:a 9823:: 9819:} 9815:a 9807:0 9803:a 9799:, 9796:A 9790:a 9787:: 9782:a 9778:x 9773:{ 9768:{ 9747:X 9725:A 9719:a 9714:) 9709:a 9705:x 9701:( 9640:X 9620:X 9596:X 9576:X 9541:. 9538:y 9516:) 9513:b 9510:( 9507:h 9503:x 9499:= 9494:b 9490:y 9467:B 9461:b 9456:) 9451:b 9447:y 9443:( 9421:y 9397:B 9377:a 9357:) 9354:a 9351:, 9348:U 9345:( 9325:A 9319:B 9316:: 9313:h 9293:. 9290:U 9282:a 9278:x 9257:A 9251:a 9231:X 9211:y 9191:U 9171:) 9168:a 9165:, 9162:U 9159:( 9139:B 9119:. 9110:x 9089:y 9067:. 9058:x 9037:y 9011:x 8990:y 8970:. 8967:X 8961:y 8941:A 8921:X 8899:A 8893:a 8888:) 8883:a 8879:x 8875:( 8870:= 8861:x 8808:. 8803:c 8799:U 8790:B 8786:x 8765:, 8762:} 8759:c 8756:{ 8750:B 8730:x 8708:c 8704:U 8683:I 8677:c 8657:X 8651:x 8631:. 8626:D 8620:C 8615:) 8610:C 8606:x 8602:( 8580:. 8577:C 8571:a 8549:a 8545:U 8536:C 8532:x 8511:X 8503:C 8499:x 8478:, 8475:D 8469:C 8449:D 8429:. 8426:} 8416:| 8412:J 8408:| 8404:: 8401:I 8395:J 8392:{ 8386:D 8366:X 8345:} 8341:I 8335:i 8332:: 8327:i 8323:U 8318:{ 8297:X 8269:( 8248:x 8227:. 8218:x 8197:. 8188:x 8159:a 8155:E 8143:A 8137:a 8112:} 8109:A 8103:a 8100:: 8096:) 8091:a 8087:E 8083:( 8073:{ 8053:. 8049:} 8045:a 8039:b 8036:: 8031:b 8027:x 8022:{ 8013:a 8009:E 7988:A 7982:a 7962:. 7959:A 7939:X 7917:A 7911:a 7906:) 7901:a 7897:x 7893:( 7888:= 7879:x 7856:. 7853:X 7833:X 7811:I 7805:i 7800:} 7795:c 7790:i 7786:C 7782:{ 7752:i 7748:C 7742:I 7736:i 7711:. 7708:I 7702:J 7674:i 7670:C 7664:J 7658:i 7633:X 7611:I 7605:i 7600:} 7595:i 7591:C 7587:{ 7565:I 7541:X 7511:( 7476:. 7473:X 7453:X 7431:A 7425:a 7420:) 7415:a 7411:x 7407:( 7402:= 7393:x 7368:X 7335:. 7332:x 7312:f 7292:. 7289:a 7269:U 7248:) 7243:a 7239:x 7235:( 7231:f 7211:, 7208:U 7188:U 7161:) 7156:a 7152:x 7148:( 7144:f 7124:) 7121:x 7118:( 7115:f 7095:U 7069:. 7066:) 7063:x 7060:( 7057:f 7049:A 7043:a 7038:) 7033:) 7028:a 7024:x 7020:( 7016:f 7012:( 6983:. 6980:x 6968:x 6940:. 6937:W 6929:b 6925:x 6904:W 6884:b 6864:, 6859:0 6855:a 6848:b 6828:. 6823:0 6819:a 6798:, 6795:x 6775:W 6753:. 6750:U 6729:) 6724:a 6720:x 6716:( 6712:f 6692:x 6672:V 6652:V 6632:x 6612:V 6590:a 6586:x 6566:, 6563:a 6543:x 6521:A 6515:a 6510:) 6505:a 6501:x 6497:( 6492:= 6483:x 6459:x 6431:x 6411:. 6408:V 6402:x 6382:, 6379:U 6373:) 6370:x 6367:( 6364:f 6344:. 6341:x 6321:, 6318:V 6299:, 6296:f 6276:) 6273:x 6270:( 6267:f 6247:U 6224:. 6221:x 6201:f 6181:. 6178:) 6175:x 6172:( 6169:f 6161:A 6155:a 6150:) 6145:) 6140:a 6136:x 6132:( 6128:f 6124:( 6096:, 6093:x 6081:x 6051:A 6045:a 6040:) 6035:a 6031:x 6027:( 6022:= 6013:x 5992:x 5964:( 5949:, 5946:) 5943:x 5940:( 5937:f 5929:A 5923:a 5918:) 5913:) 5908:a 5904:x 5900:( 5896:f 5892:( 5863:. 5860:U 5840:) 5837:V 5834:( 5831:f 5811:) 5808:V 5799:( 5796:f 5774:A 5768:a 5763:) 5758:) 5753:a 5749:x 5745:( 5741:f 5737:( 5715:. 5712:V 5680:x 5659:, 5656:x 5636:, 5633:V 5607:, 5604:V 5580:x 5560:f 5540:x 5520:, 5517:) 5514:U 5511:( 5506:1 5499:f 5492:V 5473:, 5470:f 5450:, 5447:) 5444:x 5441:( 5438:f 5418:U 5398:. 5395:x 5383:x 5353:A 5347:a 5342:) 5337:a 5333:x 5329:( 5324:= 5315:x 5294:, 5291:x 5271:f 5241:( 5206:X 5186:. 5183:Y 5163:) 5160:x 5157:( 5154:f 5147:) 5138:x 5134:( 5130:f 5110:X 5090:x 5078:x 5057:Y 5051:X 5048:: 5045:f 5025:. 