Knowledge

Straightedge and compass construction

Source 📝

61: 1590: 5157: 1735: 1760: 1890:, it contains all points that can be obtained by a finite sequence of quadratic extensions of the field of complex numbers with rational coefficients. By the above paragraph, one can show that any constructible point can be obtained by such a sequence of extensions. As a corollary of this, one finds that the degree of the minimal polynomial for a constructible point (and therefore of any constructible length) is a power of 2. In particular, any constructible point (or length) is an 2890:. These can be taken three at a time to yield 139 distinct nontrivial problems of constructing a triangle from three points. Of these problems, three involve a point that can be uniquely constructed from the other two points; 23 can be non-uniquely constructed (in fact for infinitely many solutions) but only if the locations of the points obey certain constraints; in 74 the problem is constructible in the general case; and in 39 the required triangle exists but is not constructible. 3225: 5144: 2154: 2242:, which is easily seen to be a countable dense subset of the plane. Each of these six operations corresponding to a simple straightedge-and-compass construction. From such a formula it is straightforward to produce a construction of the corresponding point by combining the constructions for each of the arithmetic operations. More efficient constructions of a particular set of points correspond to shortcuts in such calculations. 1347: 3216:. It is known that one cannot solve an irreducible polynomial of prime degree greater or equal to 7 using the neusis construction, so it is not possible to construct a regular 23-gon or 29-gon using this tool. Benjamin and Snyder proved that it is possible to construct the regular 11-gon, but did not give a construction. It is still open as to whether a regular 25-gon or 31-gon is constructible using this tool. 1355: 1244:, is assumed to be infinite in length, have only one edge, and no markings on it. The compass is assumed to have no maximum or minimum radius, and is assumed to "collapse" when lifted from the page, so it may not be directly used to transfer distances. (This is an unimportant restriction since, using a multi-step procedure, a distance can be transferred even with a collapsing compass; see 1785: 38: 1934: 2971:
For example, using a compass, straightedge, and a piece of paper on which we have the parabola y=x together with the points (0,0) and (1,0), one can construct any complex number that has a solid construction. Likewise, a tool that can draw any ellipse with already constructed foci and major axis (think two pins and a piece of string) is just as powerful.
2970:
A point has a solid construction if it can be constructed using a straightedge, compass, and a (possibly hypothetical) conic drawing tool that can draw any conic with already constructed focus, directrix, and eccentricity. The same set of points can often be constructed using a smaller set of tools.
2950:
was called solid; the third category included all constructions that did not fall into either of the other two categories. This categorization meshes nicely with the modern algebraic point of view. A complex number that can be expressed using only the field operations and square roots (as described
2949:
The ancient Greeks classified constructions into three major categories, depending on the complexity of the tools required for their solution. If a construction used only a straightedge and compass, it was called planar; if it also required one or more conic sections (other than the circle), then it
2497:
The ancient Greeks thought that the construction problems they could not solve were simply obstinate, not unsolvable. With modern methods, however, these straightedge-and-compass constructions have been shown to be logically impossible to perform. (The problems themselves, however, are solvable, and
2245:
Equivalently (and with no need to arbitrarily choose two points) we can say that, given an arbitrary choice of orientation, a set of points determines a set of complex ratios given by the ratios of the differences between any two pairs of points. The set of ratios constructible using straightedge and
2538:
can be constructed with ruler and compass alone, namely those constructed from the integers with a finite sequence of operations of addition, subtraction, multiplication, division, and taking square roots. The phrase "squaring the circle" is often used to mean "doing the impossible" for this reason.
1637:
For example, starting with just two distinct points, we can create a line or either of two circles (in turn, using each point as centre and passing through the other point). If we draw both circles, two new points are created at their intersections. Drawing lines between the two original points and
2626:
cannot in general be constructed. See Note that results proven here are mostly a consequence of the non-constructivity of conics. If the initial conic is considered as a given, then the proof must be reviewed to check if other distinct conic needs to be generated. As an example, constructions for
2149:{\displaystyle {\begin{aligned}\cos {\left({\frac {2\pi }{17}}\right)}&=\,-{\frac {1}{16}}\,+\,{\frac {1}{16}}{\sqrt {17}}\,+\,{\frac {1}{16}}{\sqrt {34-2{\sqrt {17}}}}\\&\qquad +\,{\frac {1}{8}}{\sqrt {17+3{\sqrt {17}}-{\sqrt {34-2{\sqrt {17}}}}-2{\sqrt {34+2{\sqrt {17}}}}}}\end{aligned}}} 3123:
What if, together with the straightedge and compass, we had a tool that could (only) trisect an arbitrary angle? Such constructions are solid constructions, but there exist numbers with solid constructions that cannot be constructed using such a tool. For example, we cannot double the cube with
2166:
The group of constructible angles is closed under the operation that halves angles (which corresponds to taking square roots in the complex numbers). The only angles of finite order that may be constructed starting with two points are those whose order is either a power of two, or a product of a
2913:
Various attempts have been made to restrict the allowable tools for constructions under various rules, in order to determine what is still constructible and how it may be constructed, as well as determining the minimum criteria necessary to still be able to construct everything that compass and
3172:
gave constructions involving the use of a markable ruler. This would permit them, for example, to take a line segment, two lines (or circles), and a point; and then draw a line which passes through the given point and intersects the two given lines, such that the distance between the points of
2961:
that can be broken down into a tower of fields where each extension has degree two. A complex number that has a solid construction has degree with prime factors of only two and three, and lies in a field extension that is at the top of a tower of fields where each extension has degree 2 or 3.
2563:
Doubling the cube is the construction, using only a straightedge and compass, of the edge of a cube that has twice the volume of a cube with a given edge. This is impossible because the cube root of 2, though algebraic, cannot be computed from integers by addition, subtraction, multiplication,
1919:
under addition modulo 2π (which corresponds to multiplication of the points on the unit circle viewed as complex numbers). The angles that are constructible are exactly those whose tangent (or equivalently, sine or cosine) is constructible as a number. For example, the regular
2926:) to construct anything with just a compass if it can be constructed with a ruler and compass, provided that the given data and the data to be found consist of discrete points (not lines or circles). The truth of this theorem depends on the truth of 1408:, no power is lost by using a collapsing compass. Although the proposition is correct, its proofs have a long and checkered history. In any case, the equivalence is why this feature is not stipulated in the definition of the ideal compass. 2662: 3142:
is more powerful than straightedge-and-compass construction. Folds satisfying the Huzita–Hatori axioms can construct exactly the same set of points as the extended constructions using a compass and conic drawing tool. Therefore,
1419:. That is, it must have a finite number of steps, and not be the limit of ever closer approximations. (If an unlimited number of steps is permitted, some otherwise-impossible constructions become possible by means of 2390: 1939: 2319: 2582:
Angle trisection is the construction, using only a straightedge and a compass, of an angle that is one-third of a given arbitrary angle. This is impossible in the general case. For example, the angle 2
2445: 2542:
Without the constraint of requiring solution by ruler and compass alone, the problem is easily solvable by a wide variety of geometric and algebraic means, and was solved many times in antiquity.
2202:
Given any such interpretation of a set of points as complex numbers, the points constructible using valid straightedge-and-compass constructions alone are precisely the elements of the smallest
2627:
normals of a parabola are known, but they need to use an intersection between circle and the parabola itself. So they are not constructible in the sense that the parabola is not constructible.
1393:
can be drawn starting from two given points: the centre and a point on the circle. The compass may or may not collapse (i.e. fold after being taken off the page, erasing its 'stored' radius).
3208:
The neusis construction is more powerful than a conic drawing tool, as one can construct complex numbers that do not have solid constructions. In fact, using this tool one can solve some
1597:
All straightedge-and-compass constructions consist of repeated application of five basic constructions using the points, lines and circles that have already been constructed. These are:
2990:, and others as being based on a solid construction, but this has been disputed, as other interpretations are possible. The quadrature of the circle does not have a solid construction. 1641:
Therefore, in any geometric problem we have an initial set of symbols (points and lines), an algorithm, and some results. From this perspective, geometry is equivalent to an axiomatic
1315:). Many of these problems are easily solvable provided that other geometric transformations are allowed; for example, neusis construction can be used to solve the former two problems. 1400:
Actual compasses do not collapse and modern geometric constructions often use this feature. A 'collapsing compass' would appear to be a less powerful instrument. However, by the
2905:. Together with the three angles, these give 95 distinct combinations, 63 of which give rise to a constructible triangle, 30 of which do not, and two of which are underdefined. 2680:) are easy to construct with straightedge and compass; others are not. This led to the question: Is it possible to construct all regular polygons with straightedge and compass? 1865: 3553: 1575: 1415:. "Eyeballing" distances (looking at the construction and guessing at its accuracy) or using markings on a ruler, are not permitted. Each construction must also 2937:
It is impossible to take a square root with just a ruler, so some things that cannot be constructed with a ruler can be constructed with a compass; but (by the
3101:, 25, 29, 31, 33, 41, 43, 44, 46, 47, 49, 50, 53, 55, 58, 59, 61, 62, 66, 67, 69, 71, 75, 77, 79, 82, 83, 86, 87, 88, 89, 92, 93, 94, 98, 99, 100... (sequence 2246:
compass from such a set of ratios is precisely the smallest field containing the original ratios and closed under taking complex conjugates and square roots.
2516:, otherwise known as the quadrature of the circle, involves constructing a square with the same area as a given circle using only straightedge and compass. 3913: 1546:
published a proof of the impossibility of trisecting an arbitrary angle or of doubling the volume of a cube, based on the impossibility of constructing
1378:
is an infinitely long edge with no markings on it. It can only be used to draw a line segment between two points, or to extend an existing line segment.
1915:
between the angles that are constructible and the points that are constructible on any constructible circle. The angles that are constructible form an
1334:
is a constructible number. A number is constructible if and only if it can be written using the four basic arithmetic operations and the extraction of
3367: 2218:
less than π). The elements of this field are precisely those that may be expressed as a formula in the original points using only the operations of
5181: 5017: 1535:
showed that a regular polygon with 17 sides could be constructed; five years later he showed the sufficient criterion for a regular polygon of
3256:
of certain numbers. The algorithm involves the repeated doubling of an angle and becomes physically impractical after about 20 binary digits.
