Knowledge

Curved mirror

Source 📝

143: 151: 742: 685: 806: 625: 569: 398: 31: 288:(not inverted). As the object gets closer to the mirror, the image gets larger, until approximately the size of the object, when it touches the mirror. As the object moves away, the image diminishes in size and gets gradually closer to the focus, until it is reduced to a point in the focus when the object is at an infinite distance. These features make convex mirrors very useful: since everything appears smaller in the mirror, they cover a wider 1760: 412: 88: 232:(French for "sorcerer's eye") were a popular luxury item from the 15th century onwards, shown in many depictions of interiors from that time. With 15th century technology, it was easier to make a regular curved mirror (from blown glass) than a perfectly flat one. They were also known as "bankers' eyes" due to the fact that their wide field of vision was useful for security. Famous examples in art include the 261: 1730: 1393:
image location. The mirror equation and magnification equation can be derived geometrically by considering these two rays. A ray that goes from the top of the object through the focal point can be considered instead. Such a ray reflects parallel to the optical axis and also passes through the image point corresponding to the top of the object.
1791: 1392:
to the optical axis. This ray is reflected by the mirror and passes through its focal point. The point at which these two rays meet is the image point corresponding to the top of the object. Its distance from the optical axis defines the height of the image, and its location along the axis is the
431:, has a reflecting surface that is recessed inward (away from the incident light). Concave mirrors reflect light inward to one focal point. They are used to focus light. Unlike convex mirrors, concave mirrors show different image types depending on the distance between the object and the mirror. 1494: 1677: 171:", to warn the driver of the convex mirror's distorting effects on distance perception. Convex mirrors are preferred in vehicles because they give an upright (not inverted), though diminished (smaller), image and because they provide a wider field of view as they are curved outwards. 123:) are both imaginary points "inside" the mirror, that cannot be reached. As a result, images formed by these mirrors cannot be projected on a screen, since the image is inside the mirror. The image is smaller than the object, but gets larger as the object approaches the mirror. 1349: 202:. They are usually mounted on a wall or ceiling where hallways intersect each other, or where they make sharp turns. They are useful for people to look at any obstruction they will face on the next hallway or after the next turn. They are also used on 998: 78:
are used for entertainment. They have convex and concave regions that produce deliberately distorted images. They also provide highly magnified or highly diminished (smaller) images when the object is placed at certain distances.
1619: 1566: 107:
is a curved mirror in which the reflective surface bulges towards the light source. Convex mirrors reflect light outwards, therefore they are not used to focus light. Such mirrors always form a
1143:, then the result is always a negative number, meaning that the image distance is negative—the image is virtual, located "behind" the mirror. This is consistent with the behavior described 1744: 1269: 379: 1250: 1213: 1141: 1104: 1064: 1035: 904: 875: 1467: 664: 819:
Most curved mirrors have a spherical profile. These are the simplest to make, and it is the best shape for general-purpose use. Spherical mirrors, however, suffer from
775: 438:
toward a focus. This is because the light is reflected at different angles at different spots on the mirror as the normal to the mirror surface differs at each spot.
548: 1369:
The image location and size can also be found by graphical ray tracing, as illustrated in the figures above. A ray drawn from the top of the object to the mirror
718: 1176: 599: 1487: 1437: 932: 924: 1714: 1355:
By convention, if the resulting magnification is positive, the image is upright. If the magnification is negative, the image is inverted (upside down).
1825: 221:
as a simple and handy security feature, allowing the users to see what is happening behind them. Similar devices are sold to be attached to ordinary
823:—parallel rays reflected from such mirrors do not focus to a single point. For parallel rays, such as those coming from a very distant object, a 1775: 618:, and the image can be either real or virtual and either upright or inverted depending on whether S approaches F from its left or right side. 168: 1150:
For concave mirrors, whether the image is virtual or real depends on how large the object distance is compared to the focal length. If the
1252:
is positive and the image is real. Otherwise, the term is negative and the image is virtual. Again, this validates the behavior described
1066:
are positive when the object and image are in front of the mirror, respectively. (They are positive when the object or image is real.)
