Knowledge

Continuum percolation theory

Source 📝

1000:. One of the main limitations of these networks is energy consumption where usually each node has a battery and an embedded form of energy harvesting. To reduce energy consumption in sensor networks, various sleep schemes have been suggested that entail having a subcollection of nodes go into a low energy-consuming sleep mode. These sleep schemes obviously affect the coverage and connectivity of sensor networks. Simple power-saving models have been proposed such as the simple uncoordinated 'blinking' model where (at each time interval) each node independently powers down (or up) with some fixed probability. Using the tools of percolation theory, a blinking Boolean Poisson model has been analyzed to study the 289: 969: 49:. For each point, a random shape is frequently placed on it and the shapes overlap each with other to form clumps or components. As in discrete percolation, a common research focus of continuum percolation is studying the conditions of occurrence for infinite or giant components. Other shared concepts and analysis techniques exist in these two types of percolation theory as well as the study of 408:
focus of percolation theory is establishing the conditions when giant components exist in models, which has parallels with the study of random networks. If no big component exists, the model is said to be subcritical. The conditions of giant component criticality naturally depend on parameters of the model such as the density of the underlying point process.
407:
In the Boolean–Poisson model, disks there can be isolated groups or clumps of disks that do not contact any other clumps of disks. These clumps are known as components. If the area (or volume in higher dimensions) of a component is infinite, one says it is an infinite or "giant" component. A major
88:
proposed a mathematical model in wireless networks that gave rise to the field of continuum percolation theory, thus generalizing discrete percolation. The underlying points of this model, sometimes known as the Gilbert disk model, were scattered uniformly in the infinite plane
689: 416:
The excluded area of a placed object is defined as the minimal area around the object into which an additional object cannot be placed without overlapping with the first object. For example, in a system of randomly oriented homogeneous rectangles of length
885:
It has been shown via Monte-Carlo simulations that percolation threshold in both homogeneous and heterogeneous systems of rectangles or ellipses is dominated by the average excluded areas and can be approximated fairly well by the linear relation
45:). More specifically, the underlying points of discrete percolation form types of lattices whereas the underlying points of continuum percolation are often randomly positioned in some continuous space and form a type of 955: 806: 68:
and performance in wireless networks. In addition to this setting, continuum percolation has gained application in other disciplines including biology, geology, and physics, such as the study of
880: 461: 992:
Wireless networks are sometimes best represented with stochastic models owing to their complexity and unpredictability, hence continuum percolation have been used to develop
1518: 64:, which, with the rise of several wireless network technologies in recent years, has been generalized and studied in order to determine the theoretical bounds of 2053: 99:. Gilbert, who had noticed similarities between discrete and continuum percolation, then used concepts and techniques from the probability subject of 1877: 1013: 993: 2480: 1473: 115:
The exact names, terminology, and definitions of these models may vary slightly depending on the source, which is also reflected in the use of
2010: 1990: 996:. For example, the tools of continuous percolation theory and coverage processes have been used to study the coverage and connectivity of 892: 2394: 346:
to all other shapes and the underlying (Poisson) point process. This model is known as the germ–grain model where the underlying points
1281:
Balister, Paul; Sarkar, Amites; BollobĂĄs, BĂ©la (2008). "Percolation, connectivity, coverage and colouring of random geometric graphs".
2311: 1995: 2321: 2005: 1426:
Dousse, O.; Mannersalo, P.; Thiran, P. (2004). "Latency of wireless sensor networks with uncoordinated power saving mechanisms".
2363: 2260: 292:
Simulation of 4 Poisson–Boolean (constant-radius or Gilbert disk) models as the density increases with largest clusters in red.
2550: 2540: 2386: 2078: 2063: 2450: 2414: 744: 2718: 2455: 835: 2367: 1565: 1466: 1023: 271: 2520: 343: 222: 1441:
Gui, C.; Mohapatra, P. (2004). "Power conservation and quality of surveillance in target tracking sensor networks".
2565: 2371: 2355: 2270: 2098: 2068: 1490: 1314:
Li, Jiantong; Östling, Mikael (2013). "Percolation thresholds of two-dimensional continuum systems of rectangles".
684:{\displaystyle A_{r}=2lw\left(1+{\frac {4}{\pi ^{2}}}\right)+{\frac {2}{\pi }}\left(l^{2}+w^{2}\right)=2l^{2}\left} 2470: 2435: 2404: 2399: 1835: 1752: 2409: 2038: 2033: 1840: 1737: 2723: 2500: 2336: 2235: 2220: 1759: 1632: 1548: 1459: 2495: 2375: 2505: 1115:
Dousse, O.; Baccelli, F.; Thiran, P. (2005). "Impact of interferences on connectivity in ad hoc networks".