1700: 4617: 1189: 5095: 3185:) or extract an arbitrary cube root (due to Nicomedes). Hence, any distance whose ratio to an existing distance is the solution of a 3108: 3071: 2819: 3232:
Given a straight line segment called AB, could this be divided in three new equal segments and in many parts required by the use of
4398: 3934: 2602:) cannot be trisected. The general trisection problem is also easily solved when a straightedge with two marks on it is allowed (a 2325: 2259: 3906: 3467: 4942: 1248:. Note however that whilst a non-collapsing compass held against a straightedge might seem to be equivalent to marking it, the 17: 1295:
are constructible but that most are not. Some of the most famous straightedge-and-compass problems were proved impossible by
3406: 3280: 2568:
over the rationals has degree 3. This construction is possible using a straightedge with two marks on it and a compass.
2396: 3115:
Like the question with Fermat primes, it is an open question as to whether there are an infinite number of Pierpont primes.
4637: 3739: 1801: 5005: 4408: 3124:
such a tool. On the other hand, every regular n-gon that has a solid construction can be constructed using such a tool.
2954:) has a planar construction. A complex number that includes also the extraction of cube roots has a solid construction. 2826:
There are known to be an infinitude of constructible regular polygons with an even number of sides (because if a regular
1831:
containing two points on the line, the center of the circle, and the radius of the circle. That is, they are of the form
1581:, and thus that it is impossible by straightedge and compass to construct a square with the same area as a given circle. 3147:
can also be used to solve cubic equations (and hence quartic equations), and thus solve two of the classical problems.
5072: 3899: 1550:
of lengths. He also showed that Gauss's sufficient constructibility condition for regular polygons is also necessary.
3567: 2565: 1434:, rather than a serious practical problem; but the purpose of the restriction is to ensure that constructions can be 1227: 255: 2489:
ratio. None of these are in the fields described, hence no straightedge-and-compass construction for these exists.
3360:"Recherches sur les moyens de reconnaître si un problème de Géométrie peut se résoudre avec la règle et le compas" 1287:
impose this restriction. The ancient Greeks developed many constructions, but in some cases were unable to do so.
2987: 1695: 1490:, or regular polygons with other numbers of sides. Nor could they construct the side of a cube whose volume is 1362:
The "straightedge" and "compass" of straightedge-and-compass constructions are idealized versions of real-world
5041: 4974: 4607: 4487: 3462: 2974:
The ancient Greeks knew that doubling the cube and trisecting an arbitrary angle both had solid constructions.
2661: 1684: 1182: 1136: 742: 201: 2686:
in 1796 showed that a regular 17-sided polygon can be constructed, and five years later showed that a regular
1705: 3510: 1528:
to trisect an arbitrary angle; but these methods also cannot be followed with just straightedge and compass.
1482:
of 3, 4, or 5 sides (or one with twice the number of sides of a given polygon). But they could not construct
1478:, a square whose area is twice that of another square, a square having the same area as a given polygon, and 5110: 4867: 4755: 3930: 3286: 3139: 2938: 2643:
proved the theorem that there is no ruler-and-compass construction for the general solution of the ancient
1275: 4819: 4750: 2923: 2863: 2498:
the Greeks knew how to solve them without the constraint of working only with straightedge and compass.)
1823:
Using the equations for lines and circles, one can show that the points at which they intersect lie in a
1813: 1401: 1271: 1245: 31: 3586:
Pascal Schreck, Pascal Mathis, Vesna Marinkoviċ, and Predrag Janičiċ. "Wernick's list: A final update",
2545:
A method which comes very close to approximating the "quadrature of the circle" can be achieved using a
4446: 4262: 2623: 2192: 1649:
first realized this, and used it to prove the impossibility of some constructions; only much later did
1300: 1157: 767: 4237: 4981: 4952: 4312: 4167: 3783:
E. Benjamin, C. Snyder, "On the construction of the regular hendecagon by marked ruler and compass",
3165: 1834: 1521: 1175: 3863: 2957:
In the language of fields, a complex number that is planar has degree a power of two, and lies in a
5115: 4849: 4392: 3604: 3213: 3133: 1459: 1385:
can have an arbitrarily large radius with no markings on it (unlike certain real-world compasses).
1284: 144: 3480: 5077: 5053: 4927: 4862: 4803: 4740: 4730: 4466: 4385: 4247: 4157: 4037: 1554: 570: 250: 107: 4347: 5100: 5048: 4947: 4775: 4725: 4710: 4705: 4476: 4277: 4212: 4202: 4152: 3270: 2231: 1525: 1367: 1256:
below.) More formally, the only permissible constructions are those granted by the first three
1234: 646: 357: 235: 120: 3294:, a mathematician who has made a sideline of collecting false straightedge-and-compass proofs. 3193:
is constructible. Using a markable ruler, regular polygons with solid constructions, like the
1257: 37: 5148: 5000: 4844: 4785: 4662: 4585: 4533: 4335: 4242: 4092: 3843: 2931: 2656: 2520: 2486: 1578: 1463: 1454:
first attempted straightedge-and-compass constructions, and they discovered how to construct
418: 379: 338: 333: 186: 3426: 2849: 1633:
Creating the one point or two points in the intersection of two circles (if they intersect).
1283:
first conceived straightedge-and-compass constructions, and a number of ancient problems in
5125: 5065: 5029: 4872: 4695: 4642: 4612: 4602: 4511: 4374: 4267: 4182: 4137: 4117: 3962: 3947: 3814: 3706: 3558: 3539: 3359: 2927: 2721: 2683: 2644: 2636: 2618:
can be constructed, but the segment from any point in the plane to the nearest point on an
2160: 1720: 1670: 1646: 1497: 1405: 1327: 1261: 1086: 1009: 857: 762: 284: 179: 93: 3064:, 45, 52, 54, 56, 57, 63, 65, 70, 72, 73, 74, 76, 78, 81, 84, 90, 91, 95, 97... (sequence 1589: 1560: 1270:
It turns out to be the case that every point constructible using straightedge and compass
8: 5105: 5024: 5012: 4993: 4957: 4877: 4795: 4780: 4770: 4720: 4715: 4657: 4526: 4418: 4282: 4272: 4172: 4142: 4082: 4057: 3982: 3972: 3957: 3169: 3156: 2958: 2894: 2867: 2707: 2513: 2507: 2203: 1654: 1512:, but these cannot be constructed by straightedge and compass. In the fifth century BCE, 1487: 1424: 1249: 1091: 1035: 948: 802: 782: 707: 597: 468: 458: 321: 196: 191: 174: 149: 137: 89: 84: 65: 3852: 3818: 2253:(taking one of the two viewpoints above) are constructible as these may be expressed as 5161: 5120: 5060: 4988: 4854: 4829: 4647: 4622: 4590: 4428: 4187: 4132: 4097: 3992: 3802: 3698: 3638: 3591: 3527: 1050: 777: 617: 245: 169: 159: 130: 115: 5156: 4834: 4745: 4595: 4521: 4494: 4257: 4077: 4067: 4002: 3922: 3877: 3874: 3822: 3423: 3402: 3233: 3182: 2930:, which is not first-order in nature. Examples of compass-only constructions include 2898: 2859: 2801: 2793: 2785: 2777: 2558: 2235: 2207: 1775: 1750: 1734: 1491: 1451: 1308: 1280: 1121: 909: 887: 812: 671: 397: 326: 218: 164: 125: 2902: 2871: 1690: 1504:
showed that the volume of the cube could be doubled by finding the intersections of
1475: 1111: 1040: 837: 747: 5036: 4907: 4824: 4580: 4568: 4516: 4252: 3694: 3642: 3630: 3523: 3519: 3505: 3491:
Azad, H., and Laradji, A., "Some impossible constructions in elementary geometry",
3291: 3190: 2640: 2577: 2535: 2215: 1891: 1642: 1483: 1304: 1101: 842: 552: 430: 365: 223: 208: 73: 2717:
The first few constructible regular polygons have the following numbers of sides:
4677: 4667: 4561: 4287: 3702: 3535: 3061: 2673: 2546: 2470: 2180: 1925: 1602: 1479: 524: 387: 230: 213: 154: 60: 1677: 1096: 1065: 999: 847: 792: 727: 4937: 4932: 4760: 4652: 4632: 4460: 4017: 3987: 3718: 3275: 3265: 3202: 3198: 3186: 3018: 2773: 2711: 2599: 2478: 2227: 2196: 1759: 1638:
one of these new points completes the construction of an equilateral triangle.
1543: 1531:
No progress on the unsolved problems was made for two millennia, until in 1796
1323: 1296: 1152: 1060: 1004: 969: 877: 787: 757: 717: 622: 3181:
to the point. In this expanded scheme, we can trisect an arbitrary angle (see
2171:. In addition there is a dense set of constructible angles of infinite order. 1126: 737: 5175: 4897: 4765: 4735: 4556: 4364: 4307: 3826: 3245: 2781: 2765: 2168: 1916: 1824: 1728:
Straightedge-and-compass constructions corresponding to algebraic operations
1650: 1131: 1116: 1045: 862: 822: 772: 547: 510: 477: 315: 311: 3891: 2519:
Squaring the circle has been proved impossible, as it involves generating a
4839: 4627: 4302: 4062: 4052: 3857: 3682: 3253: 3224: 3057: 3053: 3045: 2875: 2797: 2789: 2769: 2757: 2749: 2699: 2691: 2690:-sided polygon can be constructed with straightedge and compass if the odd 2249:
For example, the real part, imaginary part and modulus of a point or ratio
1921: 1817: 1616: 1431: 1390: 1241: 1070: 1019: 832: 687: 602: 392: 4453: 4341: 4047: 4032: 3618: 3098: 3049: 2883: 2850:
Constructing a triangle from three given characteristic points or lengths
2753: 2474: 2239: 2223: 2211: 1627: 1471: 1335: 1106: 979: 797: 732: 660: 632: 607: 1346: 4439: 4358: 4297: 4292: 4232: 4217: 4162: 4147: 4102: 4042: 4027: 4007: 3977: 3942: 3634: 3531: 3161: 3094: 3090: 3041: 2975: 2893:
Twelve key lengths of a triangle are the three side lengths, the three
2703: 2614:
The line segment from any point in the plane to the nearest point on a
1517: 1501: 1430:
Stated this way, straightedge-and-compass constructions appear to be a
964: 943: 933: 923: 882: 827: 722: 712: 612: 463: 4192: 4177: 4127: 4022: 4012: 3997: 3967: 3882: 3431: 3249: 2745: 1912: 1547: 1505: 1455: 1396:
Lines and circles constructed have infinite precision and zero width.