1819: 1598: 1674: 434:
The mirrors are called "converging mirrors" because they tend to collect light that falls on them, refocusing parallel incoming
1525: 827:
can do a better job. Such a mirror can focus incoming parallel rays to a much smaller spot than a spherical mirror can. A
1785: 1754: 1724: 1701: 1659: 1629: 1344:{\displaystyle m\equiv {\frac {h_{\mathrm {i} }}{h_{\mathrm {o} }}}=-{\frac {d_{\mathrm {i} }}{d_{\mathrm {o} }}}} 483: 454:
applications, concave mirrors are used to gather light from a small source and direct it outward in a beam as in
17: 296:, so useful for looking at cars behind a driver's car on a road, watching a wider area for surveillance, etc. 831:
is a form of parabolic reflector which has a different focal distance depending on the angle of the mirror.
1416: 1402: 463: 328: 1218: 1181: 1109: 1072: 1381:
with the optical axis. The reflected ray has the same angle to the axis, but on the opposite side (See
1040: 1011: 880: 851: 214:
to provide safety for road users where there is a lack of visibility, especially at curves and turns.
142: 1808: 1442: 1008:
used here is that the focal length is positive for concave mirrors and negative for convex ones, and
1592: 467: 218: 799:
In the limit where S approaches infinity, the image size approaches zero as the image approaches F
634: 450:. They are also used to provide a magnified image of the face for applying make-up or shaving. In 451: 130:(parallel) beam of light diverges (spreads out) after reflection from a convex mirror, since the 58:, but other shapes are sometimes used in optical devices. The most common non-spherical type are 1813: 1408: 1364: 751: 527: 167:
is typically a convex mirror. In some countries, these are labeled with the safety warning "
1581: 820: 447: 280:
haven't actually passed through the image; their extensions do, like in a regular mirror),
71: 63: 993:{\displaystyle {\frac {1}{d_{\mathrm {o} }}}+{\frac {1}{d_{\mathrm {i} }}}={\frac {1}{f}}} 694: 150: 8: 1412: 1389: 1382: 1153: 848:
mirror equation, also known as the mirror and lens equation, relates the object distance
824: 611: 578: 59: 225:. Convex mirrors make everything seem smaller but cover a larger area of surveillance. 1472: 1422: 1263:
of a mirror is defined as the height of the image divided by the height of the object:
909: 828: 475: 234: 199: 156: 1568:
up to order 1. The derivations of the ray matrices of a convex spherical mirror and a
741: 1781: 1750: 1720: 1697: 1655: 1625: 75: 54:(recessed inward). Most curved mirrors have surfaces that are shaped like part of a 1844: 1519: 487: 265: 222: 127: 66:
that need to image distant objects, since spherical mirror systems, like spherical
1681: 1005: 845: 244: 1370: 793: 684: 471: 131: 112: 34:
Reflections in a convex mirror. The photographer is seen reflected at top right
1595:- a method of solar power generation using curved mirrors or arrays of mirrors 805: 624: 499:
Effect on image of object's position relative to mirror focal point (concave)
466:, or to collect light from a large area and focus it into a small spot, as in 1838: 1260: 568: 479: 300:
Effect on image of object's position relative to mirror focal point (convex)
289: 249: 108: 67: 1587: 1374: 435: 416: 277: 239: 92: 397: 30: 455: 1569: 1411:, meaning that under the first approximation a spherical mirror is a 1675:
Venice Botteghe: Antiques, Bijouterie, Coffee, Cakes, Carpet, Glass
1493: 839: 615: 459: 207: 183: 179: 607:
Reflected rays are parallel and never meet, so no image is formed.