2510: 2146: 2749: 2744: 2108: 1692: 1637: 1553: 376:
of all the shapes forms a Boolean germ-grain model. Typical choices for the grains include disks, random
2440: 2754: 2445: 2430: 2073: 2043: 1610: 1508: 2525: 2326: 2240: 2225: 2156: 1732: 1615: 1513: 127:
A number of well-studied models exist in continuum percolation, which are often based on homogeneous
2359: 2245: 1747: 1722: 1667: 339: 218: 1378:"Precise percolation thresholds of two-dimensional random systems comprising overlapping ellipses" 1129: 2660: 2650: 2465: 2341: 2123: 2048: 1862: 1727: 1583: 1538: 54: 2602: 2530: 1955: 1945: 1789: 1124: 1028: 977: 116: 61: 301:
The disk model can be generalized to more arbitrary shapes where, instead of a disk, a random
2625: 2607: 2587: 2582: 2301: 2133: 2113: 1960: 1903: 1742: 1652: 1001: 128: 104: 1428:
Proceedings of the 5th ACM International Symposium on Mobile Ad Hoc Networking and Computing
2700: 2655: 2645: 2331: 2306: 2275: 2255: 2093: 2015: 2000: 1867: 1389: 1323: 1202: 384: 65: 1443:
Proceedings of the 10th Annual International Conference on Mobile Computing and Networking
1377: 8: 2695: 2535: 2460: 2265: 2025: 1935: 1825: 811:
The excluded area theory states that the critical number density (percolation threshold)
275: 100: 1393: 1327: 1206: 2665: 2630: 2545: 2515: 2346: 2285: 2280: 2103: 1940: 1605: 1543: 1482: 1355: 1142: 976:
The applications of percolation theory are various and range from material sciences to
29: 21: 2685: 1898: 1815: 1784: 1677: 1657: 1647: 1503: 1498: 1405: 1347: 1339: 2490: 2141: 1359: 2705: 2592: 2475: 2351: 2088: 1845: 1820: 1769: 1620: 1573: 1397: 1331: 1241: 1210: 1173: 1146: 1134: 1097: 981: 285:, then the resulting model is sometimes known as the Gilbert disk (Boolean) model. 33: 1697: 1072:
Random Networks for Communication: From Statistical Physics to Information Systems
2670: 2570: 2555: 2316: 2250: 1928: 1872: 1855: 1600: 96: 69: 37: 2485: 1717: 1401: 2675: 2640: 2560: 2166: 1913: 1830: 1799: 1794: 1774: 1764: 1707: 1682: 1662: 1627: 1595: 1578: 1335: 997: 1702: 1214: 2738: 2577: 2118: 1950: 1908: 1850: 1672: 1588: 1528: 1409: 1343: 1246: 1229: 1178: 1161: 1138: 1018: 387:
known as coverage processes. The above models can be extended from the plane
302: 236:, then the resulting mathematical structure is known as a random disk model. 85: 73: 50: 46: 2635: 2597: 2151: 2083: 1972: 1967: 1779: 1712: 1687: 1523: 1351: 1160:
Dousse, O.; Franceschetti, M.; Macris, N.; Meester, R.; Thiran, P. (2006).
2680: 2215: 2199: 2194: 2189: 2179: 1982: 1923: 1918: 1882: 1642: 1533: 274:), which is a commonly studied model in continuum percolation as well as 17: 2690: 2230: 2174: 2058: 2011:
Generalized autoregressive conditional heteroskedasticity (GARCH) model
1451: 968: 76:, while becoming a subject of mathematical interest in its own right. 2184: 373: 288: 1193:
Balberg, I. (1987). "Recent developments in continuum percolation".
1101: 950:{\displaystyle N_{\mathrm {c} }-N_{\mathrm {c} 0}\propto A_{r}^{-1}} 820:
of a system is inversely proportional to the average excluded area
377: 60:
Continuum percolation arose from an early mathematical model for
1159: 1266:
Stoyan, D.; Kendall, W. S.; Mecke, J.; Ruschendorf, L. (1995).
270:
is known as a Boolean–Poisson model (also known as simply the
1265: 1090:
Journal of the Society for Industrial and Applied Mathematics
244:
Given a random disk model, if the set union of all the disks
1991:
Autoregressive conditional heteroskedasticity (ARCH) model
972:
A Boolean model as a coverage model in a wireless network.
1065: 1063: 1061: 278:. If all the radii are set to some common constant, say, 1519:
Independent and identically distributed random variables
1004:
and connectivity effects of such a simple power scheme.
980:
systems. Often the work involves showing that a type of
1162:"Percolation in the signal to interference ratio graph" 1996:
Autoregressive integrated moving average (ARIMA) model
1425: 1280: 1274: 1261: 1259: 1257: 1058: 1045: 1043: 960:
with a proportionality constant in the range 3.1–3.5.