974: 692: 655: 519: 491: 2842:-gon, etc.). However, there are only 31 known constructible regular 2214:
operations (to avoid ambiguity, we can specify the square root with
4329: 4107: 3952: 3421: 3194: 3037: 3033: 2983: 2887: 2879: 2855: 2761: 2729: 2677: 2666: 2219: 1894:, though not every algebraic number is constructible; for example, 1509: 1420: 1252:
is still impermissible and this is what unmarked really means: see
1203: 1055: 1014: 984: 872: 867: 817: 542: 501: 449: 343: 306: 52: 3621:(1990). "On strict strong constructibility with a compass alone". 4902: 4227: 4222: 4122: 4112: 4087: 3311:
Godfried Toussaint, "A new look at Euclid’s second proposition,"
3209: 3144: 3025:-gon admits a solid, but not planar, construction if and only if 2941:) given a single circle and its center, they can be constructed. 2809: 2805: 2741: 2737: 2733: 2619: 1623: 1513: 1319: 1292: 989: 702: 496: 440: 240: 42: 3766:
A. Baragar, "Constructions using a Twice-Notched Straightedge",
1660: 30:"Constructive geometry" redirects here. Not to be confused with 4197: 4072: 3785:
Mathematical Proceedings of the Cambridge Philosophical Society
3685:(1989), "On Archimedes' construction of the regular heptagon", 3177:("inclination", "tendency" or "verging"), because the new line 3173:
intersection equals the given segment. This the Greeks called
2979: 2917: 2725: 2615: 2603: 2595: 2587: 1609: 1386: 1331: 938: 928: 807: 752: 627: 590: 578: 533: 486: 404: 69: 3803:"The Computation of Certain Numbers Using a Ruler and Compass" 1710:
Drawing a line through a given point parallel to a given line.
1665:
The most-used straightedge-and-compass constructions include:
1630:
in the intersection of a line and a circle (if they intersect)
1354: 4573: 4551: 4207: 2564:
division, and taking square roots. This follows because its
2477:
not divisible by 3) require ratios which are the solution to
2385:{\displaystyle \mathrm {Im} (z)={\frac {z-{\bar {z}}}{2i}}\;} 1532: 1520:
to both trisect the general angle and square the circle, and
1467: 1363: 1288: 1230: 1223: 994: 918: 852: 697: 301: 296: 3721:: "Angle trisection, the heptagon, and the triskaidecagon", 2590:(72° = 360°/5) can be trisected, but the angle of 2314:{\displaystyle \mathrm {Re} (z)={\frac {z+{\bar {z}}}{2}}\;} 3508:(1998), "Reflections on Reflection in a Spherical Mirror", 3103: 3066: 2814: 2206:
containing the original set of points and closed under the
1784: 1276:
straightedge alone if given a single circle and its center.
585: 435: 3283:, most of them show straightedge-and-compass constructions 2647:(billiard problem or reflection from a spherical mirror). 3872: 2986:, which was interpreted by medieval Arabic commentators, 1820:. Finally we can write these vectors as complex numbers. 1612:
that contains one point and has a center at another point
1886:
Since the field of constructible points is closed under
1816:
made of two lines, and represent points of our plane by
2440:{\displaystyle \left|z\right|={\sqrt {z{\bar {z}}}}.\;} 1701:
Constructing a line through a point tangent to a circle
3655:
T.L. Heath, "A History of Greek Mathematics, Volume I"
2951: 2399: 2328: 2262: 1937: 1837: 1812:
One can associate an algebra to our geometry using a
1563: 3592:
http://forumgeom.fau.edu/FG2016volume16/FG201610.pdf
3554:"Don solves the last puzzle left by ancient Greeks" 1706:
Constructing a circle through 3 noncollinear points
1330:, and an angle is constructible if and only if its 2439: 2384: 2313: 2148: 1859: 1569: 3664:P. Hummel, "Solid constructions using ellipses", 3343:Famous Problems of Geometry and How to Solve Them 2174: 1341: 5173: 2650: 3239: 3086:-gon has no solid construction is the sequence 3021:(primes of the form 23+1). Therefore, regular 2808:, 128, 136, 160, 170, 192, 204, 240, 255, 256, 1645:, replacing its elements by symbols. Probably 1524:in the second century BCE showed how to use a 3921: 3907: 3800: 3602:Posamentier, Alfred S., and Lehmann, Ingmar. 3219: 2997:-gon has a solid construction if and only if 2830:-gon is constructible, then so is a regular 2 2195:allows us to consider the points as a set of 1661:Common straightedge-and-compass constructions 1486:except in particular cases, or a square with 1312: 1183: 3392: 3390: 3368:Journal de Mathématiques Pures et Appliquées 2918:Constructing with only ruler or only compass 1474:of given lengths. They could also construct 1226:, and other geometric figures using only an 3794: 2908: 2492: 1272:may also be constructed using compass alone 3914: 3900: 3396: 2436: 2381: 2310: 1584: 1190: 1176: 59: 3551: 3387: 3353: 3351: 2944: 2609: 2183:, selecting any one of them to be called 2062: 2020: 2016: 1998: 1994: 1980: 1411:Each construction must be mathematically 3401:. Mineola, N.Y.: Dover. pp. 29–30. 3345:, Dover Publications, 1982 (orig. 1969). 3228:Trisection of a straight edge procedure. 3223: 3205:give constructions for several of them. 2660: 1783: 1758: 1733: 1588: 1353: 1345: 36: 3504: 3357: 2457:(except for special angles such as any 2191:, together with an arbitrary choice of 1906: 1714: 14: 5182:Compass and straightedge constructions 5174: 4943:Latin translations of the 12th century 3348: 3337: 3335: 3333: 3331: 3329: 3327: 3325: 3323: 3321: 3017:is a product of zero or more distinct 2965: 2501: 290:Straightedge and compass constructions 4673:Straightedge and compass construction 3895: 3873: 3681: 3617: 3422: 3281:List of interactive geometry software 3118: 1208:straightedge-and-compass construction 4638:Incircle and excircles of a triangle 3741:Geometric Exercises in Paper Folding 3315:, Vol. 15, No. 3, (1993), pp. 12-24. 2630: 2552: 1903:is algebraic but not constructible. 1253: 3737: 3446: 3318: 3013:are some non-negative integers and 2846:-gons with an odd number of sides. 2571: 2512:The most famous of these problems, 2167:power of two and a set of distinct 27:Method of drawing geometric objects 24: 3853:Construction with the Compass Only 3699:10.1111/j.1600-0498.1989.tb00848.x 3150: 3060:, 26, 27, 28, 35, 36, 37, 38, 39, 2333: 2330: 2267: 2264: 1222:– is the construction of lengths, 25: 5193: 3837: 3768:The American Mathematical Monthly 3754:Conway, John H. and Richard Guy: 3552:Highfield, Roger (1 April 1997), 3397:Kazarinoff, Nicholas D. (2003) . 2922:It is possible (according to the 256:Noncommutative algebraic geometry 5155: 5142: 3358:Wantzel, Pierre-Laurent (1837). 1240:The idealized ruler, known as a 3864:Angle Trisection by Hippocrates 3777: 3760: 3748: 3731: 3712: 3675: 3658: 3649: 3611: 3596: 3580: 3545: 3498: 2988:Bartel Leendert van der Waerden 2710:; the conjecture was proven by 2058: 1860:{\displaystyle x+y={\sqrt {k}}} 1488:the same area as a given circle 45:with a straightedge and compass 4975:A History of Greek Mathematics 4488:The Quadrature of the Parabola 3524:10.1080/00029890.1998.12004920 3485: 3479:Instructions for trisecting a 3473: 3455: 3440: 3415: 3313:The Mathematical Intelligencer 3305: 3140:mathematical theory of origami 2425: 2364: 2343: 2337: 2298: 2277: 2271: 2175:Relation to complex arithmetic 1516:used a curve that he called a 1404:in Proposition 2 of Book 1 of 1342:Straightedge and compass tools 1338:but of no higher-order roots. 