Knowledge

Comparison of topologies

Source 📝

62:
which are considered to be "open". (An alternative definition is that it is the collection of subsets which are considered "closed". These two ways of defining the topology are essentially equivalent because the
150: 274: 967: 936: 885: 840: 1010: 990: 905: 860: 816: 366: 1250: 1112: 17: 385: 115: 381: 410:
is closed if and only if it consists of all solutions to some system of polynomial equations. Since any such
239: 67:
of an open set is closed and vice versa. In the following, it doesn't matter which definition is used.)
941: 910: 1245: 761: 494: 323: 392: 768:
of those topologies (the union of two topologies need not be a topology) but rather the topology
64: 1056: 740:
that is also closed under arbitrary intersections. That is, any collection of topologies on
362: 39: 1092: 865: 1017: 825: 819: 8: 539: 995: 975: 890: 845: 801: 765: 1179: 1162: 1104: 1032:, the coarsest topology on a set to make a family of mappings from that set continuous 724:). Intuitively, this makes sense: a finer topology should have smaller neighborhoods. 1108: 788: 611: 464: 343: 1038:, the finest topology on a set to make a family of mappings into that set continuous 1207: 1174: 1141: 1029: 792: 780: 737: 399: 351: 74:
of a topological space, since that is the standard meaning of the word "topology".
1013: 776: 319: 1035: 373: 358: 43: 1239: 1146: 1129: 1100: 1093: 1088: 784: 354:; this topology only admits the empty set and the whole space as open sets. 1212: 1195: 542:
and therefore it is strongly open if and only if it is relatively open.)
35: 70:
For definiteness the reader should think of a topology as the family of
377: 757: 527: 398:
may be equipped with either its usual (Euclidean) topology, or its
31: 346:; this topology makes all subsets open. The coarsest topology on 769: 749: 545:
Two immediate corollaries of the above equivalent statements are
418:, the Zariski topology is strictly weaker than the ordinary one. 938:
is the trivial topology and the topology generated by the union
59: 1220: 764:
of those topologies. The join, however, is not generally the
38:, the set of all possible topologies on a given set forms a 1163:"The lattice of topologies: Structure and complementation" 992:
has at least three elements, the lattice of topologies on
787:. In the case of topologies, the greatest element is the 58:
A topology on a set may be defined as the collection of
736:
together with the partial ordering relation ⊆ forms a
998: 978: 944: 913: 893: 868: 848: 828: 804: 367:
topologies on the set of operators on a Hilbert space
365:
there are often a number of possible topologies. See
242: 118: 414:
also is a closed set in the ordinary sense, but not