5022:Y 5002:) 4999:x 4996:( 4993:f 4986:) 4977:x 4973:( 4969:f 4944:X 4924:x 4912:x 4882:A 4876:a 4871:) 4866:a 4862:x 4858:( 4853:= 4844:x 4823:x 4799:Y 4793:X 4790:: 4787:f 4755:. 4752:S 4732:S 4712:X 4706:S 4686:. 4683:S 4663:S 4657:X 4637:X 4631:S 4597:S 4575:A 4569:a 4564:) 4559:a 4555:s 4551:( 4529:x 4517:s 4511:A 4505:a 4480:X 4474:x 4454:S 4430:X 4424:S 4402:. 4399:S 4393:x 4373:, 4370:X 4350:x 4338:s 4308:A 4302:a 4282:S 4274:a 4270:s 4247:A 4241:a 4236:) 4231:a 4227:s 4223:( 4218:= 4209:s 4188:S 4168:S 4148:X 4128:X 4108:X 4102:S 4023:x 3998:. 3995:V 3974:) 3968:b 3964:x 3960:, 3955:a 3951:x 3946:( 3926:, 3923:c 3917:b 3914:, 3911:a 3891:A 3885:c 3865:V 3832:A 3826:a 3821:) 3816:a 3812:x 3808:( 3803:= 3794:x 3755:. 3752:x 3732:x 3712:, 3709:X 3703:x 3681:. 3678:Y 3656:A 3650:a 3645:) 3640:) 3635:a 3631:x 3627:( 3623:f 3619:( 3614:= 3605:x 3598:f 3578:Y 3572:X 3569:: 3566:f 3546:X 3524:A 3518:a 3513:) 3508:a 3504:x 3500:( 3495:= 3486:x 3459:. 3456:S 3450:X 3424:x 3403:S 3377:x 3357:, 3354:X 3348:S 3312:X 3286:x 3258:. 3249:x 3228:x 3202:x 3181:X 3175:x 3153:. 3150:a 3144:b 3124:) 3121:I 3118:( 3115:h 3109:b 3089:, 3086:A 3080:a 3060:A 3034:) 3031:I 3028:( 3025:h 3005:. 3002:) 2999:j 2996:( 2993:h 2987:) 2984:i 2981:( 2978:h 2958:j 2952:i 2922:A 2916:I 2913:: 2910:h 2890:. 2887:I 2881:i 2870:) 2867:i 2864:( 2861:h 2857:x 2853:= 2848:i 2844:s 2823:A 2803:) 2800:I 2797:( 2794:h 2774:A 2768:I 2765:: 2762:h 2736:x 2697:s 2674:I 2668:i 2663:) 2658:i 2654:s 2650:( 2645:= 2636:s 2613:A 2607:a 2602:) 2597:a 2593:x 2589:( 2584:= 2575:x 2525:} 2521:A 2515:b 2512:, 2509:a 2503:b 2500:: 2495:b 2491:x 2486:{ 2477:a 2470:x 2449:A 2443:a 2422:) 2417:a 2410:x 2406:( 2397:X 2372:X 2346:x 2324:) 2315:x 2311:( 2302:X 2277:. 2274:x 2254:X 2248:x 2228:. 2225:U 2205:, 2202:x 2182:U 2150:X 2144:x 2124:. 2121:S 2113:b 2109:x 2088:a 2082:b 2062:A 2056:b 2036:A 2030:a 2010:S 1973:A 1967:a 1962:) 1957:a 1953:x 1949:( 1944:= 1935:x 1905:X 1884:x 1872:x 1848:x 1845:= 1836:x 1808:. 1785:x 1782:= 1777:a 1773:x 1767:A 1761:a 1734:x 1731:= 1726:a 1722:x 1696:x 1693:= 1684:x 1660:y 1657:= 1654:x 1634:y 1622:x 1598:x 1586:x 1559:X 1535:. 1532:X 1519:x 1502:a 1498:x 1489:a 1477:X 1464:x 1447:a 1443:x 1434:A 1428:a 1416:X 1403:x 1382:x 1368:X 1355:x 1338:a 1334:x 1325:X 1312:x 1291:x 1263:x 1240:x 1221:, 1209:U 1183:x 1162:, 1159:x 1139:U 1112:X 1086:x 1049:X 1043:x 1023:. 1020:S 1012:b 1008:x 987:, 984:a 978:b 958:A 952:b 932:A 926:a 906:S 873:A 867:a 862:) 857:a 853:x 849:( 844:= 835:x 806:A 800:a 774:A 768:a 758:a 754:x 728:. 704:A 680:X 654:a 650:x 646:= 643:) 640:a 637:( 628:x 607:A 584:X 578:A 575:: 566:x 539:A 533:a 528:) 523:a 519:x 515:( 510:= 501:x 480:X 464:b 460:a 446:c 440:b 420:c 414:a 394:c 388:b 368:c 362:a 322:A 302:. 299:c 293:b 273:c 267:a 247:A 241:c 221:, 218:A 212:b 209:, 206:a 152:A 34:. 20:)

Index

Convergent net
Net (polyhedron)
mathematics
general topology
function
directed set
codomain
topological space
sequence
metric space
analysis
topology
topological properties
sequential spaces
Fréchet–Urysohn spaces
filters
E. H. Moore
Herman L. Smith
John L. Kelley
filter
Henri Cartan
directed set
preorder
total orders
partial orders
greatest elements
maximal elements
function
domain
algebraic topology

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