1212:ruler-and-compass construction 649:- / other-dimensional 13: 1: 3844:Regular polygon constructions 3511:American Mathematical Monthly 3298: 2706:that this condition was also 2651:Constructing regular polygons 2179:Given a set of points in the 1309:doubling the volume of a cube 1305:trisecting an arbitrary angle 4756:Intersecting secants theorem 3807:Journal of Integer Sequences 3427:"Trigonometry Angles--Pi/17" 3287:Mathematics of paper folding 3252:that can be used to compute 3240:Computation of binary digits 2982:construction of the regular 1452:ancient Greek mathematicians 1322:, a length is constructible 1281:Ancient Greek mathematicians 7: 4751:Intersecting chords theorem 4618:Doctrine of proportionality 3495:88, November 2004, 548–551. 3259: 3214:not solvable using radicals 1928:) is constructible because 1814:Cartesian coordinate system 1696:Mirroring a point in a line 1619:of two (non-parallel) lines 1539:sides to be constructible. 1402:compass equivalence theorem 1246:compass equivalence theorem 32:Constructive solid geometry 10: 5198: 4447:On the Sphere and Cylinder 4400:On the Sizes and Distances 3220:Trisect a straight segment 3197:, are constructible; and 3154: 3131: 3127: 2834:-gon and hence a regular 4 2665:Construction of a regular 2654: 2575: 2556: 2505: 1718: 1615:Creating the point at the 1492:twice the volume of a cube 1484:one third of a given angle 1445: 1313:§ impossible constructions 29: 5149:Ancient Greece portal 5138: 5088: 4966: 4953:Philosophy of mathematics 4923: 4916: 4890: 4868:Ptolemy's table of chords 4812: 4794: 4693: 4686: 4542: 4504: 4321: 3929: 3923:Ancient Greek mathematics 3666:The Pi Mu Epsilon Journal 3608:, Prometheus Books, 2012. 3248:gave a ruler-and-compass 2187:and another to be called 1727: 4820:Aristarchus's inequality 4393:On Conoids and Spheroids 3738:Row, T. Sundara (1966). 3605:The Secrets of Triangles 2939:Poncelet–Steiner theorem 2909:Restricted constructions 2872:internal angle bisectors 2854:Sixteen key points of a 2493:Impossible constructions 1350:Straightedge and compass 145:Non-Archimedean geometry 4928:Ancient Greek astronomy 4741:Inscribed angle theorem 4731:Greek geometric algebra 4386:Measurement of a Circle 3848:The Math Forum @ Drexel 3791:(3), 409 -- 424 (2014). 3774:(2), 151 -- 164 (2002). 3728:(1988), no. 3, 185-194. 2924:Mohr–Mascheroni theorem 1687:from a point to a line. 1653:find a complete set of 1593:The basic constructions 1585:The basic constructions 251:Noncommutative geometry 5162:Mathematics portal 4948:Non-Euclidean geometry 4903:Mouseion of Alexandria 4776:Tangent-secant theorem 4726:Geometric mean theorem 4711:Exterior angle theorem 4706:Angle bisector theorem 4410:On Sizes and Distances 3801:Simon Plouffe (1998). 3672:(8), 429 -- 435 (2003) 3271:Geometric cryptography 3229: 3183:Archimedes' trisection 2945:Extended constructions 2864:midpoints of its sides 2669: 2610:Distance to an ellipse 2455:trisection of an angle 2441: 2386: 2315: 2150: 1861: 1827:of the smallest field 1805: 1802:geometric mean theorem 1779: 1754: 1671:perpendicular bisector 1594: 1571: 1359: 1351: 1220:classical construction 1216:Euclidean construction 219:Discrete/Combinatorial 46: 18:Classical construction 4850:Pappus's area theorem 4786:Theorem of the gnomon 4663:Quadratrix of Hippias 4586:Circles of Apollonius 4534:Problem of Apollonius 4512:Constructible numbers 4336:Archimedes Palimpsest 3590:16, 2016, pp. 69–80. 3227: 2664: 2657:Constructible polygon 2521:transcendental number 2442: 2387: 2316: 2151: 1924:(the seventeen-sided 1862: 1787: 1762: 1737: 1592: 1579:transcendental number 1572: 1476:half of a given angle 1357: 1349: 202:Discrete differential 40: 5066:prehistoric counting 4863:Ptolemy's inequality 4804:Apollonius's theorem 4643:Method of exhaustion 4613:Diophantine equation 4603:Circumscribed circle 4420:On the Moving Sphere 3570:on November 23, 2004 3559:Electronic Telegraph 3493:Mathematical Gazette 3134:Huzita–Hatori axioms 3082:for which a regular 2684:Carl Friedrich Gauss 2397: 2326: 2260: 1935: 1907:Constructible angles 1835: 1721:Constructible number 1715:Constructible points 1570:{\displaystyle \pi } 1561: 1328:constructible number 5152: • 4958:Neusis construction 4878:Spiral of Theodorus 4771:Pythagorean theorem 4716:Euclidean algorithm 4658:Lune of Hippocrates 4527:Squaring the circle 4283:Theon of Alexandria 3958:Aristaeus the Elder 3819:1998JIntS...1...13P 3756:The Book of Numbers 3723:Amer. Math. Monthly 3623:Journal of Geometry 3588:Forum Geometricorum 3463:Squaring the circle 3399:Ruler and the Round 3157:Neusis construction 3029:is in the sequence 2966:Solid constructions 2812:, 272... (sequence 2514:squaring the circle 2508:Squaring the circle 2502:Squaring the circle 2483:squaring the circle 1825:quadratic extension 1655:axioms for geometry 1494:with a given side. 1250:neusis construction 469:Pythagorean theorem 41:Creating a regular 4845:Menelaus's theorem 4835:Irrational numbers 4648:Parallel postulate 4623:Euclidean geometry 4591:Apollonian circles 4133:Isidore of Miletus 3878:"Angle Trisection" 3875:Weisstein, Eric W. 3744:. New York: Dover. 3635:10.1007/BF01222890 3424:Weisstein, Eric W. 3230: 2932:Napoleon's problem 2914:straightedge can. 2870:, the feet of its 2866:, the feet of its 2670: 2566:minimal polynomial 2437: 2382: 2311: 2146: 2144: 1857: 1806: 1780: 1755: 1691:Bisecting an angle 1685:perpendicular line 1605:through two points 1595: 1567: 1421:infinite sequences 1360: 1352: 47: 5169: 5168: 5134: 5133: 4886: 4885: 4873:Ptolemy's theorem 4746:Intercept theorem 4596:Apollonian gasket 4522:Doubling the cube 4495:The Sand Reckoner 3506:Neumann, Peter M. 3408:978-0-486-42515-3 3234:intercept theorem 2928:Archimedes' axiom 2645:Alhazen's problem 2631:Alhazen's problem 2559:Doubling the cube 2553:Doubling the cube 2536:algebraic numbers 2451:Doubling the cube 2431: 2428: 2379: 2367: 2308: 2301: 2236:complex conjugate 2208:complex conjugate 2159:as discovered by 2140: 2138: 2136: 2112: 2110: 2089: 2071: 2049: 2047: 2029: 2014: 2007: 1992: 1966: 1855: 1810: 1809: 1776:intercept theorem 1751:intercept theorem 1669:Constructing the 1406:Euclid's Elements 1291:showed that some 1200: 1199: 1165: 1164: 888:List of geometers 571:Three-dimensional 560: 559: 16:(Redirected from 5189: 5160: 5159: 5147: 5146: 5145: 4921: 4920: 4908:Platonic Academy 4855:Problem II.8 of 4825:Crossbar theorem 4781:Thales's theorem 4721:Euclid's theorem 4691: 4690: 4608:Commensurability 4569:Axiomatic system 4517:Angle trisection 4482: 4472: 4434: 4424: 4414: 4404: 4380: 4370: 4353: 3916: 3909: 3902: 3893: 3892: 3888: 3887: 3831: 3830: 3798: 3792: 3781: 3775: 3764: 3758: 3752: 3746: 3745: 3735: 3729: 3716: 3710: 3709: 3683:Knorr, Wilbur R. 3679: 3673: 3662: 3656: 3653: 3647: 3646: 3615: 3609: 3600: 3594: 3584: 3578: 3577: 3576: 3575: 3566:, archived from 3549: 3543: 3542: 3502: 3496: 3489: 3483: 3477: 3471: 3459: 3453: 3452: 3444: 3438: 3437: 3436: 3419: 3413: 3412: 3394: 3385: 3384: 3382: 3380: 3364: 3355: 3346: 3341:Bold, Benjamin. 