1004: 984: 961: 930: 899: 879: 854: 834: 810: 268: 144: 1167:Transactions of the American Mathematical Society 760:). The meet of a collection of topologies is the 1237: 444:. Then the following statements are equivalent: 1196:"The Lattice of all Topologies is Complemented" 591:remains open (resp. closed) if the topology on 1128:Larson, Roland E.; Andima, Susan J. (1975). 1127: 145:{\displaystyle \tau _{1}\subseteq \tau _{2}} 1211: 1193: 1178: 1145: 326:on the set of all possible topologies on 727: 1226: 1160: 1087: 1067:with opposite meaning (Munkres, p. 78). 269:{\displaystyle \tau _{1}\neq \tau _{2}} 14: 1238: 1081: 610:One can also compare topologies using 561:remains continuous if the topology on 1134:Rocky Mountain Journal of Mathematics 1130:"The lattice of topologies: A survey" 1055:There are some authors, especially 798:The lattice of topologies on a set 732:The set of all topologies on a set 645:) be a local base for the topology 24: 1099:(2nd ed.). Saddle River, NJ: 369:for some intricate relationships. 25: 1262: 1180:10.1090/S0002-9947-1966-0190893-2 775:Every complete lattice is also a 962:{\displaystyle \tau \cup \tau '} 931:{\displaystyle \tau \cap \tau '} 779:, which is to say that it has a 1200:Canadian Journal of Mathematics 1187: 1154: 1121: 1049: 13: 1: 1074: 791:and the least element is the 421: 53: 1194:Van Rooij, A. C. M. (1968). 822:; that is, given a topology 528:strongly/relatively open map 48:comparison of the topologies 7: 1023: 907:such that the intersection 628:be two topologies on a set 579:An open (resp. closed) map 440:be two topologies on a set 333: 91:be two topologies on a set 10: 1267: 969:is the discrete topology. 402:. In the latter, a subset 156:That is, every element of 1251:Comparison (mathematical) 706:) contains some open set 324:partial ordering relation 1147:10.1216/RMJ-1975-5-2-177 1042: 862:there exists a topology 1161:Steiner, A. K. (1966). 680:if and only if for all 338:The finest topology on 1213:10.4153/CJM-1968-079-9 1006: 986: 963: 932: 901: 881: 880:{\displaystyle \tau '} 856: 836: 812: 270: 163:is also an element of 146: 1007: 987: 964: 933: 902: 882: 857: 837: 835:{\displaystyle \tau } 813: 728:Lattice of topologies 384:and coarser than the 271: 147: 40:partially ordered set 34:and related areas of 27:Mathematical exercise 1059:, who use the terms 996: 976: 942: 911: 891: 866: 846: 826: 820:complemented lattice 802: 534:(The identity map id 393:complex vector space 240: 170:. Then the topology 116: 599:or the topology on 569:or the topology on 500:the identity map id 380:are finer than the 1002: 982: 959: 928: 897: 877: 852: 832: 808: 612:neighborhood bases 266: 142: 1089:Munkres, James R. 1005:{\displaystyle X} 985:{\displaystyle X} 900:{\displaystyle X} 855:{\displaystyle X} 811:{\displaystyle X} 789:discrete topology 549:A continuous map 344:discrete topology 233:If additionally 18:Coarsest topology 16:(Redirected from 1258: 1246:General topology 1230: 1224: 1218: 1217: 1215: 1191: 1185: 1184: 1182: 1158: 1152: 1151: 1149: 1125: 1119: 1118: 1098: 1085: 1068: 1053: 1030:Initial topology 1016:, and hence not 1011: 1009: 1008: 1003: 991: 989: 988: 983: 968: 966: 965: 960: 958: 937: 935: 934: 929: 927: 906: 904: 903: 898: 886: 884: 883: 878: 876: 861: 859: 858: 853: 841: 839: 838: 833: 817: 815: 814: 809: 793:trivial topology 738:complete lattice 688:, each open set 400:Zariski topology 374:polar topologies 352:trivial topology 288:strictly coarser 275: 273: 272: 267: 265: 264: 252: 251: 207:is said to