1382:
Physica A: Statistical Mechanics and Its Applications
895: 838: 747: 464: 225:
of all the other radii and all the underlying points
1421: 1419: 1289: 1153: 1114: 1069: 801:{\displaystyle A_{r}=2\pi ab+{\frac {C^{2}}{2\pi }}} 1254: 1083: 1081: 1040: 949: 875:{\displaystyle N_{\mathrm {c} }\propto A_{r}^{-1}} 874: 800: 683: 1416: 694:In a system of identical ellipses with semi-axes 28:is a branch of mathematics that extends discrete 2736: 1878:Stochastic chains with memory of variable length 1371: 1369: 1309: 1307: 1298:Introduction to the theory of coverage processes 1221: 1186: 1088:Gilbert, E. N. (1961). "Random plane networks". 1078: 1108: 1014:Stochastic geometry models of wireless networks 994:stochastic geometry models of wireless networks 107:existed for the infinite or "giant" component. 168:. For each point of the Poisson process (i.e. 110: 1467: 1366: 1304: 402: 1440: 1434: 1054:. Vol. 119. Cambridge University Press. 1074:. Vol. 24. Cambridge University Press. 2006:Autoregressive–moving-average (ARMA) model 1474: 1460: 738:, the average excluded areas is given by: 1375: 1313: 1245: 1177: 1128: 455:, the average excluded area is given by: 1481: 1268:Stochastic Geometry and Its Applications 967: 287: 156:that form a homogeneous Poisson process 1283:Handbook of Large-Scale Random Networks 1192: 1087: 1070:Franceschetti, M.; Meester, R. (2007). 1049: 411: 255:is taken, then the resulting structure 2737: 2312:Doob's martingale convergence theorems 1376:Li, Jiantong; Östling, Mikael (2016). 2064:Constant elasticity of variance (CEV) 2054:Chan–Karolyi–Longstaff–Sanders (CKLS) 1455: 190:with its center located at the point 1295: 1227: 987: 383:Boolean models are also examples of 1117:IEEE/ACM Transactions on Networking 296: 13: 2551:Skorokhod's representation theorem 2332:Law of large numbers (weak/strong) 1024:Boolean model (probability theory) 917: 902: 845: 14: 2766: 2521:Martingale representation theorem 2566:Stochastic differential equation 2456:Doob's optional stopping theorem 2451:Doob–Meyer decomposition theorem 1270:. Vol. 2. Wiley Chichester. 239: 139:Consider a collection of points 122: 79: 2436:Convergence of random variables 2322:Fisher–Tippett–Gnedenko theorem 1300:. Vol. 1. New York: Wiley. 963: 380:and segments of random length. 2034:Binomial options pricing model 1166:Journal of Applied Probability 361:and the random compact shapes 162:with constant (point) density 1: 2501:Kolmogorov continuity theorem 2337:Law of the iterated logarithm 1034: 305:(hence bounded and closed in 134: 2506:Kolmogorov extension theorem 2185:Generalized queueing network 1693:Interacting particle systems 26:continuum percolation theory 7: 1638:Continuous-time random walk 1402:10.1016/j.physa.2016.06.020 1007: 393:to general Euclidean space 111:Definitions and terminology 95:according to a homogeneous 10: 2771: 2646:Extreme value theory (EVT) 2446:Doob decomposition theorem 1738:Ornstein–Uhlenbeck process 1509:Chinese restaurant process 1336:10.1103/PhysRevE.88.012101 1230:"On continuum percolation" 403:Components and criticality 2714: 2618: 2526:Optional stopping theorem 2423: 2385: 2327:Large deviation principle 2294: 2208: 2165: 2132: 2079:Heath–Jarrow–Morton (HJM) 2024: 2016:Moving-average (MA) model 2001:Autoregressive (AR) model 1981: 1891: 1826:Hidden Markov model (HMM) 1808: 1760:Schramm–Loewner evolution 1564: 1489: 1234:The Annals of Probability 1215:10.1080/13642818708215336 2441:DolĂ©ans-Dade exponential 2271:Progressively measurable 2069:Cox–Ingersoll–Ross (CIR) 1445:. ACM. pp. 129–143. 