3339: 3316: 3309: 3292:Underwood Dudley 3191:quartic equation 3119:Angle trisection 3106: 3069: 2901:, and the three 2817: 2674:regular polygons 2641:Peter M. Neumann 2593: 2585: 2578:Angle trisection 2572:Angle trisection 2533: 2532: 2531: 2530: 2468: 2446: 2444: 2443: 2438: 2432: 2430: 2429: 2421: 2415: 2410: 2391: 2389: 2388: 2383: 2380: 2378: 2370: 2369: 2368: 2360: 2350: 2336: 2320: 2318: 2317: 2312: 2309: 2304: 2303: 2302: 2294: 2284: 2270: 2216:complex argument 2155: 2153: 2152: 2147: 2145: 2141: 2139: 2137: 2132: 2121: 2113: 2111: 2106: 2095: 2090: 2085: 2074: 2072: 2064: 2054: 2050: 2048: 2043: 2032: 2030: 2022: 2015: 2010: 2008: 2000: 1993: 1985: 1972: 1971: 1967: 1962: 1954: 1902: 1901: 1900: 1892:algebraic number 1866: 1864: 1863: 1858: 1856: 1851: 1799: 1798: 1725: 1724: 1576: 1574: 1573: 1568: 1480:regular polygons 1423:converging to a 1326:it represents a 1210:– also known as 1192: 1185: 1178: 906: 905: 425: 424: 358:Zero-dimensional 63: 49: 48: 21: 5197: 5196: 5192: 5191: 5190: 5188: 5187: 5186: 5172: 5171: 5170: 5165: 5154: 5143: 5141: 5130: 5096:Arabian/Islamic 5084: 5073:numeral systems 4962: 4912: 4882: 4830:Heron's formula 4808: 4790: 4682: 4678:Triangle center 4668:Regular polygon 4545:and definitions 4544: 4538: 4500: 4480: 4470: 4432: 4422: 4412: 4402: 4378: 4368: 4351: 4317: 4288:Theon of Smyrna 3933: 3925: 3920: 3846:by Dr. Math at 3840: 3835: 3834: 3799: 3795: 3782: 3778: 3765: 3761: 3753: 3749: 3736: 3732: 3719:Gleason, Andrew 3717: 3713: 3680: 3676: 3663: 3659: 3654: 3650: 3616: 3612: 3601: 3597: 3585: 3581: 3573: 3571: 3550: 3546: 3503: 3499: 3490: 3486: 3478: 3474: 3460: 3456: 3445: 3441: 3420: 3416: 3409: 3395: 3388: 3378: 3376: 3362: 3356: 3349: 3340: 3319: 3310: 3306: 3301: 3262: 3242: 3222: 3159: 3153: 3151:Markable rulers 3136: 3130: 3121: 3102: 3065: 3019:Pierpont primes 2968: 2959:field extension 2947: 2920: 2911: 2903:angle bisectors 2852: 2813: 2659: 2653: 2633: 2612: 2606:construction). 2591: 2583: 2580: 2574: 2561: 2555: 2547:Kepler triangle 2534:. Only certain 2528: 2527: 2525: 2524: 2510: 2504: 2495: 2479:cubic equations 2471:rational number 2466: 2420: 2419: 2414: 2400: 2398: 2395: 2394: 2371: 2359: 2358: 2351: 2349: 2329: 2327: 2324: 2323: 2293: 2292: 2285: 2283: 2263: 2261: 2258: 2257: 2197:complex numbers 2181:Euclidean plane 2177: 2143: 2142: 2131: 2120: 2105: 2094: 2084: 2073: 2063: 2052: 2051: 2042: 2031: 2021: 2009: 1999: 1984: 1973: 1955: 1953: 1949: 1948: 1938: 1936: 1933: 1932: 1926:regular polygon 1909: 1898: 1896: 1895: 1850: 1836: 1833: 1832: 1794: 1792: 1723: 1717: 1663: 1587: 1562: 1559: 1558: 1448: 1344: 1254:Markable rulers 1196: 1167: 1166: 903: 902: 893: 892: 683: 682: 666: 665: 651: 650: 638: 637: 574: 573: 562: 561: 422: 421: 419:Two-dimensional 410: 409: 383: 382: 380:One-dimensional 371: 370: 361: 360: 349: 348: 282: 281: 280: 263: 262: 111: 110: 99: 76: 35: 28: 23: 22: 15: 12: 11: 5: 5195: 5185: 5184: 5167: 5166: 5139: 5136: 5135: 5132: 5131: 5129: 5128: 5123: 5118: 5113: 5108: 5103: 5098: 5092: 5090: 5089:Other cultures 5086: 5085: 5083: 5082: 5081: 5080: 5070: 5069: 5068: 5058: 5057: 5056: 5046: 5045: 5044: 5034: 5033: 5032: 5022: 5021: 5020: 5010: 5009: 5008: 4998: 4997: 4996: 4986: 4985: 4984: 4970: 4968: 4964: 4963: 4961: 4960: 4955: 4950: 4945: 4940: 4938:Greek numerals 4935: 4933:Attic numerals 4930: 4924: 4918: 4914: 4913: 4911: 4910: 4905: 4900: 4894: 4892: 4888: 4887: 4884: 4883: 4881: 4880: 4875: 4870: 4865: 4860: 4852: 4847: 4842: 4837: 4832: 4827: 4822: 4816: 4814: 4810: 4809: 4807: 4806: 4800: 4798: 4792: 4791: 4789: 4788: 4783: 4778: 4773: 4768: 4763: 4761:Law of cosines 4758: 4753: 4748: 4743: 4738: 4733: 4728: 4723: 4718: 4713: 4708: 4702: 4700: 4688: 4684: 4683: 4681: 4680: 4675: 4670: 4665: 4660: 4655: 4653:Platonic solid 4650: 4645: 4640: 4635: 4633:Greek numerals 4630: 4625: 4620: 4615: 4610: 4605: 4600: 4599: 4598: 4593: 4583: 4578: 4577: 4576: 4566: 4565: 4564: 4559: 4548: 4546: 4540: 4539: 4537: 4536: 4531: 4530: 4529: 4524: 4519: 4508: 4506: 4502: 4501: 4499: 4498: 4491: 4484: 4474: 4464: 4461:Planisphaerium 4457: 4450: 4443: 4436: 4426: 4416: 4406: 4396: 4389: 4382: 4372: 4362: 4355: 4345: 4338: 4333: 4325: 4323: 4319: 4318: 4316: 4315: 4310: 4305: 4300: 4295: 4290: 4285: 4280: 4275: 4270: 4265: 4260: 4255: 4250: 4245: 4240: 4235: 4230: 4225: 4220: 4215: 4210: 4205: 4200: 4195: 4190: 4185: 4180: 4175: 4170: 4165: 4160: 4155: 4150: 4145: 4140: 4135: 4130: 4125: 4120: 4115: 4110: 4105: 4100: 4095: 4090: 4085: 4080: 4075: 4070: 4065: 4060: 4055: 4050: 4045: 4040: 4035: 4030: 4025: 4020: 4015: 4010: 4005: 4000: 3995: 3990: 3985: 3980: 3975: 3970: 3965: 3960: 3955: 3950: 3945: 3939: 3937: 3931:Mathematicians 3927: 3926: 3919: 3918: 3911: 3904: 3896: 3890: 3889: 3870: 3861: 3850: 3839: 3838:External links 3836: 3833: 3832: 3793: 3776: 3759: 3747: 3730: 3711: 3693:(4): 257–271, 3674: 3657: 3648: 3629:(1–2): 12–15. 3610: 3595: 3579: 3544: 3518:(6): 523–528, 3497: 3484: 3472: 3454: 3447:Stewart, Ian. 3439: 3414: 3407: 3386: 3347: 3317: 3303: 3302: 3300: 3297: 3296: 3295: 3289: 3284: 3278: 3276:Geometrography 3273: 3268: 3266:Carlyle circle 3261: 3258: 3241: 3238: 3221: 3218: 3203:Richard K. Guy 3199:John H. Conway 3155:Main article: 3152: 3149: 3132:Main article: 3129: 3126: 3120: 3117: 3113: 3112: 3076: 3075: 2967: 2964: 2946: 2943: 2919: 2916: 2910: 2907: 2851: 2848: 2824: 2823: 2712:Pierre Wantzel 2655:Main article: 2652: 2649: 2639:mathematician 2632: 2629: 2611: 2608: 2576:Main article: 2573: 2570: 2557:Main article: 2554: 2551: 2506:Main article: 2503: 2500: 2494: 2491: 2487:transcendental 2448: 2447: 2435: 2427: 2424: 2418: 2413: 2409: 2406: 2403: 2392: 2377: 2374: 2366: 2363: 2357: 2354: 2348: 2345: 2342: 2339: 2335: 2332: 2321: 2307: 2300: 2297: 2291: 2288: 2282: 2279: 2276: 2273: 2269: 2266: 2228:multiplication 2176: 2173: 2157: 2156: 2135: 2130: 2127: 2124: 2119: 2116: 2109: 2104: 2101: 2098: 2093: 2088: 2083: 2080: 2077: 2070: 2067: 2061: 2057: 2055: 2053: 2046: 2041: 2038: 2035: 2028: 2025: 2019: 2013: 2006: 2003: 1997: 1991: 1988: 1983: 1979: 1976: 1974: 1970: 1965: 1961: 1958: 1952: 1947: 1944: 1941: 1940: 1908: 1905: 1854: 1849: 1846: 1843: 1840: 1808: 1807: 1781: 1756: 1730: 1729: 1719:Main article: 1716: 1713: 1712: 1711: 1708: 1703: 1698: 1693: 1688: 1681: 1674: 1673:from a segment 1662: 1659: 1635: 1634: 1631: 1620: 1613: 1606: 1586: 1583: 1566: 1544:Pierre Wantzel 1447: 1444: 1398: 1397: 1394: 1379: 1343: 1340: 1324:if and only if 1299:in 1837 using 1297:Pierre Wantzel 1285:plane geometry 1233:and a pair of 1198: 1197: 1195: 1194: 1187: 1180: 1172: 1169: 1168: 1163: 1162: 1161: 1160: 1155: 1147: 1146: 1142: 1141: 1140: 1139: 1134: 1129: 1124: 1119: 