be a 177:is said to be a 151: 149: 148: 143: 141: 140: 128: 127: 102:is contained in 46:can be used for 21: 1266: 1265: 1261: 1260: 1259: 1257: 1256: 1255: 1236: 1235: 1234: 1233: 1225: 1221: 1192: 1188: 1159: 1155: 1126: 1122: 1115: 1086: 1082: 1077: 1072: 1071: 1054: 1050: 1045: 1026: 997: 994: 993: 977: 974: 973: 951: 943: 940: 939: 920: 912: 909: 908: 892: 889: 888: 869: 867: 864: 863: 847: 844: 843: 827: 824: 823: 803: 800: 799: 777:bounded lattice 730: 719: 712: 701: 694: 679: 672: 653: 640: 627: 620: 537: 525: 514: 503: 492: 481: 470: 460: 453: 439: 432: 424: 386:strong topology 359:function spaces 336: 320:binary relation 314: 303: 296: 285: 260: 256: 247: 243: 241: 238: 237: 229: 206: 199: 176: 169: 162: 136: 132: 123: 119: 117: 114: 113: 108: 101: 90: 83: 56: 28: 23: 22: 15: 12: 11: 5: 1264: 1254: 1253: 1248: 1232: 1231: 1229:, Theorem 3.1. 1219: 1186: 1173:(2): 379–398. 1153: 1140:(2): 177–198. 1120: 1113: 1079: 1078: 1076: 1073: 1070: 1069: 1047: 1046: 1044: 1041: 1040: 1039: 1036:Final topology 1033: 1025: 1022: 1001: 981: 957: 954: 950: 947: 926: 923: 919: 916: 896: 875: 872: 851: 831: 807: 729: 726: 717: 710: 699: 692: 677: 670: 649: 636: 625: 618: 608: 607: 577: 535: 532: 531: 523: 512: 501: 498: 495:continuous map 490: 479: 468: 461: 458: 451: 437: 430: 423: 420: 361:and spaces of 335: 332: 312: 306:strictly finer 301: 294: 283: 277: 276: 263: 259: 255: 250: 246: 227: 204: 197: 174: 167: 160: 154: 153: 139: 135: 131: 126: 122: 106: 99: 88: 81: 55: 52: 44:order relation 26: 9: 6: 4: 3: 2: 1263: 1252: 1249: 1247: 1244: 1243: 1241: 1228: 1223: 1214: 1209: 1205: 1201: 1197: 1190: 1181: 1176: 1172: 1168: 1164: 1157: 1148: 1143: 1139: 1135: 1131: 1124: 1116: 1114:0-13-181629-2 1110: 1106: 1102: 1101:Prentice Hall 1097: 1096: 1090: 1084: 1080: 1066: 1062: 1058: 1052: 1048: 1037: 1034: 1031: 1028: 1027: 1021: 1019: 1015: 999: 979: 970: 955: 952: 948: 945: 924: 921: 917: 914: 894: 873: 870: 849: 829: 821: 805: 796: 794: 790: 786: 785:least element 782: 778: 773: 771: 767: 763: 759: 755: 751: 747: 743: 739: 735: 725: 723: 716: 709: 705: 698: 691: 687: 683: 676: 669: 665: 661: 657: 652: 648: 644: 639: 635: 631: 624: 617: 613: 605: 602: 598: 594: 590: 586: 582: 578: 575: 572: 568: 564: 560: 556: 552: 548: 547: 546: 543: 541: 529: 522: 518: 511: 507: 499: 496: 489: 485: 478: 474: 466: 462: 457: 450: 447: 446: 445: 443: 436: 429: 419: 417: 413: 409: 405: 401: 397: 394: 389: 387: 383: 382:weak topology 379: 375: 372:All possible 370: 368: 364: 360: 355: 353: 349: 345: 341: 331: 329: 325: 321: 316: 311: 307: 300: 293: 289: 282: 261: 257: 253: 248: 244: 236: 235: 234: 231: 226: 222: 218: 214: 210: 203: 196: 192: 188: 184: 180: 173: 166: 159: 137: 133: 129: 124: 120: 112: 111: 110: 105: 98: 94: 87: 80: 75: 73: 68: 66: 61: 51: 49: 45: 41: 37: 33: 19: 1227:Steiner 1966 1222: 1203: 1199: 1189: 1170: 1166: 1156: 1137: 1133: 1123: 1094: 1083: 1064: 1060: 1051: 1018:distributive 971: 797: 774: 770:generated by 762:intersection 753: 745: 741: 733: 731: 721: 714: 707: 703: 696: 689: 685: 681: 674: 667: 666:= 1,2. Then 663: 659: 655: 650: 646: 642: 637: 633: 629: 622: 615: 609: 603: 600: 596: 592: 588: 584: 580: 573: 570: 566: 562: 558: 554: 550: 544: 533: 520: 516: 509: 505: 487: 483: 476: 472: 465:identity map 455: 448: 441: 434: 427: 425: 415: 411: 407: 403: 395: 390: 371: 356: 347: 339: 337: 327: 322:⊆ defines a 317: 309: 305: 298: 291: 287: 280: 278: 232: 224: 220: 216: 212: 208: 201: 194: 190: 186: 182: 178: 171: 164: 157: 155: 103: 96: 92: 85: 78: 76: 71: 69: 57: 47: 29: 1206:: 805–807. 