411: 175: 87: 1511: 293: 195: 191: 55: 43: 260: 1378: 211: 187: 46:
with a curved reflecting surface. The surface may be either
1396: 203: 1692:
Lorne Campbell, National Gallery Catalogues (new series):
1507:
feature summing the angles of a triangle and comparing to
164: 482:
use a concave surface to provide a magnified image. The
182:(commonly known as "hallway safety mirrors"), including 1508: 1809:
Java applets to explore ray tracing for curved mirrors
1624:. New Delhi: Tata McGraw-Hill Education. p. 6.4. 1388:
A second ray can be drawn from the top of the object,
1528: 1475: 1445: 1425: 1272: 1221: 1184: 1156: 1112: 1075: 1043: 1014: 935: 912: 883: 854: 754: 697: 637: 581: 530: 331: 1561:{\displaystyle \arccos \left(-{\frac {r}{R}}\right)} 1106:
term to the right side of the equation to solve for
614:
where S approaches F, the image distance approaches
792:As the distance of the object increases, the image 134:to the surface differs at each spot on the mirror. 1560: 1481: 1461: 1431: 1343: 1244: 1207: 1170: 1135: 1098: 1058: 1029: 992: 918: 898: 869: 769: 712: 658: 593: 542: 373: 1816:, Molecular Expressions Optical Microscopy Primer 1419:of a concave spherical mirror is shown here. The 146:Convex mirror lets motorists see around a corner. 1836: 1654:(2nd ed.). Addison Wesley. pp. 160–1. 840:Mirror equation, magnification, and focal length 667:(Object between focus and centre of curvature) 1694:The Fifteenth Century Netherlandish Paintings 1407:The mathematical treatment is done under the 169:Objects in mirror are closer than they appear 1617: 415:A concave mirror diagram showing the focus, 419:, centre of curvature, principal axis, etc. 95:, centre of curvature, principal axis, etc. 91:A convex mirror diagram showing the focus, 1777:Light and Optics: Principles and Practices 1645: 1643: 1641: 1489:is the focal point of the optical device. 441: 1773: 137: 1618:Nayak, Sanjay K.; Bhuvana, K.P. (2012). 1599:List of telescope parts and construction 1397:Ray transfer matrix of spherical mirrors 551:(Object between focal point and mirror) 410: 259: 149: 141: 86: 29: 1638: 493: 272:The image on a convex mirror is always 27:Mirror with a curved reflecting surface 14: 1837: 255: 1826:"Grinding the World's Largest Mirror" 1649: 1069:For convex mirrors, if one moves the 374:{\displaystyle S>F,\ S=F,\ S<F} 174:These mirrors are often found in the 1584:(reflection from a spherical mirror) 1253: 778:(Object beyond centre of curvature) 1144: 735:Image formed at centre of curvature 470:. Concave mirrors are used to form 154:Detail of the convex mirror in the 62:, found in optical devices such as 24: 1333: 1321: 1299: 1287: 1245:{\displaystyle 1/d_{\mathrm {i} }} 1236: 1208:{\displaystyle 1/d_{\mathrm {o} }} 1199: 1136:{\displaystyle 1/d_{\mathrm {i} }} 1127: 1099:{\displaystyle 1/d_{\mathrm {o} }} 1090: 1050: 1021: 969: 947: 890: 861: 406: 25: 1856: 1802: 1712: 82: 1794:from the original on 2018-01-18. 