1114: 1109: 1104: 1099: 1094: 1089: 1081: 1080: 1076: 1075: 1074: 1073: 1068: 1063: 1058: 1053: 1048: 1043: 1038: 1030: 1029: 1025: 1024: 1023: 1022: 1017: 1012: 1007: 1002: 997: 992: 987: 982: 977: 972: 967: 959: 958: 954: 953: 952: 951: 946: 941: 936: 931: 926: 921: 913: 912: 904: 900: 899: 898: 895: 894: 891: 890: 885: 880: 875: 870: 865: 860: 855: 850: 845: 840: 835: 830: 825: 820: 815: 810: 805: 800: 795: 790: 785: 780: 775: 770: 765: 760: 755: 750: 745: 740: 735: 730: 725: 720: 715: 710: 705: 700: 695: 690: 684: 680: 679: 678: 675: 674: 668: 667: 664: 663: 658: 652: 645: 644: 643: 640: 639: 636: 635: 630: 625: 623:Platonic Solid 620: 615: 610: 605: 600: 595: 594: 593: 582: 581: 575: 569: 568: 567: 564: 563: 558: 557: 556: 555: 550: 545: 537: 536: 530: 529: 528: 527: 522: 514: 513: 507: 506: 505: 504: 499: 494: 489: 481: 480: 474: 473: 472: 471: 466: 461: 453: 452: 446: 445: 444: 443: 438: 433: 423: 417: 416: 415: 412: 411: 408: 407: 402: 401: 400: 395: 384: 378: 377: 376: 373: 372: 369: 368: 362: 356: 355: 354: 351: 350: 347: 346: 341: 336: 330: 329: 324: 319: 309: 304: 299: 293: 292: 283: 279: 278: 275: 271: 270: 269: 268: 265: 264: 261: 260: 259: 258: 248: 243: 238: 233: 228: 227: 226: 216: 211: 206: 205: 204: 199: 194: 184: 183: 182: 177: 167: 162: 157: 152: 147: 142: 141: 140: 135: 134: 133: 118: 112: 106: 105: 104: 101: 100: 98: 97: 87: 81: 78: 77: 64: 56: 55: 26: 9: 6: 4: 3: 2: 5194: 5183: 5180: 5179: 5177: 5164: 5163: 5158: 5151: 5150: 5137: 5127: 5124: 5122: 5119: 5117: 5114: 5112: 5109: 5107: 5104: 5102: 5099: 5097: 5094: 5093: 5091: 5087: 5079: 5076: 5075: 5074: 5071: 5067: 5064: 5063: 5062: 5059: 5055: 5052: 5051: 5050: 5047: 5043: 5040: 5039: 5038: 5035: 5031: 5028: 5027: 5026: 5023: 5019: 5016: 5015: 5014: 5011: 5007: 5004: 5003: 5002: 4999: 4995: 4992: 4991: 4990: 4987: 4983: 4979: 4978: 4977: 4976: 4972: 4971: 4969: 4965: 4959: 4956: 4954: 4951: 4949: 4946: 4944: 4941: 4939: 4936: 4934: 4931: 4929: 4926: 4925: 4922: 4919: 4915: 4909: 4906: 4904: 4901: 4899: 4896: 4895: 4893: 4889: 4879: 4876: 4874: 4871: 4869: 4866: 4864: 4861: 4859: 4858: 4853: 4851: 4848: 4846: 4843: 4841: 4838: 4836: 4833: 4831: 4828: 4826: 4823: 4821: 4818: 4817: 4815: 4811: 4805: 4802: 4801: 4799: 4797: 4793: 4787: 4784: 4782: 4779: 4777: 4774: 4772: 4769: 4767: 4766:Pons asinorum 4764: 4762: 4759: 4757: 4754: 4752: 4749: 4747: 4744: 4742: 4739: 4737: 4736:Hinge theorem 4734: 4732: 4729: 4727: 4724: 4722: 4719: 4717: 4714: 4712: 4709: 4707: 4704: 4703: 4701: 4699: 4698: 4692: 4689: 4685: 4679: 4676: 4674: 4671: 4669: 4666: 4664: 4661: 4659: 4656: 4654: 4651: 4649: 4646: 4644: 4641: 4639: 4636: 4634: 4631: 4629: 4626: 4624: 4621: 4619: 4616: 4614: 4611: 4609: 4606: 4604: 4601: 4597: 4594: 4592: 4589: 4588: 4587: 4584: 4582: 4579: 4575: 4572: 4571: 4570: 4567: 4563: 4560: 4558: 4555: 4554: 4553: 4550: 4549: 4547: 4541: 4535: 4532: 4528: 4525: 4523: 4520: 4518: 4515: 4514: 4513: 4510: 4509: 4507: 4503: 4497: 4496: 4492: 4490: 4489: 4485: 4483: 4479: 4475: 4473: 4469: 4465: 4463: 4462: 4458: 4456: 4455: 4451: 4449: 4448: 4444: 4442: 4441: 4437: 4435: 4431: 4427: 4425: 4421: 4417: 4415: 4411: 4407: 4405: 4403:(Aristarchus) 4401: 4397: 4395: 4394: 4390: 4388: 4387: 4383: 4381: 4377: 4373: 4371: 4367: 4363: 4361: 4360: 4356: 4354: 4350: 4346: 4344: 4343: 4339: 4337: 4334: 4332: 4331: 4327: 4326: 4324: 4320: 4314: 4311: 4309: 4308:Zeno of Sidon 4306: 4304: 4301: 4299: 4296: 4294: 4291: 4289: 4286: 4284: 4281: 4279: 4276: 4274: 4271: 4269: 4266: 4264: 4261: 4259: 4256: 4254: 4251: 4249: 4246: 4244: 4241: 4239: 4236: 4234: 4231: 4229: 4226: 4224: 4221: 4219: 4216: 4214: 4211: 4209: 4206: 4204: 4201: 4199: 4196: 4194: 4191: 4189: 4186: 4184: 4181: 4179: 4176: 4174: 4171: 4169: 4166: 4164: 4161: 4159: 4156: 4154: 4151: 4149: 4146: 4144: 4141: 4139: 4136: 4134: 4131: 4129: 4126: 4124: 4121: 4119: 4116: 4114: 4111: 4109: 4106: 4104: 4101: 4099: 4096: 4094: 4091: 4089: 4086: 4084: 4081: 4079: 4076: 4074: 4071: 4069: 4066: 4064: 4061: 4059: 4056: 4054: 4051: 4049: 4046: 4044: 4041: 4039: 4036: 4034: 4031: 4029: 4026: 4024: 4021: 4019: 4016: 4014: 4011: 4009: 4006: 4004: 4001: 3999: 3996: 3994: 3991: 3989: 3986: 3984: 3981: 3979: 3976: 3974: 3971: 3969: 3966: 3964: 3961: 3959: 3956: 3954: 3951: 3949: 3946: 3944: 3941: 3940: 3938: 3936: 3932: 3928: 3924: 3917: 3912: 3910: 3905: 3903: 3898: 3897: 3894: 3885: 3884: 3879: 3876: 3871: 3869: 3865: 3862: 3860: 3859: 3854: 3851: 3849: 3845: 3842: 3841: 3828: 3824: 3820: 3816: 3812: 3808: 3804: 3797: 3790: 3786: 3780: 3773: 3769: 3763: 3757: 3751: 3743: 3742: 3734: 3727: 3724: 3720: 3715: 3708: 3704: 3700: 3696: 3692: 3688: 3684: 3678: 3671: 3667: 3661: 3652: 3644: 3640: 3636: 3632: 3628: 3624: 3620: 3614: 3607: 3606: 3599: 3593: 3589: 3583: 3569: 3565: 3561: 3560: 3555: 3548: 3541: 3537: 3533: 3529: 3525: 3521: 3517: 3513: 3512: 3507: 3501: 3494: 3488: 3482: 3476: 3470: 3469: 3464: 3458: 3451:. p. 75. 3450: 3449:Galois Theory 3443: 3434: 3433: 3428: 3425: 3418: 3410: 3404: 3400: 3393: 3391: 3374: 3370: 3369: 3361: 3354: 3352: 3344: 3338: 3336: 3334: 3332: 3330: 3328: 3326: 3324: 3322: 3314: 3308: 3304: 3293: 3290: 3288: 3285: 3282: 3279: 3277: 3274: 3272: 3269: 3267: 3264: 3263: 3257: 3255: 3254:binary digits 3251: 3247: 3246:Simon Plouffe 3237: 3235: 3226: 3217: 3215: 3211: 3206: 3204: 3200: 3196: 3192: 3188: 3184: 3180: 3176: 3171: 3167: 3163: 3158: 3148: 3146: 3141: 3135: 3125: 3116: 3110: 3105: 3100: 3096: 3092: 3089: 3088: 3087: 3085: 3081: 3073: 3068: 3063: 3059: 3055: 3051: 3047: 3043: 3039: 3035: 3032: 3031: 3030: 3028: 3024: 3020: 3016: 3012: 3008: 3004: 3000: 2996: 2991: 2989: 2985: 2981: 2977: 2972: 2963: 2960: 2955: 2953: 2942: 2940: 2935: 2933: 2929: 2925: 2915: 2906: 2904: 2900: 2896: 2891: 2889: 2885: 2881: 2877: 2873: 2869: 2865: 2861: 2857: 2847: 2845: 2841: 2837: 2833: 2829: 2821: 2816: 2811: 2807: 2803: 2799: 2795: 2791: 2787: 2783: 2779: 2775: 2771: 2767: 2763: 2759: 2755: 2751: 2747: 2743: 2739: 2735: 2731: 2727: 2723: 2720: 2719: 2718: 2715: 2713: 2709: 2705: 2701: 2700:Fermat primes 2698:are distinct 2697: 2693: 2692:prime factors 2689: 2685: 2681: 2679: 2675: 2668: 2663: 2658: 2648: 2646: 2642: 2638: 2635:In 1997, the 2628: 2625: 2621: 2617: 2607: 2605: 2601: 2597: 2589: 2579: 2569: 2567: 2560: 2550: 2548: 2543: 2540: 2537: 2522: 2517: 2515: 2509: 2499: 2490: 2488: 2484: 2480: 2476: 2472: 2464: 2460: 2456: 2452: 2433: 2422: 2416: 2411: 2407: 2404: 2401: 2393: 2375: 2372: 2361: 2355: 2352: 2346: 2340: 2322: 2305: 2295: 2289: 2286: 2280: 2274: 2256: 2255: 2254: 2252: 2247: 2243: 2241: 2237: 2233: 2229: 2225: 2221: 2217: 2213: 2209: 2205: 2200: 2198: 2194: 2190: 2186: 2182: 2172: 2170: 2169:Fermat primes 2164: 2162: 2133: 2128: 2125: 2122: 2117: 2114: 2107: 2102: 2099: 2096: 2091: 2086: 2081: 2078: 2075: 2068: 2065: 2059: 2056: 2044: 2039: 2036: 2033: 2026: 2023: 2017: 2011: 2004: 2001: 1995: 1989: 1986: 1981: 1977: 1975: 1968: 1963: 1959: 1956: 1950: 1945: 1942: 1931: 1930: 1929: 1927: 1923: 1918: 1917:abelian group 1914: 1904: 1893: 1889: 1884: 1882: 1878: 1874: 1870: 1852: 1847: 1844: 1841: 1838: 1830: 1826: 1821: 1819: 1815: 1803: 1797: 1790: 1786: 1782: 1777: 1773: 1769: 1766: =  1765: 1761: 1757: 1752: 1748: 1744: 1741: =  1740: 1736: 1732: 1731: 1726: 1722: 1709: 1707: 1704: 1702: 1699: 1697: 1694: 1692: 1689: 1686: 1682: 1680:of a segment. 