1103:. pp.  972:If the set 772:the union. 36:mathematics 1240:Categories 1075:References 540:surjective 422:Properties 416:vice versa 95:such that 65:complement 54:Definition 953:τ 949:∪ 946:τ 922:τ 918:∩ 915:τ 871:τ 830:τ 504: : ( 471: : ( 378:dual pair 258:τ 254:≠ 245:τ 134:τ 130:⊆ 121:τ 72:open sets 1095:Topology 1091:(2000). 1057:analysts 1024:See also 1020:either. 956:′ 925:′ 874:′ 781:greatest 758:supremum 752:) and a 632:and let 595:becomes 583: : 565:becomes 553: : 363:measures 334:Examples 221:topology 213:stronger 191:topology 32:topology 1014:modular 1012:is not 750:infimum 744:have a 604:coarser 567:coarser 526:) is a 493:) is a 350:is the 342:is the 279:we say 200:, and 187:smaller 179:coarser 60:subsets 42:. This 1111:  1065:strong 614:. Let 290:than 217:larger 183:weaker 1107:–78. 1043:Notes 818:is a 766:union 597:finer 574:finer 515:) → ( 482:) → ( 376:on a 308:than 223:than 209:finer 193:than 1109:ISBN 1063:and 1061:weak 783:and 756:(or 754:join 748:(or 746:meet 662:for 621:and 463:the 433:and 426:Let 391:The 318:The 297:and 84:and 77:Let 1208:doi 1175:doi 1171:122 1142:doi 887:on 842:on 713:in 695:in 654:at 538:is 406:of 357:In 304:is 286:is 215:or 185:or 30:In 1242:: 1204:20 1202:. 1198:. 1169:. 1165:. 1136:. 1132:. 1105:77 795:. 684:∈ 673:⊆ 658:∈ 587:→ 557:→ 519:, 508:, 486:, 475:, 467:id 454:⊆ 388:. 330:. 315:. 230:. 219:) 189:) 109:: 50:. 1216:. 1210:: 1183:. 1177:: 1150:. 1144:: 1138:5 1117:. 1000:X 980:X 895:X 850:X 806:X 742:X 734:X 722:x 720:( 718:2 715:B 711:2 708:U 704:x 702:( 700:1 697:B 693:1 690:U 686:X 682:x 678:2 675:τ 671:1 668:τ 664:i 660:X 656:x 651:i 647:τ 643:x 641:( 638:i 634:B 630:X 626:2 623:τ 619:1 616:τ 606:. 601:X 593:Y 589:Y 585:X 581:f 576:. 571:X 563:Y 559:Y 555:X 551:f 536:X 530:. 524:2 521:τ 517:X 513:1 510:τ 506:X 502:X 497:. 491:1 488:τ 484:X 480:2 477:τ 473:X 469:X 459:2 456:τ 452:1 449:τ 442:X 438:2 435:τ 431:1 428:τ 412:V 408:C 404:V 396:C 348:X 340:X 328:X 313:1 310:τ 302:2 299:τ 295:2 292:τ 284:1 281:τ 262:2 249:1 228:1 225:τ 211:( 205:2 202:τ 198:2 195:τ 181:( 175:1 172:τ 168:2 165:τ 161:1 158:τ 152:. 138:2 125:1 107:2 104:τ 100:1 97:τ 93:X 89:2 86:τ 82:1 79:τ 20:)

Index

Coarsest topology
topology
mathematics
partially ordered set
order relation
subsets
complement
binary relation
partial ordering relation
discrete topology
trivial topology
function spaces
measures
topologies on the set of operators on a Hilbert space
polar topologies
dual pair
weak topology
strong topology
complex vector space
Zariski topology
identity map
continuous map
strongly/relatively open map
surjective
neighborhood bases
complete lattice
infimum
supremum
intersection
union

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.