1763:from the original on 2018-01-18. 1733:from the original on 2018-01-18. 1492: 1059:{\displaystyle d_{\mathrm {i} }} 1030:{\displaystyle d_{\mathrm {o} }} 899:{\displaystyle d_{\mathrm {i} }} 870:{\displaystyle d_{\mathrm {o} }} 804: 740: 721:(Object at centre of curvature) 683: 623: 567: 396: 217:Convex mirrors are used in some 1774:Al-Azzawi, Abdul (2006-12-26). 1746:Sura's Year Book 2006 (English) 1650:Hecht, Eugene (1987). "5.4.3". 1462:{\displaystyle -{\frac {1}{f}}} 1377:meets the mirror) will form an 814: 163:The passenger-side mirror on a 119:) and the centre of curvature ( 1767: 1737: 1706: 1696:, pp. 178-179, 188-189, 1998, 1686: 1668: 1611: 1358: 13: 1: 1814:Concave mirrors — real images 1604: 1403:Ray transfer matrix analysis 789:Reduced (diminished/smaller) 659:{\displaystyle F<S<2F} 490:also uses a concave mirror. 446:Concave mirrors are used in 391:Reduced (diminished/smaller) 228:Round convex mirrors called 7: 1575: 834: 516: 503: 317: 304: 10: 1861: 1400: 1362: 796:approaches the focal point 1716:Living Science Physics 10 1439:element of the matrix is 474:, which are important in 242:and the left wing of the 219:automated teller machines 1593:Concentrated solar power 1178:term is larger than the 602:(Object at focal point) 468:concentrated solar power 770:{\displaystyle S>2F} 442:Uses of concave mirrors 1562: 1483: 1463: 1433: 1409:paraxial approximation 1345: 1246: 1209: 1172: 1137: 1100: 1060: 1031: 994: 920: 900: 871: 771: 714: 660: 595: 544: 543:{\displaystyle S<F} 420: 375: 269: 160: 147: 138:Uses of convex mirrors 96: 35: 1563: 1484: 1464: 1434: 1401:Further information: 1365:Ray tracing (physics) 1346: 1247: 1210: 1173: 1138: 1101: 1061: 1032: 995: 921: 901: 872: 786:Inverted (vertically) 772: 729:Inverted (vertically) 715: 675:Inverted (vertically) 661: 596: 545: 448:reflecting telescopes 414: 376: 264:A virtual image in a 263: 153: 145: 90: 64:reflecting telescopes 50:(bulging outward) or 33: 1822:, online physics lab 1526: 1473: 1443: 1423: 1270: 1219: 1182: 1154: 1110: 1073: 1041: 1012: 933: 910: 906:to the focal length 881: 852: 821:spherical aberration 752: 713:{\displaystyle S=2F} 695: 635: 579: 528: 494:Concave mirror image 329: 72:spherical aberration 60:parabolic reflectors 1621:Engineering Physics 1413:parabolic reflector 1383:Specular reflection 1171:{\displaystyle 1/f} 877:and image distance 825:parabolic reflector 594:{\displaystyle S=F} 504:Object's position ( 500: 305:Object's position ( 301: 256:Convex mirror image 200:apartment buildings 1680:2017-03-06 at the 1572:are very similar. 