Knowledge

Clebsch graph

Source 📝

483: 760: 792: 744: 776: 808: 29: 302:
to the 10-regular Clebsch graph. Two copies of the 5-regular Clebsch graph can be produced in the same way from a 5-dimensional hypercube, by connecting pairs of vertices whose Hamming distance is exactly four.
387: 553:
four-chromatic graph, and every four-chromatic induced subgraph of the Clebsch graph is a supergraph of the Grötzsch graph. More strongly, every triangle-free four-chromatic graph with no
665: 209:; it was called the Clebsch graph name by Seidel (1968) because of its relation to the configuration of 16 lines on the quartic surface discovered in 1868 by the German mathematician 431: 710: 675:
consists entirely of integers. The Clebsch graph is the only graph with this characteristic polynomial, making it a graph determined by its spectrum.
759: 248:(the 5-regular Clebsch graph) may be constructed by adding edges between opposite pairs of vertices in a 4-dimensional hypercube graph. (In an 902: 579:
in the orientable manifold of genus 5, forming pentagonal faces; and in the non-orientable surface of genus 6, forming tetragonal faces.
286:
of the 5-regular graph. It may also be constructed from the vertices of a 5-dimensional hypercube, by connecting pairs of vertices whose
791: 807: 1101:
Randerath, Bert; Schiermeyer, Ingo; Tewes, Meike (2002), "Three-colourability and forbidden subgraphs. II. Polynomial algorithms",
775: 732:, meaning that every isomorphism between two connected induced subgraphs can be extended to an automorphism of the whole graph. 522:(3,3,3) describing the minimum number of vertices in a complete graph without a triangle-free three-coloring is at least 17. 177: 667:. Because this polynomial can be completely factored into linear terms with integer coefficients, the Clebsch graph is an 1004: 743: 271:
GF(16), and connect two vertices by an edge whenever the difference between the corresponding two field elements is a
318: 1156: 557:
of length six or more is an induced subgraph of the Clebsch graph and an induced supergraph of the Grötzsch graph.
1103: 538: 594: 541:
has five vertices, not enough to partition the graph into three independent color classes. It contains as an
504:
may be partitioned into three disjoint copies of the 5-regular Clebsch graph. Because the Clebsch graph is a
389:. Its complement, the 10-regular Clebsch graph, is therefore also a strongly regular graph, with parameters 1146: 576: 725: 588: 283: 198: 169: 449: 909: 291: 1151: 713: 392: 161: 76: 66: 561: 453: 312: 267:
Another construction, leading to the same graph, is to create a vertex for each element of the
149: 877:(1868), "Ueber die Flächen vierter Ordnung, welche eine Doppelcurve zweiten Grades besitzen", 294:. It produces two subsets of 16 vertices that are disconnected from each other; both of these 721: 672: 482: 261: 165: 46: 996: 1126: 1087: 963: 688: 86: 8: 712:. As a Cayley graph, its automorphism group acts transitively on its vertices, making it 550: 505: 205:
with 40 edges and a 10-regular graph with 80 edges. The 80-edge graph is the dimension-5
56: 96: 1117: 564:
of dimension two, part of a family of graphs used to find tilings of high-dimensional
766: 750: 729: 461: 437: 299: 279: 245: 214: 206: 153: 1037: 546: 1112: 1013: 949: 861: 782: 542: 457: 287: 106: 1122: 1083: 959: 840: 814: 798: 717: 565: 260:
edges.) Alternatively, it can be formed from a 5-dimensional hypercube graph by
126: 116: 937: 874: 668: 534: 495: 472: 465: 445: 272: 222: 210: 39: 1140: 1064: 683: 516: 230: 202: 992: 954: 679: 554: 476: 441: 268: 190: 157: 136: 508:, this shows that there is a triangle-free three-coloring of the edges of 295: 186: 1065:"An easy proof of the Greenwood–Gleason evaluation of the Ramsey number 290:
is exactly two. This construction is an instance of the construction of
978: 569: 28: 1017: 979:"Constructions and Characterizations of (Semi)partial Geometries" 460:
by the ten non-neighbors of any vertex in this graph forms an
682:
with an automorphism group of order 1920, isomorphic to the
264:
together (or contracting) every opposite pair of vertices.