1430:. ACM. pp. 109–120. 1195:Philosophical Magazine B 1139:10.1109/tnet.2005.845546 320:is placed on each point 2661:Mathematical statistics 2651:Large deviations theory 2481:Infinitesimal generator 2342:Maximal ergodic theorem 2261:Piecewise-deterministic 1863:Random dynamical system 1728:Markov additive process 129:Poisson point processes 55:random geometric graphs 2496:Karhunen–LoĂšve theorem 2431:Cameron–Martin formula 2395:Burkholder–Davis–Gundy 1790:Variance gamma process 1247:10.1214/aop/1176992809 1179:10.1239/jap/1152413741 1029:Percolation thresholds 984:occurs in the system. 978:wireless communication 973: 951: 876: 802: 685: 293: 117:point process notation 2626:Actuarial mathematics 2588:Uniform integrability 2583:Stratonovich integral 2511:LĂ©vy–Prokhorov metric 2415:Marcinkiewicz–Zygmund 2302:Central limit theorem 1904:Gaussian random field 1733:McKean–Vlasov process 1653:Dyson Brownian motion 1514:Galton–Watson process 1052:Continuum Percolation 971: 952: 877: 803: 686: 291: 2701:Time series analysis 2656:Mathematical finance 2541:Reflection principle 1868:Regenerative process 1668:Fleming–Viot process 1483:Stochastic processes 1050:Meester, R. (1996). 893: 836: 745: 462: 412:Excluded area theory 385:stochastic processes 329:. Again, each shape 208:has a random radius 66:information capacity 2696:Stochastic analysis 2536:Quadratic variation 2531:Prokhorov's theorem 2466:Feynman–Kac formula 1936:Markov random field 1584:Birth–death process 1394:2016PhyA..462..940L 1328:2013PhRvE..88a2101L 1285:. pp. 117–142. 1207:1987PMagB..56..991B 946: 871: 276:stochastic geometry 101:branching processes 84:In the early 1960s 2750:Probability theory 2745:Percolation theory 2666:Probability theory 2546:Skorokhod integral 2516:Malliavin calculus 2099:Korn-Kreer-Lenssen 1983:Time series models 1946:Pitman–Yor process 974: 947: 929: 872: 854: 798: 681: 294: 30:percolation theory 22:probability theory 2755:Phase transitions 2732: 2731: 2686:Signal processing 2405:Doob's upcrossing 2400:Doob's martingale 2364:Engelbert–Schmidt 2307:Donsker's theorem 2241:Feller-continuous 2109:Rendleman–Bartter 1899:Dirichlet process 1816:Branching process 1785:Telegraph process 1678:Geometric process 1658:Empirical process 1648:Diffusion process 1504:Branching process 1499:Bernoulli process 1316:Physical Review E 1296:Hall, P. (1988). 1228:Hall, P. (1985). 988:Wireless networks 796: 669: 641: 623: 595: 531: 513: 429:and aspect ratio 62:wireless networks 2762: 2706:Machine learning 2593:Usual hypotheses 2476:Girsanov theorem 2461:Dynkin's formula 2226:Continuous paths 2134:Actuarial models 2074:Garman–Kohlhagen 2044:Black–Karasinski 2039:Black–Derman–Toy 2026:Financial models 1892:Fields and other 1821:Gaussian process 1770:Sigma-martingale 1574:Additive process 1476: 1469: 1462: 1453: 1452: 1447: 1446: 1438: 1432: 1431: 1423: 1414: 1413: 1373: 1364: 1363: 1311: 1302: 1301: 1293: 1287: 1286: 1278: 1272: 1271: 1263: 1252: 1251: 1249: 1240:(4): 1250–1266. 