1558: 1479: 1459: 1429: 1341: 1242: 1205: 1168: 1133: 1096: 1056: 1027: 990: 916: 896: 867: 829:toroidal reflector 767: 710: 678:Magnified (larger) 656: 591: 562:Magnified (larger) 540: 498: 484:mirror landing aid 476:laser construction 421: 371: 299: 270: 235:Arnolfini Portrait 161: 157:Arnolfini Portrait 148: 97: 76:Distorting mirrors 36: 1820:Spherical mirrors 1713:Joshi, Dhiren M. 1582:Alhazen's problem 1551: 1482:{\displaystyle f} 1457: 1432:{\displaystyle C} 1339: 1305: 988: 975: 953: 919:{\displaystyle f} 812: 811: 488:aircraft carriers 486:system of modern 429:converging mirror 404: 403: 361: 346: 223:computer monitors 16:(Redirected from 1852: 1796: 1795: 1771: 1765: 1764: 1741: 1735: 1734: 1710: 1704: 1690: 1684: 1672: 1666: 1665: 1647: 1636: 1635: 1615: 1567: 1565: 1564: 1559: 1557: 1553: 1552: 1544: 1520:Maclaurin series 1496: 1488: 1486: 1485: 1480: 1468: 1466: 1465: 1460: 1458: 1450: 1438: 1436: 1435: 1430: 1350: 1348: 1347: 1342: 1340: 1338: 1337: 1336: 1326: 1325: 1324: 1314: 1306: 1304: 1303: 1302: 1292: 1291: 1290: 1280: 1251: 1249: 1248: 1243: 1241: 1240: 1239: 1229: 1214: 1212: 1211: 1206: 1204: 1203: 1202: 1192: 1177: 1175: 1174: 1169: 1164: 1142: 1140: 1139: 1134: 1132: 1131: 1130: 1120: 1105: 1103: 1102: 1097: 1095: 1094: 1093: 1083: 1065: 1063: 1062: 1057: 1055: 1054: 1053: 1036: 1034: 1033: 1028: 1026: 1025: 1024: 999: 997: 996: 991: 989: 981: 976: 974: 973: 972: 959: 954: 952: 951: 950: 937: 925: 923: 922: 917: 905: 903: 902: 897: 895: 894: 893: 876: 874: 873: 868: 866: 865: 864: 808: 776: 774: 773: 768: 744: 719: 717: 716: 711: 687: 665: 663: 662: 657: 627: 600: 598: 597: 592: 571: 549: 547: 546: 541: 517:Nature of Image 501: 497: 472:optical cavities 400: 380: 378: 377: 372: 359: 344: 302: 298: 266:Christmas bauble 230:Oeil de Sorcière 105:diverging mirror 21: 1860: 1859: 1855: 1854: 1853: 1851: 1850: 1849: 1835: 1834: 1831:, December 1935 1829:Popular Science 1805: 1800: 1799: 1788: 1772: 1768: 1757: 1743: 1742: 1738: 1727: 1719:. Ratna Sagar. 1711: 1707: 1691: 1687: 1682:Wayback Machine 1673: 1669: 1662: 1648: 1639: 1632: 1616: 1612: 1607: 1578: 1543: 1539: 1535: 1527: 1524: 1523: 1514:(or 180°). Box 1474: 1471: 1470: 1449: 1444: 1441: 1440: 1424: 1421: 1420: 1405: 1399: 1367: 1361: 1332: 1331: 1327: 1320: 1319: 1315: 1313: 1298: 1297: 1293: 1286: 1285: 1281: 1279: 1271: 1268: 1267: 1235: 1234: 1230: 1225: 1220: 1217: 1216: 1198: 1197: 1193: 1188: 1183: 1180: 1179: 1160: 1155: 1152: 1151: 1126: 1125: 1121: 1116: 1111: 1108: 1107: 1089: 1088: 1084: 1079: 1074: 1071: 1070: 1049: 1048: 1044: 1042: 1039: 1038: 1020: 1019: 1015: 1013: 1010: 1009: 1006:sign convention 980: 968: 967: 963: 958: 946: 945: 941: 936: 934: 931: 930: 911: 908: 907: 889: 888: 884: 882: 879: 878: 860: 859: 855: 853: 850: 849: 842: 837: 817: 777: 753: 750: 749: 720: 696: 693: 692: 666: 636: 633: 632: 601: 580: 577: 576: 550: 529: 526: 525: 509: 496: 444: 409: 407:Concave mirrors 330: 327: 326: 310: 284:(smaller), and 258: 245:Werl Altarpiece 140: 85: 28: 23: 22: 15: 12: 11: 5: 1858: 1848: 1847: 1833: 1832: 1823: 1817: 1811: 1804: 1803:External links 1801: 1798: 1797: 1786: 1766: 1755: 1749:. Sura Books. 