1100: 940:(1955), "Combinatorial relations and chromatic graphs", 864:
having eigenvalue 3, Lin. Alg. Appl. 1 (1968) 281-298.
221:
after the work of Robert E. Greenwood and
691: 597: 395: 321: 860:
J. J. Seidel, Strongly regular graphs with (−1,1,0)
16:
One of two different regular graphs with 16 vertices
526:used this construction as part of their proof that 903:"The Clebsch Graph on Bill Cherowitzo's home page" 704: 659: 425: 381: 575:The 5-regular Clebsch graph can be embedded as a 1138: 981:. Summer School on Finite Geometries. p. 6. 935: 523: 226: 879:Journal für die reine und angewandte Mathematik 252:-dimensional hypercube, a pair of vertices are 382:{\displaystyle (v,k,\lambda ,\mu )=(16,5,0,2)} 1053:. Master Thesis, University of Tübingen, 2018 537:with four colors, but not three: its largest 897: 895: 893: 834: 832: 1116: 976: 953: 890: 813:Construction of the Clebsch graph from a 213:. The 40-edge variant is the dimension-5 1062: 829: 660:{\displaystyle (x+3)^{5}(x-1)^{10}(x-5)} 481: 873: 843:. From MathWorld—A Wolfram Web Resource 582: 1139: 991: 282:(the 10-regular Clebsch graph) is the 256:if the shortest path between them has 997:"Problems in algebraic combinatorics" 985: 838: 931: 929: 1063:Sun, Hugo S.; Cohen, M. E. (1984), 1051:Engineering Linear Layouts with SAT 1005:Electronic Journal of Combinatorics 572:no two of which meet face-to-face. 560:The 5-regular Clebsch graph is the 533:The 5-regular Clebsch graph may be 490:3-coloured as three Clebsch graphs. 13: 591:of the 5-regular Clebsch graph is 14: 1168: 926: 678:The 5-regular Clebsch graph is a 311:The 5-regular Clebsch graph is a 806: 790: 774: 758: 742: 27: 1094: 1056: 942:Canadian Journal of Mathematics 801:of the Clebsch graph is 5. 785:of the Clebsch graph is 4. 769:of the Clebsch graph is 8. 436:The 5-regular Clebsch graph is 239: 229:), who used it to evaluate the 1043: 1030: 970: 867: 854: 654: 642: 633: 620: 611: 598: 524:Greenwood & Gleason (1955) 420: 396: 376: 352: 346: 322: 178:Table of graphs and parameters 1: 1118:10.1016/S0012-365X(01)00335-1 822: 306: 219:Greenwood–Gleason graph 315:of degree 5 with parameters 7: 426:{\displaystyle (16,10,6,6)} 201:graphs on 16 vertices, a 5- 10: 1173: 735: 217:; it is also known as the 1040:on DesignTheory.org, 2001 977:De Clerck, Frank (1997). 589:characteristic polynomial 176: 145: 135: 125: 115: 105: 95: 85: 75: 65: 55: 45: 35: 26: 21: 530:(3,3,3) = 17. 458:subgraph that is induced 236:(3,3,3) = 17. 1157:Strongly regular graphs 1076:The Fibonacci Quarterly 1038:Strongly regular graphs 955:10.4153/CJM-1955-001-4 706: 661: 491: 427: 383: 313:strongly regular graph 749:The Clebsch graph is 730:connected-homogeneous 707: 705:{\displaystyle D_{5}} 662: 485: 428: 384: 298:of the hypercube are 1104:Discrete Mathematics 689: 595: 583:Algebraic properties 515:; that is, that the 448:. It is also both 5- 393: 319: 839:Weisstein, Eric W. 726:distance transitive 506:triangle-free graph 170:Distance-transitive 936:Greenwood, R. E.; 716:. In fact, it is 702: 657: 492: 423: 379: 292:Frankl–Rödl graphs 1147:Individual graphs 1036:Peter J. Cameron 767:achromatic number 714:vertex