1225: 1219: 1218: 1190: 1184: 1183: 1181: 1157: 1151: 1150: 1132: 1112: 1106: 1105: 1085: 1076: 1075: 1067: 1056: 1055: 1047: 982:phase transition 956: 954: 953: 948: 945: 937: 925: 924: 920: 907: 906: 905: 881: 879: 878: 873: 870: 862: 850: 849: 848: 828: 819: 807: 805: 804: 799: 797: 795: 787: 786: 777: 757: 756: 737: 732:, and perimeter 731: 730: 728: 727: 722: 719: 705: 699: 690: 688: 687: 682: 680: 676: 675: 671: 670: 668: 667: 655: 642: 634: 629: 625: 624: 622: 621: 609: 596: 588: 581: 580: 565: 561: 560: 559: 547: 546: 532: 524: 519: 515: 514: 512: 511: 499: 474: 473: 454: 453: 451: 450: 445: 442: 428: 422: 398: 392: 367: 356: 337: 328: 319: 310: 297:Germ-grain model 284: 269: 254: 235: 216: 207: 198: 189: 181:), place a disk 180: 167: 161: 155: 149: 94: 44: 34:continuous space 2770: 2769: 2765: 2764: 2763: 2761: 2760: 2759: 2735: 2734: 2733: 2728: 2710: 2671:Queueing theory 2614: 2556:Skorokhod space 2419: 2410:Kunita–Watanabe 2381: 2347:Sanov's theorem 2317:Ergodic theorem 2290: 2286:Time-reversible 2204: 2167:Queueing models 2161: 2157:Sparre–Anderson 2147:CramĂ©r–Lundberg 2128: 2114:SABR volatility 2020: 1977: 1929:Boolean network 1887: 1873:Renewal process 1804: 1753:Non-homogeneous 1743:Poisson process 1633:Contact process 1596:Brownian motion 1566:Continuous time 1560: 1554:Maximal entropy 1485: 1480: 1450: 1439: 1435: 1424: 1417: 1374: 1367: 1312: 1305: 1294: 1290: 1279: 1275: 1264: 1255: 1226: 1222: 1201:(6): 991–1003. 1191: 1187: 1158: 1154: 1113: 1109: 1102:10.1137/0109045 1086: 1079: 1068: 1059: 1048: 1041: 1037: 1010: 998:sensor networks 990: 966: 938: 933: 916: 915: 911: 901: 900: 896: 894: 891: 890: 863: 858: 844: 843: 839: 837: 834: 833: 826: 821: 818: 812: 788: 782: 778: 776: 752: 748: 746: 743: 742: 733: 723: 720: 715: 714: 712: 707: 701: 695: 663: 659: 654: 647: 643: 633: 617: 613: 608: 601: 597: 587: 586: 582: 576: 572: 555: 551: 542: 538: 537: 533: 523: 507: 503: 498: 491: 487: 469: 465: 463: 460: 459: 446: 443: 438: 437: 435: 430: 424: 418: 414: 405: 394: 388: 366: 362: 353: 347: 335: 330: 326: 321: 317: 312: 306: 299: 279: 267: 262: 256: 251: 245: 242: 232: 226: 217:(from a common 214: 209: 205: 200: 199:. If each disk 196: 191: 187: 182: 174: 169: 163: 157: 151: 146: 140: 137: 125: 113: 105:threshold value 103:to show that a 97:Poisson process 90: 82: 70:porous material 40: 38:Euclidean space 12: 11: 5: 2768: 2758: 2757: 2752: 2747: 2730: 2729: 2727: 2726: 2721: 2719:List of topics 2715: 2712: 2711: 2709: 2708: 2703: 2698: 2693: 2688: 2683: 2678: 2676:Renewal theory 2673: 2668: 2663: 2658: 2653: 2648: 2643: 2641:Ergodic theory 2638: 2633: 2631:Control theory 2628: 2622: 2620: 2616: 2615: 2613: 2612: 2611: 2610: 2605: 2595: 2590: 2585: 2580: 2575: 2574: 2573: 2563: 2561:Snell envelope 2558: 2553: 2548: 2543: 2538: 2533: 2528: 2523: 2518: 2513: 2508: 2503: 2498: 2493: 2488: 2483: 2478: 2473: 2468: 2463: 2458: 2453: 2448: 2443: 2438: 2433: 2427: 2425: 2421: 2420: 2418: 2417: 2412: 2407: 2402: 2397: 2391: 2389: 2383: 2382: 2380: 2379: 2360:Borel–Cantelli 2349: 2344: 2339: 2334: 2329: 2324: 2319: 2314: 2309: 2304: 2298: 2296: 2295:Limit theorems 2292: 2291: 2289: 2288: 2283: 2278: 2273: 2268: 2263: 2258: 2253: 2248: 2243: 2238: 2233: 2228: 2223: 2218: 2212: 2210: 2206: 2205: 2203: 2202: 2197: 2192: 2187: 2182: 2177: 2171: 2169: 2163: 2162: 2160: 2159: 2154: 2149: 2144: 2138: 2136: 2130: 2129: 2127: 2126: 2121: 2116: 2111: 2106: 2101: 2096: 2091: 2086: 2081: 2076: 2071: 2066: 2061: 2056: 2051: 2046: 2041: 2036: 2030: 2028: 2022: 2021: 2019: 2018: 2013: 2008: 2003: 1998: 1993: 1987: 1985: 1979: 1978: 1976: 1975: 1970: 1965: 1964: 1963: 1958: 1948: 1943: 1938: 1933: 1932: 1931: 1926: 1916: 1914:Hopfield model 1911: 1906: 1901: 1895: 1893: 1889: 1888: 1886: 1885: 1880: 1875: 1870: 1865: 1860: 1859: 1858: 1853: 1848: 1843: 1833: 1831:Markov process 1828: 1823: 1818: 1812: 1810: 1806: 1805: 1803: 1802: 1800:Wiener