1736: 1725: 1705: 1685: 1667: 1660: 1637: 1630: 1609: 1608: 1606: 1603: 1602: 1601: 1596: 1590: 1585: 1577: 1574: 1556: 1550: 1547: 1542: 1538: 1534: 1531: 1478: 1456: 1453: 1448: 1428: 1398: 1395: 1371:surface vertex 1363:Main article: 1360: 1357: 1353: 1352: 1335: 1330: 1323: 1318: 1312: 1309: 1301: 1296: 1289: 1284: 1278: 1275: 1238: 1233: 1228: 1224: 1201: 1196: 1191: 1187: 1167: 1163: 1159: 1129: 1124: 1119: 1115: 1092: 1087: 1082: 1078: 1052: 1047: 1023: 1018: 1002: 1001: 987: 984: 979: 971: 966: 962: 957: 949: 944: 940: 915: 892: 887: 863: 858: 841: 838: 836: 833: 816: 813: 810: 809: 802: 801: 800: 797: 794:asymptotically 790: 787: 784: 779: 766: 763: 760: 757: 746: 745: 738: 737: 736: 733: 730: 727: 722: 709: 706: 703: 700: 689: 688: 681: 680: 679: 676: 673: 668: 655: 652: 649: 646: 643: 640: 629: 628: 621: 620: 619: 608: 603: 590: 587: 584: 573: 572: 565: 564: 563: 560: 557: 552: 539: 536: 533: 522: 521: 518: 515: 495: 492: 480:dental mirrors 443: 440: 425:concave mirror 408: 405: 402: 401: 394: 393: 392: 389: 386: 381: 370: 367: 364: 358: 355: 352: 349: 343: 340: 337: 334: 323: 322: 319: 316: 292:than a normal 257: 254: 139: 136: 84: 83:Convex mirrors 81: 70:, suffer from 26: 18:Concave mirror 9: 6: 4: 3: 2: 1857: 1846: 1843: 1842: 1840: 1830: 1827: 1824: 1821: 1818: 1815: 1812: 1810: 1807: 1806: 1793: 1789: 1787:9780849383144 1783: 1780:. CRC Press. 1779: 1778: 1770: 1762: 1758: 1756:9788172541248 1752: 1748: 1747: 1740: 1732: 1728: 1726:9788183322904 1722: 1718: 1717: 1709: 1703: 1702:1-85709-171-X 1699: 1695: 1689: 1683: 1679: 1676: 1671: 1663: 1661:0-201-11609-X 1657: 1653: 1646: 1644: 1642: 1633: 1631:9781259006449 1627: 1623: 1622: 1614: 1610: 1600: 1597: 1594: 1591: 1589: 1586: 1583: 1580: 1579: 1573: 1571: 1554: 1548: 1545: 1540: 1536: 1532: 1529: 1521: 1517: 1513: 1510: 1506: 1502: 1497: 1495: 1490: 1476: 1454: 1451: 1446: 1426: 1418: 1414: 1410: 1404: 1394: 1391: 1386: 1384: 1380: 1376: 1372: 1366: 1356: 1328: 1316: 1310: 1307: 1294: 1282: 1276: 1273: 1266: 1265: 1264: 1262: 1261:magnification 1257: 1255: 1231: 1226: 1222: 1194: 1189: 1185: 1165: 1161: 1157: 1148: 1146: 1122: 1117: 1113: 1085: 1080: 1076: 1067: 1045: 1016: 1007: 985: 982: 977: 964: 960: 955: 942: 938: 929: 928: 927: 913: 885: 856: 847: 832: 830: 826: 822: 807: 803: 798: 795: 791: 788: 785: 782: 781: 780: 764: 761: 758: 755: 748: 747: 743: 739: 734: 731: 728: 725: 724: 723: 707: 704: 701: 698: 691: 690: 686: 682: 677: 674: 671: 670: 669: 653: 650: 647: 644: 641: 638: 631: 630: 626: 622: 617: 613: 609: 606: 605: 604: 588: 585: 582: 575: 574: 570: 566: 561: 558: 555: 554: 553: 537: 534: 531: 524: 523: 519: 513: 510:focal point ( 507: 502: 491: 489: 485: 481: 477: 473: 469: 465: 461: 457: 453: 449: 439: 437: 432: 430: 426: 418: 413: 399: 395: 390: 387: 384: 383: 382: 368: 365: 362: 356: 353: 350: 347: 341: 338: 335: 332: 325: 324: 320: 314: 311:focal point ( 308: 303: 297: 295: 291: 290:field of view 287: 283: 279: 275: 267: 262: 253: 251: 250:Robert Campin 247: 246: 241: 237: 236: 231: 226: 224: 220: 215: 213: 209: 205: 201: 197: 193: 189: 185: 181: 177: 172: 170: 166: 159: 158: 152: 144: 135: 133: 129: 124: 122: 118: 114: 110: 