transitive 494:The edges of the 280:halved cube graph 246:folded cube graph 223:Andrew M. Gleason 215:folded cube graph 207:halved cube graph 197:is either of two 183: 182: 162:Vertex-transitive 1164: 1131: 1129: 1120: 1111:(1–3): 137–153, 1098: 1092: 1090: 1073: 1060: 1054: 1047: 1041: 1034: 1028: 1027: 1025: 1024: 1001: 989: 983: 982: 974: 968: 966: 957: 933: 924: 923: 921: 920: 914: 908:. Archived from 907: 899: 888: 886: 871: 865: 862:adjacency matrix 858: 852: 851: 849: 848: 836: 810: 794: 783:chromatic number 778: 762: 746: 711: 709: 708: 703: 701: 700: 666: 664: 663: 658: 641: 640: 619: 618: 566:Euclidean spaces 543:induced subgraph 450:vertex-connected 432: 430: 429: 424: 388: 386: 385: 380: 288:Hamming distance 278:The dimension-5 244:The dimension-5 150:Strongly regular 107:Chromatic number 31: 19: 18: 1172: 1171: 1167: 1166: 1165: 1163: 1162: 1161: 1137: 1136: 1135: 1134: 1099: 1095: 1071: 1061: 1057: 1048: 1044: 1035: 1031: 1022: 1020: 999: 990: 986: 975: 971: 934: 927: 918: 916: 912: 905: 901: 900: 891: 872: 868: 859: 855: 846: 844: 841:"Clebsch Graph" 837: 830: 825: 818: 815:hypercube graph 811: 802: 799:chromatic index 795: 786: 779: 770: 763: 754: 747: 738: 722:edge transitive 696: 692: 690: 687: 686: 636: 632: 614: 610: 596: 593: 592: 585: 549:, the smallest 539:independent set 514: 503: 489: 394: 391: 390: 320: 317: 316: 309: 242: 168: 166:Edge-transitive 164: 160: 156: 152: 117:Chromatic index 17: 12: 11: 5: 1170: 1160: 1159: 1154: 1152:Regular graphs 1149: 1133: 1132: 1093: 1082:(3): 235–238, 1055: 1049:Jessica Wolz, 1042: 1029: 984: 969: 938:Gleason, A. M. 925: 889: 866: 853: 827: 826: 824: 821: 820: 819: 812: 805: 803: 796: 789: 787: 780: 773: 771: 764: 757: 755: 748: 741: 737: 734: 718:arc transitive 699: 695: 669:integral graph 656: 653: 650: 647: 644: 639: 635: 631: 628: 625: 622: 617: 613: 609: 606: 603: 600: 584: 581: 547:Grötzsch graph 512: 501: 496:complete graph 487: 473:book thickness 466:Petersen graph 454:edge-connected 422: 419: 416: 413: 410: 407: 404: 401: 398: 378: 375: 372: 369: 366: 363: 360: 357: 354: 351: 348: 345: 342: 339: 336: 333: 330: 327: 324: 308: 305: 241: 238: 211:Alfred Clebsch 181: 180: 174: 173: 147: 143: 142: 139: 133: 132: 129: 127:Book thickness 123: 122: 119: 113: 112: 109: 103: 102: 99: 93: 92: 89: 83: 82: 79: 73: 72: 69: 63: 62: 59: 53: 52: 49: 43: 42: 40:Alfred Clebsch 37: 33: 32: 24: 23: 15: 9: 6: 4: 3: 2: 1169: 1158: 1155: 1153: 1150: 1148: 1145: 1144: 1142: 1128: 1124: 1119: 1114: 1110: 1106: 1105: 1097: 1089: 1085: 1081: 1077: 1070: 1068: 1059: 1052: 1046: 1039: 1033: 1019: 1018:10.37236/1224 1015: 1011: 1007: 1006: 998: 994: 988: 980: 973: 965: 961: 956: 951: 947: 943: 939: 932: 930: 915:on 2013-10-29 911: 904: 898: 896: 894: 884: 880: 876: 870: 863: 857: 842: 835: 833: 828: 816: 809: 804: 800: 793: 788: 784: 777: 772: 768: 761: 756: 752: 745: 740: 739: 733: 731: 728:. It is also 727: 723: 719: 715: 697: 693: 685: 684:Coxeter group 681: 676: 674: 670: 651: 648: 645: 637: 629: 626: 623: 615: 607: 604: 601: 590: 580: 578: 573: 571: 567: 563: 558: 556: 552: 551:triangle-free 548: 544: 540: 536: 531: 529: 525: 521: 518: 517:Ramsey