sausage 1797: 1795:Wiener process 1792: 1787: 1782: 1777: 1775:Stable process 1772: 1767: 1765:Semimartingale 1762: 1757: 1756: 1755: 1750: 1740: 1735: 1730: 1725: 1720: 1715: 1710: 1708:Jump diffusion 1705: 1700: 1695: 1690: 1685: 1683:Hawkes process 1680: 1675: 1670: 1665: 1663:Feller process 1660: 1655: 1650: 1645: 1640: 1635: 1630: 1628:Cauchy process 1625: 1624: 1623: 1618: 1613: 1608: 1603: 1593: 1592: 1591: 1581: 1579:Bessel process 1576: 1570: 1568: 1562: 1561: 1559: 1558: 1557: 1556: 1551: 1546: 1541: 1531: 1526: 1521: 1516: 1511: 1506: 1501: 1495: 1493: 1487: 1486: 1479: 1478: 1471: 1464: 1456: 1449: 1448: 1433: 1415: 1365: 1303: 1288: 1273: 1253: 1220: 1185: 1172:(2): 552–562. 1152: 1123:(2): 425–436. 1107: 1096:(4): 533–543. 1077: 1057: 1038: 1036: 1033: 1032: 1031: 1026: 1021: 1016: 1009: 1006: 989: 986: 965: 962: 958: 957: 944: 941: 936: 932: 928: 923: 919: 914: 910: 904: 899: 883: 882: 869: 866: 861: 857: 853: 847: 842: 824: 816: 809: 808: 794: 791: 785: 781: 775: 772: 769: 766: 763: 760: 755: 751: 692: 691: 679: 674: 666: 662: 658: 653: 650: 646: 640: 637: 632: 628: 620: 616: 612: 607: 604: 600: 594: 591: 585: 579: 575: 571: 568: 564: 558: 554: 550: 545: 541: 536: 530: 527: 522: 518: 510: 506: 502: 497: 494: 490: 486: 483: 480: 477: 472: 468: 413: 410: 404: 401: 364: 351: 333: 324: 315: 298: 295: 265: 258: 249: 241: 238: 230: 212: 203: 194: 185: 172: 144: 136: 133: 124: 121: 112: 109: 81: 78: 74:semiconductors 9: 6: 4: 3: 2: 2767: 2756: 2753: 2751: 2748: 2746: 2743: 2742: 2740: 2725: 2722: 2720: 2717: 2716: 2713: 2707: 2704: 2702: 2699: 2697: 2694: 2692: 2689: 2687: 2684: 2682: 2679: 2677: 2674: 2672: 2669: 2667: 2664: 2662: 2659: 2657: 2654: 2652: 2649: 2647: 2644: 2642: 2639: 2637: 2634: 2632: 2629: 2627: 2624: 2623: 2621: 2617: 2609: 2606: 2604: 2601: 2600: 2599: 2596: 2594: 2591: 2589: 2586: 2584: 2581: 2579: 2578:Stopping time 2576: 2572: 2569: 2568: 2567: 2564: 2562: 2559: 2557: 2554: 2552: 2549: 2547: 2544: 2542: 2539: 2537: 2534: 2532: 2529: 2527: 2524: 2522: 2519: 2517: 2514: 2512: 2509: 2507: 2504: 2502: 2499: 2497: 2494: 2492: 2489: 2487: 2484: 2482: 2479: 2477: 2474: 2472: 2469: 2467: 2464: 2462: 2459: 2457: 2454: 2452: 2449: 2447: 2444: 2442: 2439: 2437: 2434: 2432: 2429: 2428: 2426: 2422: 2416: 2413: 2411: 2408: 2406: 2403: 2401: 2398: 2396: 2393: 2392: 2390: 2388: 2384: 2377: 2373: 2369: 2368:Hewitt–Savage 2365: 2361: 2357: 2353: 2352:Zero–one laws 2350: 2348: 2345: 2343: 2340: 2338: 2335: 2333: 2330: 2328: 2325: 2323: 2320: 2318: 2315: 2313: 2310: 2308: 2305: 2303: 2300: 2299: 2297: 2293: 2287: 2284: 2282: 2279: 2277: 2274: 2272: 2269: 2267: 2264: 2262: 2259: 2257: 2254: 2252: 2249: 2247: 2244: 2242: 2239: 2237: 2234: 2232: 2229: 2227: 2224: 2222: 2219: 2217: 2214: 2213: 2211: 2207: 2201: 2198: 2196: 2193: 2191: 2188: 2186: 2183: 2181: 2178: 2176: 2173: 2172: 2170: 2168: 2164: 2158: 2155: 2153: 2150: 2148: 2145: 2143: 2140: 2139: 2137: 2135: 2131: 2125: 2122: 2120: 2117: 2115: 2112: 2110: 2107: 2105: 2102: 2100: 2097: 2095: 2092: 2090: 2087: 2085: 2082: 2080: 2077: 2075: 2072: 2070: 2067: 2065: 2062: 2060: 2057: 2055: 2052: 2050: 2049:Black–Scholes 2047: 2045: 2042: 2040: 2037: 2035: 2032: 2031: 2029: 2027: 2023: 2017: 2014: 2012: 2009: 2007: 2004: 2002: 1999: 1997: 1994: 1992: 1989: 1988: 1986: 1984: 1980: 1974: 1971: 1969: 1966: 1962: 1959: 1957: 1954: 1953: 1952: 1951:Point process 1949: 1947: 1944: 1942: 1939: 1937: 1934: 1930: 1927: 1925: 1922: 1921: 1920: 1917: 1915: 1912: 1910: 