109:virtual image 106: 102: 101:convex mirror 94: 89: 80: 77: 73: 69: 65: 61: 57: 53: 49: 45: 41: 40:curved mirror 32: 19: 1828: 1776: 1769: 1745: 1739: 1715: 1708: 1693: 1688: 1670: 1651: 1620: 1613: 1588:Anamorphosis 1515: 1504: 1500: 1498: 1491: 1406: 1387: 1375:optical axis 1368: 1354: 1258: 1149: 1068: 1003: 843: 818: 815:Mirror shape 511: 505: 452:illumination 445: 433: 428: 424: 422: 417:focal length 312: 306: 294:plane mirror 285: 281: 273: 271: 243: 240:Jan van Eyck 233: 229: 227: 216: 173: 162: 155: 125: 120: 116: 111:, since the 104: 100: 98: 93:focal length 51: 47: 39: 37: 1373:(where the 1359:Ray tracing 1215:term, then 178:of various 113:focal point 1605:References 1518:shows the 1417:ray matrix 783:Real image 726:Real image 672:Real image 464:spotlights 282:diminished 128:collimated 1570:thin lens 1541:− 1533:⁡ 1447:− 1311:− 1277:≡ 732:Same size 460:headlamps 208:driveways 184:hospitals 180:buildings 1839:Category 1792:Archived 1761:Archived 1731:Archived 1678:Archived 1576:See also 1469:, where 1390:parallel 846:Gaussian 835:Analysis 616:infinity 520:Diagram 321:Diagram 176:hallways 1845:Mirrors 1512:radians 610:In the 559:Upright 556:Virtual 478:. Some 456:torches 388:Upright 385:Virtual 286:upright 274:virtual 192:schools 52:concave 1784:  1753:  1723:  1700:  1658:  1652:Optics 1628:  1530:arccos 1499:Boxes 1415:. The 360:  345:  318:Image 212:alleys 210:, and 198:, and 196:stores 188:hotels 132:normal 68:lenses 56:sphere 48:convex 44:mirror 1379:angle 1254:above 1145:above 612:limit 427:, or 204:roads 42:is a 1782:ISBN 1751:ISBN 1721:ISBN 1698:ISBN 1656:ISBN 1626:ISBN 1503:and 1259:The 1037:and 1004:The 844:The 759:> 648:< 642:< 535:< 462:and 436:rays 366:< 336:> 278:rays 1522:of 1385:). 926:: 508:), 309:), 248:by 238:by 165:car 103:or 1841:: 1790:. 1759:. 1729:. 1640:^ 1256:. 1147:. 514:) 458:, 423:A 315:) 252:. 206:, 194:, 190:, 186:, 126:A 121:2F 99:A 74:. 38:A 1664:. 1634:. 1555:) 1549:R 1546:r 1537:( 1516:2 1509:π 1505:3 1501:1 1477:f 1455:f 1452:1 1427:C 1351:. 1334:o 1329:d 1322:i 1317:d 1308:= 1300:o 1295:h 1288:i 1283:h 1274:m 1237:i 1232:d 1227:/ 1223:1 1200:o 1195:d 1190:/ 1186:1 1166:f 1162:/ 1158:1 1128:i 1123:d 1118:/ 1114:1 1091:o 1086:d 1081:/ 1077:1 1051:i 1046:d 1022:o 1017:d 1000:. 986:f 983:1 978:= 970:i 965:d 961:1 956:+ 948:o 943:d 939:1 914:f 891:i 886:d 862:o 857:d 765:F 762:2 756:S 708:F 705:2 702:= 699:S 654:F 651:2 645:S 639:F 589:F 586:= 583:S 538:F 532:S 512:F 506:S 369:F 363:S 357:, 354:F 351:= 348:S 342:, 339:F 333:S 313:F 307:S 276:( 268:. 117:F 115:( 20:)

Index

Concave mirror

mirror
sphere
parabolic reflectors
reflecting telescopes
lenses
spherical aberration
Distorting mirrors

focal length
virtual image
focal point
collimated
normal


Arnolfini Portrait
car
Objects in mirror are closer than they appear
hallways
buildings
hospitals
hotels
schools
stores
apartment buildings
roads
driveways
alleys

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.