1679: 1675: 1672: 1668: 1667: 1666: 1658: 1656: 1652: 1648: 1644: 1639: 1632: 1629: 1625: 1622:Creating the 1621: 1618: 1614: 1611: 1608:Creating the 1607: 1604: 1601:Creating the 1600: 1599: 1598: 1591: 1582: 1580: 1564: 1556: 1553:Then in 1882 1551: 1549: 1545: 1540: 1538: 1534: 1529: 1527: 1523: 1519: 1515: 1511: 1507: 1503: 1499: 1495: 1493: 1489: 1485: 1481: 1477: 1473: 1469: 1465: 1461: 1457: 1453: 1443: 1441: 1437: 1433: 1428: 1426: 1422: 1418: 1414: 1409: 1407: 1403: 1395: 1392: 1391:circular arcs 1388: 1384: 1380: 1377: 1373: 1372: 1371: 1369: 1365: 1356: 1348: 1339: 1337: 1333: 1329: 1325: 1321: 1316: 1314: 1310: 1306: 1302: 1298: 1294: 1290: 1286: 1282: 1278: 1277: 1273: 1268: 1266: 1265: 1259: 1255: 1251: 1247: 1243: 1238: 1236: 1232: 1229: 1225: 1221: 1217: 1213: 1209: 1205: 1193: 1188: 1186: 1181: 1179: 1174: 1173: 1171: 1170: 1159: 1156: 1154: 1151: 1150: 1149: 1148: 1144: 1143: 1138: 1135: 1133: 1130: 1128: 1125: 1123: 1120: 1118: 1115: 1113: 1110: 1108: 1105: 1103: 1100: 1098: 1095: 1093: 1090: 1088: 1085: 1084: 1083: 1082: 1078: 1077: 1072: 1069: 1067: 1064: 1062: 1059: 1057: 1054: 1052: 1049: 1047: 1044: 1042: 1039: 1037: 1034: 1033: 1032: 1031: 1027: 1026: 1021: 1018: 1016: 1013: 1011: 1008: 1006: 1003: 1001: 998: 996: 993: 991: 988: 986: 983: 981: 978: 976: 973: 971: 968: 966: 963: 962: 961: 960: 956: 955: 950: 947: 945: 942: 940: 937: 935: 932: 930: 927: 925: 922: 920: 917: 916: 915: 914: 911: 908: 907: 897: 896: 889: 886: 884: 881: 879: 876: 874: 871: 869: 866: 864: 861: 859: 856: 854: 851: 849: 846: 844: 841: 839: 836: 834: 831: 829: 826: 824: 821: 819: 816: 814: 811: 809: 806: 804: 801: 799: 796: 794: 791: 789: 786: 784: 781: 779: 776: 774: 771: 769: 766: 764: 761: 759: 756: 754: 751: 749: 746: 744: 741: 739: 736: 734: 731: 729: 726: 724: 721: 719: 716: 714: 711: 709: 706: 704: 701: 699: 696: 694: 691: 689: 686: 685: 677: 676: 673: 670: 669: 662: 659: 657: 654: 653: 648: 642: 641: 634: 631: 629: 626: 624: 621: 619: 616: 614: 611: 609: 606: 604: 601: 599: 596: 592: 589: 588: 587: 584: 583: 580: 577: 576: 572: 566: 565: 554: 551: 549: 548:Circumference 546: 544: 541: 540: 539: 538: 535: 532: 531: 526: 523: 521: 518: 517: 516: 515: 512: 511:Quadrilateral 509: 508: 503: 500: 498: 495: 493: 490: 488: 485: 484: 483: 482: 479: 478:Parallelogram 476: 475: 470: 467: 465: 462: 460: 457: 456: 455: 454: 451: 448: 447: 442: 439: 437: 434: 432: 429: 428: 427: 426: 420: 414: 413: 406: 403: 399: 396: 394: 391: 390: 389: 386: 385: 381: 375: 374: 367: 364: 363: 359: 353: 352: 345: 342: 340: 337: 335: 332: 331: 328: 325: 323: 320: 317: 316:Perpendicular 313: 312:Orthogonality 310: 308: 305: 303: 300: 298: 295: 294: 291: 288: 287: 286: 276: 273: 272: 267: 266: 257: 254: 253: 252: 249: 247: 244: 242: 239: 237: 236:Computational 234: 232: 229: 225: 222: 221: 220: 217: 215: 212: 210: 207: 203: 200: 198: 195: 193: 190: 189: 188: 185: 181: 178: 176: 173: 172: 171: 168: 166: 163: 161: 158: 156: 153: 151: 148: 146: 143: 139: 136: 132: 129: 128: 127: 124: 123: 122: 121:Non-Euclidean 119: 117: 114: 113: 109: 103: 102: 95: 91: 88: 86: 83: 82: 80: 79: 75: 71: 67: 62: 58: 57: 54: 51: 50: 44: 39: 33: 19: 5153: 5140: 4982:Thomas Heath 4973: 4856: 4840:Law of sines 4696: 4672: 4628:Golden ratio 4493: 4486: 4477: 4471:(Theodosius) 4467: 4459: 4452: 4445: 4438: 4429: 4419: 4413:(Hipparchus) 4409: 4399: 4391: 4384: 4375: 4365: 4357: 4352:(Apollonius) 4348: 4340: 4328: 4303:Zeno of Elea 4063:Eratosthenes 4053:Dionysodorus 3881: 3868:cut-the-knot 3867: 3858:cut-the-knot 3856: 3847: 3810: 3806: 3796: 3788: 3784: 3779: 3771: 3767: 3762: 3755: 3750: 3740: 3733: 3725: 3722: 3714: 3690: 3686: 3677: 3669: 3665: 3660: 3651: 3626: 3622: 3619:Avron, Arnon 3613: 3603: 3598: 3587: 3582: 3572:, retrieved 3568:the original 3563: 3557: 3547: 3515: 3509: 3500: 3492: 3487: 3475: 3466: 3457: 3448: 3442: 3430: 3417: 3398: 3377:. Retrieved 3372: 3366: 3342: 3312: 3307: 3243: 3231: 3207: 3178: 3174: 3160: 3137: 3122: 3114: 3083: 3079: 3077: 3026: 3022: 3014: 3010: 3006: 3002: 2998: 2994: 2992: 2973: 2969: 2956: 2948: 2936: 2921: 2912: 2897:, the three 2892: 2876:circumcenter 2853: 2843: 2839: 2835: 2831: 2827: 2825: 2716: 2695: 2687: 2682: 2671: 2634: 2624:eccentricity 2622:of positive 2613: 2581: 2562: 2544: 2541: 2518: 2511: 2496: 2482: 2462: 2458: 2454: 2450: 2449: 2250: 2248: 2244: 2201: 2188: 2184: 2178: 2165: 2158: 1922:heptadecagon 1910: 1888:square roots 1887: 1885: 1880: 1876: 1872: 1868: 1828: 1822: 1811: 1795: 1788: 1771: 1767: 1763: 1746: 1742: 1738: 1676:Finding the 1664: 1640: 1636: 1617:intersection 1596: 1557:showed that 1552: 1541: 1536: 1530: 1496: 1472:square roots 1449: 1439: 1435: 1432:parlour game 1429: 1416: 1412: 1410: 1399: 1382: 1376:straightedge 1375: 1361: 1336:square roots 1318:In terms of 1317: 1301:field theory 1279: 1269: 1263: 1242:straightedge 1239: 1219: 1215: 1211: 1207: 1201: 1020:Parameshvara 833:Parameshvara 603:Dodecahedron 289: 187:Differential 5049:mathematics 4857:Arithmetica 4454:Ostomachion 4423:(Autolycus) 4342:Arithmetica 4118:Hippocrates 4048:Dinostratus 4033:Dicaearchus 3963:Aristarchus 3078:The set of 2884:orthocenter 2704:conjectured 2523:, that is, 2485:requires a 2475:denominator 2240:square root 2224:subtraction 2212:square root 2193:orientation 1911:There is a 1498:Hippocrates 1460:differences 1145:Present day 1092:Lobachevsky 1079:1700s–1900s 1036:Jyeṣṭhadeva 1028:1400s–1700s 980:Brahmagupta 803:Lobachevsky 783:Jyeṣṭhadeva 733:Brahmagupta 661:Hypersphere 633:Tetrahedron 608:Icosahedron 180:Diophantine 5101:Babylonian 5001:arithmetic 4967:History of 4796:Apollonius 4481:(Menelaus) 4440:On Spirals 4359:Catoptrics 4298:Xenocrates 4293:Thymaridas 4278:Theodosius 4263:Theaetetus 4243:Simplicius 4233:Pythagoras 4218:Posidonius 4203:Philonides 4163:Nicomachus 4158:Metrodorus 4148:Menaechmus 4103:Hipparchus 4093:Heliodorus 4043:Diophantus 4028:Democritus 4008:Chrysippus 3978:Archimedes 3973:Apollonius 3943:Anaxagoras 3935:(timeline) 3574:2008-09-24 3481:72˚ angle. 3299:References 3170:Apollonius 3162:Archimedes 2993:A regular 2976:Archimedes 2874:, and its 2461:such that 1683:Drawing a 1628:two points 1548:cube roots 1518:quadratrix 1506:hyperbolas 1502:Menaechmus 1258:postulates 1005:al-Yasamin 949:Apollonius 944:Archimedes 934:Pythagoras 924:Baudhayana 878:al-Yasamin 828:Pythagoras 723:Baudhayana 713:Archimedes 708:Apollonius 613:Octahedron 464:Hypotenuse 339:Similarity 334:Congruence 246:Incidence 197:Symplectic 192:Riemannian 175:Arithmetic 150:Projective 138:Hyperbolic 66:Projecting 4562:Inscribed 4322:Treatises 4313:Zenodorus 4273:Theodorus 4248:Sosigenes 4193:Philolaus 4178:Oenopides 4173:Nicoteles 4168:Nicomedes 4128:Hypsicles 4023:Ctesibius 4013:Cleomedes 3998:Callippus 3983:Autolycus 3968:Aristotle 3948:Anthemius 3883:MathWorld 3827:1530-7638 3687:Centaurus 3432:MathWorld 3375:: 366–372 3250:algorithm 3212:that are 3166:Nicomedes 2895:altitudes 2868:altitudes 2714:in 1837. 