number 511: 507: 500: 497: 484: 480: 478: 474: 469: 467: 463: 459: 455: 451: 447: 443: 439: 434: 417: 414: 411: 408: 405: 402: 399: 373: 370: 367: 364: 361: 358: 355: 349: 343: 340: 337: 334: 331: 328: 325: 314: 304: 301: 297: 293: 289: 285: 281: 276: 274: 270: 265: 263: 259: 255: 251: 247: 237: 235: 232: 231:Ramsey number 228: 224: 220: 216: 212: 208: 204: 203:regular graph 200: 199:complementary 196: 195:Clebsch graph 192: 188: 179: 175: 171: 167: 163: 159: 155: 151: 148: 144: 140: 138: 134: 130: 128: 124: 120: 118: 114: 110: 108: 104: 100: 98: 97:Automorphisms 94: 90: 88: 84: 80: 78: 74: 70: 68: 64: 60: 58: 54: 50: 48: 44: 41: 38: 34: 30: 25: 22:Clebsch graph 20: 1108: 1102: 1096: 1079: 1075: 1066: 1058: 1050: 1045: 1032: 1021:. Retrieved 1009: 1003: 993:Godsil, C.D. 987: 972: 945: 941: 917:. Retrieved 910:the original 882: 878: 869: 856: 845:. Retrieved 680:Cayley graph 677: 586: 574: 562:Keller graph 559: 555:induced path 532: 527: 519: 509: 498: 493: 477:queue number 470: 464:copy of the 446:non Eulerian 435: 310: 296:half-squares 277: 273:perfect cube 269:finite field 266: 257: 253: 249: 243: 240:Construction 233: 218: 194: 191:graph theory 187:mathematical 184: 158:Cayley graph 137:Queue number 875:Clebsch, A. 751:Hamiltonian 577:regular map 438:Hamiltonian 262:identifying 154:Hamiltonian 36:Named after 1141:Categories 1023:2009-08-13 919:2011-05-21 847:2009-08-13 823:References 570:hypercubes 462:isomorphic 442:non planar 307:Properties 300:isomorphic 284:complement 146:Properties 885:: 142–184 649:− 627:− 344:μ 338:λ 189:field of 1069:(3,3,3)" 995:(1995). 720:, hence 673:spectrum 254:opposite 77:Diameter 47:Vertices 1127:1904597 1088:0765316 964:0067467 948:: 1–7, 736:Gallery 535:colored 471:It has 225: ( 185:In the 1125:  1086:  962:  671:: its 475:4 and 456:. The 452:and 5- 193:, the 67:Radius 1072:(PDF) 1012:: 3. 1000:(PDF) 913:(PDF) 906:(PDF) 87:Girth 57:Edges 797:The 781:The 765:The 724:and 587:The 545:the 444:and 227:1955 101:1920 1113:doi 1109:251 1014:doi 950:doi 568:by 479:3. 468:. 1143:: 1123:MR 1121:, 1107:, 1084:MR 1080:22 1078:, 1074:, 1008:. 1002:. 960:MR 958:, 944:, 928:^ 892:^ 883:69 881:, 831:^ 638:10 513:16 502:16 488:16 440:, 433:. 406:10 400:16 356:16 275:. 61:40 51:16 1130:. 1115:: 1091:. 1067:R 1026:. 1016:: 1010:2 967:. 952:: 946:7 922:. 887:. 850:. 817:. 753:. 698:5 694:D 655:) 652:5 646:x 643:( 634:) 630:1 624:x 621:( 616:5 612:) 608:3 605:+ 602:x 599:( 528:R 520:R 510:K 499:K 486:K 421:) 418:6 415:, 412:6 409:, 403:, 397:( 377:) 374:2 371:, 368:0 365:, 362:5 359:, 353:( 350:= 347:) 341:, 335:, 332:k 329:, 326:v 323:( 258:n 250:n 234:R 172:. 141:3 131:4 121:5 111:4 91:4 81:2 71:2

Index


Alfred Clebsch
Vertices
Edges
Radius
Diameter
Girth
Automorphisms
Chromatic number
Chromatic index
Book thickness
Queue number
Strongly regular
Hamiltonian
Cayley graph
Vertex-transitive
Edge-transitive
Distance-transitive
Table of graphs and parameters
mathematical
graph theory
complementary
regular graph
halved cube graph
Alfred Clebsch
folded cube graph
Andrew M. Gleason
1955
Ramsey number
folded cube graph

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.