1909:Gibbs measure 1907: 1905: 1902: 1900: 1897: 1896: 1894: 1890: 1884: 1881: 1879: 1876: 1874: 1871: 1869: 1866: 1864: 1861: 1857: 1854: 1852: 1849: 1847: 1844: 1842: 1839: 1838: 1837: 1834: 1832: 1829: 1827: 1824: 1822: 1819: 1817: 1814: 1813: 1811: 1807: 1801: 1798: 1796: 1793: 1791: 1788: 1786: 1783: 1781: 1778: 1776: 1773: 1771: 1768: 1766: 1763: 1761: 1758: 1754: 1751: 1749: 1746: 1745: 1744: 1741: 1739: 1736: 1734: 1731: 1729: 1726: 1724: 1721: 1719: 1716: 1714: 1711: 1709: 1706: 1704: 1701: 1699: 1698:ItĂŽ diffusion 1696: 1694: 1691: 1689: 1686: 1684: 1681: 1679: 1676: 1674: 1673:Gamma process 1671: 1669: 1666: 1664: 1661: 1659: 1656: 1654: 1651: 1649: 1646: 1644: 1641: 1639: 1636: 1634: 1631: 1629: 1626: 1622: 1619: 1617: 1614: 1612: 1609: 1607: 1604: 1602: 1599: 1598: 1597: 1594: 1590: 1587: 1586: 1585: 1582: 1580: 1577: 1575: 1572: 1571: 1569: 1567: 1563: 1555: 1552: 1550: 1547: 1545: 1544:Self-avoiding 1542: 1540: 1537: 1536: 1535: 1532: 1530: 1529:Moran process 1527: 1525: 1522: 1520: 1517: 1515: 1512: 1510: 1507: 1505: 1502: 1500: 1497: 1496: 1494: 1492: 1491:Discrete time 1488: 1484: 1477: 1472: 1470: 1465: 1463: 1458: 1457: 1454: 1444: 1437: 1429: 1422: 1420: 1411: 1407: 1403: 1399: 1395: 1391: 1387: 1383: 1379: 1372: 1370: 1361: 1357: 1353: 1349: 1345: 1341: 1337: 1333: 1329: 1325: 1322:(1): 012101. 1321: 1317: 1310: 1308: 1299: 1292: 1284: 1277: 1269: 1262: 1260: 1258: 1248: 1243: 1239: 1235: 1231: 1224: 1216: 1212: 1208: 1204: 1200: 1196: 1189: 1180: 1175: 1171: 1167: 1163: 1156: 1148: 1144: 1140: 1136: 1131: 1130:10.1.1.5.3971 1126: 1122: 1118: 1111: 1103: 1099: 1095: 1091: 1084: 1082: 1073: 1066: 1064: 1062: 1053: 1046: 1044: 1039: 1030: 1027: 1025: 1022: 1020: 1019:Random graphs 1017: 1015: 1012: 1011: 1005: 1003: 999: 995: 985: 983: 979: 970: 961: 942: 939: 934: 930: 926: 921: 912: 908: 897: 889: 888: 887: 867: 864: 859: 855: 851: 840: 832: 831: 830: 827: 815: 792: 789: 783: 779: 773: 770: 767: 764: 761: 758: 753: 749: 741: 740: 739: 736: 726: 718: 710: 704: 698: 677: 672: 664: 660: 656: 651: 648: 644: 638: 635: 630: 626: 618: 614: 610: 605: 602: 598: 592: 589: 583: 577: 573: 569: 566: 562: 556: 552: 548: 543: 539: 534: 528: 525: 520: 516: 508: 504: 500: 495: 492: 488: 484: 481: 478: 475: 470: 466: 458: 457: 456: 449: 441: 433: 427: 421: 409: 400: 397: 391: 386: 381: 379: 375: 371: 360: 354: 345: 341: 338:has a common 336: 327: 318: 309: 304: 290: 286: 282: 277: 273: 272:Boolean model 268: 261: 252: 240:Boolean model 237: 233: 224: 220: 215: 206: 197: 188: 179: 175: 166: 160: 154: 150:in the plane 147: 132: 130: 123:Common models 120: 118: 108: 106: 102: 98: 93: 87: 86:Edgar Gilbert 80:Early history 77: 75: 71: 67: 63: 58: 56: 52: 51:random graphs 48: 47:point process 43: 39: 35: 31: 27: 23: 19: 2636:Econometrics 2598:Wiener space 2486:ItĂŽ integral 2387:Inequalities 2276:Self-similar 2246:Gauss–Markov 2236:Exchangeable 2216:CĂ dlĂ g paths 2152:Risk process 2104:LIBOR market 1973:Random graph 1968:Random field 1780:Superprocess 1718:LĂ©vy process 1713:Jump process 1688:Hunt process 1524:Markov chain 1442: 1436: 1427: 1385: 1381: 1319: 1315: 1297: 1291: 1282: 1276: 1267: 1237: 1233: 1223: 1198: 1194: 1188: 1169: 1165: 1155: 1120: 1116: 1110: 1093: 1089: 1071: 1051: 991: 975: 964:Applications 959: 884: 822: 813: 810: 734: 724: 716: 708: 702: 696: 693: 447: 439: 431: 425: 419: 415: 406: 395: 389: 382: 369: 358: 349: 340:distribution 331: 322: 313: 307: 300: 280: 263: 259: 247: 243: 228: 219:distribution 210: 201: 192: 183: 177: 170: 164: 158: 152: 142: 138: 126: 114: 91: 83: 59: 41: 25: 15: 2681:Ruin theory 2619:Disciplines 2491:ItĂŽ's lemma 2266:Predictable 1941:Percolation 1924:Potts model 1919:Ising model 1883:White noise 1841:Differences 1703:ItĂŽ process 1643:Cox process 1539:Loop-erased 1534:Random walk 1388:: 940–950. 