2708:necessary 2426:¯ 2365:¯ 2356:− 2299:¯ 2115:− 2100:− 2092:− 2037:− 1982:− 1960:π 1946:⁡ 1913:bijection 1624:one point 1565:π 1555:Lindemann 1522:Nicomedes 1510:parabolas 1442:correct. 1417:terminate 1368:compasses 1358:A compass 1303:, namely 1262:Euclid's 1235:compasses 1228:idealized 1122:Minkowski 1041:Descartes 975:Aryabhata 970:Kātyāyana 901:by period 813:Minkowski 788:Kātyāyana 748:Descartes 693:Aryabhata 672:Geometers 656:Tesseract 520:Trapezoid 492:Rectangle 285:Dimension 170:Algebraic 160:Synthetic 131:Spherical 116:Euclidean 5176:Category 5126:Japanese 5111:Egyptian 5054:timeline 5042:timeline 5030:timeline 5025:geometry 5018:timeline 5013:calculus 5006:timeline 4994:timeline 4697:Elements 4543:Concepts 4505:Problems 4478:Spherics 4468:Spherics 4433:(Euclid) 4379:(Euclid) 4376:Elements 4369:(Euclid) 4330:Almagest 4238:Serenus 4213:Porphyry 4153:Menelaus 4108:Hippasus 4083:Eutocius 4058:Domninus 3953:Archytas 3468:MacTutor 3260:See also 3244:In 1998 3210:quintics 3195:heptagon 2984:heptagon 2888:incenter 2880:centroid 2860:vertices 2858:are its 2856:triangle 2702:. Gauss 2678:pentagon 2676:(e.g. a 2667:pentagon 2481:, while 2469:)) is a 2232:division 2220:addition 1867:, where 1800:  ( 1774:  ( 1749:  ( 1678:midpoint 1542:In 1837 1526:conchoid 1464:products 1293:polygons 1274:, or by 1264:Elements 1204:geometry 1112:Poincaré 1056:Minggatu 1015:Yang Hui 985:Virasena 873:Yang Hui 868:Virasena 838:Poincaré 818:Minggatu 598:Cylinder 543:Diameter 502:Rhomboid 459:Altitude 450:Triangle 344:Symmetry 322:Parallel 307:Diagonal 277:Features 274:Concepts 165:Analytic 126:Elliptic 108:Branches 94:Timeline 53:Geometry 5106:Chinese 5061:numbers 4989:algebra 4917:Related 4891:Centers 4687:Results 4557:Central 4228:Ptolemy 4223:Proclus 4188:Perseus 4143:Marinus 4123:Hypatia 4113:Hippias 4088:Geminus 4078:Eudoxus 4068:Eudemus 4038:Diocles 3815:Bibcode 3707:1078083 3643:1537763 3540:1626185 3532:2589403 3379:3 March 3145:origami 3128:Origami 3107:in the 3104:A048136 3070:in the 3067:A051913 2978:gave a 2899:medians 2838:-gon, 8 2818:in the 2815:A003401 2804:, 102, 2620:ellipse 2596:radians 2588:radians 2526:√ 1897:√ 1879:are in 1818:vectors 1793:√ 1651:Hilbert 1643:algebra 1514:Hippias 1446:History 1440:exactly 1387:Circles 1383:compass 1320:algebra 1137:Coxeter 1117:Hilbert 1102:Riemann 1051:Huygens 1010:al-Tusi 1000:Khayyám 990:Alhazen 957:1–1400s 858:al-Tusi 843:Riemann 793:Khayyám 778:Huygens 773:Hilbert 743:Coxeter 703:Alhazen 681:by name 618:Pyramid 497:Rhombus 441:Polygon 393:segment 241:Fractal 224:Digital 209:Complex 90:History 85:Outline 43:hexagon 5121:Indian 4898:Cyrene 4430:Optics 4349:Conics 4268:Theano 4258:Thales 4253:Sporus 4198:Philon 4183:Pappus 4073:Euclid 4003:Carpus 3993:Bryson 3825:  3813:: 13. 3705:  3641:  3538:  3530:  3405:  3175:neusis 3005:where 2980:neusis 2886:, and 2862:, the 2800:, 85, 2796:, 68, 2788:, 51, 2637:Oxford 2616:circle 2604:neusis 2238:, and 1875:, and 1610:circle 1470:, and 1468:ratios 1438:to be 1436:proved 1364:rulers 1332:cosine 1224:angles 1158:Gromov 1153:Atiyah 1132:Veblen 1127:Cartan 1097:Bolyai 1066:Sakabe 1046:Pascal 939:Euclid 929:Manava 863:Veblen 848:Sakabe 823:Pascal 808:Manava 768:Gromov 753:Euclid 738:Cartan 728:Bolyai 718:Atiyah 628:Sphere 591:cuboid 579:Volume 534:Circle 487:Square 405:Length 327:Vertex 231:Convex 214:Finite 155:Affine 70:sphere 5116:Incan 5037:logic 4813:Other 4581:Chord 4574:Axiom 4552:Angle 4208:Plato 4098:Heron 4018:Conon 3639:S2CID 3528:JSTOR 3371:. 1. 3363:(PDF) 3189:or a 3187:cubic 3179:tends 2952:above 2672:Some 2473:with 2204:field 2161:Gauss 1647:Gauss 1577:is a 1533:Gauss 1425:limit 1413:exact 1311:(see 1289:Gauss 1231:ruler 1218:, or 1107:Klein 1087:Gauss 1061:Euler 995:Sijzi 965:Zhang 919:Ahmes 883:Zhang 853:Sijzi 798:Klein 763:Gauss 758:Euler 698:Ahmes 431:Plane 366:Point 302:Curve 297:Angle 74:plane 72:to a 5078:list 4366:Data 4138:Leon 3988:Bion 3823:ISSN 3403:ISBN 3381:2014 3201:and 3168:and 3138:The 3109:OEIS 3072:OEIS 3009:and 2820:OEIS 2453:and 2210:and 1603:line 1508:and 1500:and 1456:sums 1450:The 1389:and 1381:The 1374:The 1366:and 1307:and 1071:Aida 688:Aida 647:Four 586:Cube 553:Area 525:Kite 436:Area 388:Line 4980:by 4694:In 3866:at 3855:at 3789:156 3772:109 3695:doi 3631:doi 3564:676 3520:doi 3516:105 3465:at 3001:=23 2810:257 2806:120 2694:of 2598:(60 2594:/3 2586:/5 2465:/(2 1943:cos 1626:or 1427:.) 1260:of 1202:In 910:BCE 398:ray 5178:: 3880:. 3821:. 3809:. 3805:. 3787:, 3770:, 3726:95 3703:MR 3701:, 3691:32 3689:, 3670:11 3668:, 3637:. 3627:38 3625:. 3562:, 3556:, 3536:MR 3534:, 3526:, 3514:, 3429:. 3389:^ 3365:. 3350:^ 3320:^ 3236:. 3164:, 3099:23 3097:, 3095:22 3093:, 3091:11 3062:42 3058:21 3056:, 3054:19 3052:, 3050:18 3048:, 3046:14 3044:, 3042:13 3040:, 3036:, 2934:. 2882:, 2878:, 2802:96 2798:80 2794:64 2792:, 2790:60 2786:48 2784:, 2782:40 2780:, 2778:34 2776:, 2774:32 2772:, 2770:30 2768:, 2766:24 2764:, 2762:20 2760:, 2758:17 2756:, 2754:16 2752:, 2750:15 2748:, 2746:12 2744:, 2742:10 2740:, 2736:, 2732:, 2728:, 2724:, 2549:. 2234:, 2230:, 2226:, 2222:, 2199:. 2163:. 2134:17 2123:34 2108:17 2097:34 2087:17 2076:17 2045:17 2034:34 2027:16 2012:17 2005:16 1990:16 1964:17 1883:. 1871:, 1657:. 1466:, 1462:, 1458:, 1370:. 1267:. 1237:. 1214:, 1206:, 68:a 3915:e 3908:t 3901:v 3886:. 3829:. 3817:: 3811:1 3697:: 3645:. 3633:: 3522:: 3461:* 3435:. 3411:. 3383:. 3373:2 3111:) 3084:n 3080:n 3074:) 3038:9 3034:7 3027:n 3023:n 3015:m 3011:b 3007:a 3003:m 2999:n 2995:n 2844:n 2840:n 2836:n 2832:n 2828:n 2822:) 2738:8 2734:6 2730:5 2726:4 2722:3 2696:n 2688:n 2600:° 2592:π 2584:π 2529:π 2467:π 2463:φ 2459:φ 2434:. 2423:z 2417:z 2412:= 2408:| 2405:z 2402:| 2376:i 2373:2 2362:z 2353:z 2347:= 2344:) 2341:z 2338:( 2334:m 2331:I 2306:2 2296:z 2290:+ 2287:z 2281:= 2278:) 2275:z 2272:( 2268:e 2265:R 2251:z 2189:1 2185:0 2129:2 2126:+ 2118:2 2103:2 2082:3 2079:+ 2069:8 2066:1 2060:+ 2040:2 2024:1 2018:+ 2002:1 1996:+ 1987:1 1978:= 1969:) 1957:2 1951:( 1899:2 1881:F 1877:k 1873:y 1869:x 1853:k 1848:= 1845:y 1842:+ 1839:x 1829:F 1804:) 1796:a 1791:= 1789:x 1778:) 1772:b 1770:/ 1768:a 1764:x 1753:) 1747:b 1745:· 1743:a 1739:x 1537:n 1191:e 1184:t 1177:v 318:) 314:( 96:) 92:( 34:. 20:)

Index

Classical construction
Constructive solid geometry

hexagon
Geometry
Stereographic projection from the top of a sphere onto a plane beneath it
Projecting
sphere
plane
Outline
History
Timeline
Branches
Euclidean
Non-Euclidean
Elliptic
Spherical
Hyperbolic
Non-Archimedean geometry
Projective
Affine
Synthetic
Analytic
Algebraic
Arithmetic
Diophantine
Differential
Riemannian
Symplectic
Discrete differential

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.