344:independent 223:independent 18:mathematics 2739:Categories 2691:Statistics 2471:Filtration 2372:Kolmogorov 2356:Blumenthal 2281:Stationary 2221:Continuous 2209:Properties 2094:Hull–White 1836:Martingale 1723:Local time 1611:Fractional 1589:pure birth 1035:References 706:and ratio 221:) that is 135:Disk model 2603:Classical 1616:Geometric 1606:Excursion 1410:0378-4371 1344:1539-3755 1125:CiteSeerX 940:− 927:∝ 909:− 865:− 852:∝ 793:π 765:π 639:π 615:π 529:π 505:π 374:set union 2724:Category 2608:Abstract 2142:BĂŒhlmann 1748:Compound 1360:21438506 1352:23944408 1008:See also 423:, width 368:are the 357:are the 311:) shape 2231:Ergodic 2119:Vaơíček 1961:Poisson 1621:Meander 1390:Bibcode 1324:Bibcode 1203:Bibcode 1147:1514941 1002:latency 729:⁠ 713:⁠ 452:⁠ 436:⁠ 378:polygon 303:compact 36:(often 2571:Tanaka 2256:Mixing 2251:Markov 2124:Wilkie 2089:Ho–Lee 2084:Heston 1856:Super- 1601:Bridge 1549:Biased 1408:  1358:  1350:  1342:  1145:  1127:  372:. The 370:grains 283:> 0 2424:Tools 2200:M/M/c 2195:M/M/1 2190:M/G/1 2180:Fluid 1846:Local 1356:S2CID 1143:S2CID 359:germs 2376:LĂ©vy 2175:Bulk 2059:Chen 1851:Sub- 1809:Both 1406:ISSN 1348:PMID 1340:ISSN 1170:2006 700:and 342:and 72:and 53:and 20:and 1956:Cox 1398:doi 1386:462 1332:doi 1242:doi 1211:doi 1174:doi 1135:doi 1098:doi 32:to 16:In 2741:: 2374:, 2370:, 2366:, 2362:, 2358:, 1418:^ 1404:. 1396:. 1384:. 1380:. 1368:^ 1354:. 1346:. 1338:. 1330:. 1320:88 1318:. 1306:^ 1256:^ 1238:13 1236:. 1232:. 1209:. 1199:56 1197:. 1168:. 1164:. 1141:. 1133:. 1121:13 1119:. 1092:. 1080:^ 1060:^ 1042:^ 829:: 711:= 434:= 399:. 176:∈ 131:. 119:. 57:. 24:, 2378:) 2354:( 1475:e 1468:t 1461:v 1412:. 1400:: 1392:: 1362:. 1334:: 1326:: 1250:. 1244:: 1217:. 1213:: 1205:: 1182:. 1176:: 1149:. 1137:: 1104:. 1100:: 1094:9 943:1 935:r 931:A 922:0 918:c 913:N 903:c 898:N 868:1 860:r 856:A 846:c 841:N 825:r 823:A 817:c 814:N 790:2 784:2 780:C 774:+ 771:b 768:a 762:2 759:= 754:r 750:A 735:C 725:b 721:/ 717:a 709:r 703:b 697:a 678:] 673:) 665:2 661:r 657:1 652:+ 649:1 645:( 636:1 631:+ 627:) 619:2 611:4 606:+ 603:1 599:( 593:r 590:1 584:[ 578:2 574:l 570:2 567:= 563:) 557:2 553:w 549:+ 544:2 540:l 535:( 526:2 521:+ 517:) 509:2 501:4 496:+ 493:1 489:( 485:w 482:l 479:2 476:= 471:r 467:A 448:w 444:/ 440:l 432:r 426:w 420:l 396:ℝ 390:ℝ 365:i 363:S 355:} 352:i 350:x 348:{ 334:i 332:S 325:i 323:x 316:i 314:S 308:ℝ 281:r 266:i 264:D 260:i 257:⋃ 253:} 250:i 248:D 246:{ 234:} 231:i 229:x 227:{ 213:i 211:R 204:i 202:D 195:i 193:x 186:i 184:D 178:Ί 173:i 171:x 165:λ 159:Ί 153:ℝ 148:} 145:i 143:x 141:{ 92:ℝ 42:ℝ

Index

mathematics
probability theory
percolation theory
continuous space
Euclidean space
point process
random graphs
random geometric graphs
wireless networks
information capacity
porous material
semiconductors
Edgar Gilbert
Poisson process
branching processes
threshold value
point process notation
Poisson point processes
distribution
independent
Boolean model
stochastic geometry
Percolation in the Boolean–Poisson (constant disk) model.
compact
distribution
independent
set union
polygon
stochastic processes
Possible coverage model.

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