Knowledge

Ideal class group

Source 📝

36: 329:
generated by those roots of unity was a major obstacle. Out of Kummer's work for the first time came a study of the obstruction to the factorization. We now recognise this as part of the ideal class group: in fact Kummer had isolated the
384:). The size of the ideal class group can be considered as a measure for the deviation of a ring from being a principal ideal domain; a ring is a principal ideal domain if and only if it has a trivial ideal class group. 1071: 737:. The failure of these groups to be trivial is a measure of the failure of the map to be an isomorphism: that is the failure of ideals to act like ring elements, that is to say, like numbers. 1454: 1273: 1229: 1185: 1138: 950: 861: 1791: 1716: 1926: 1677: 625:
less than the bound. In general the bound is not sharp enough to make the calculation practical for fields with large discriminant, but computers are well suited to the task.
2096: 1513: 1614: 1965: 1878: 1548: 894: 364:
formulated the concept of an ideal, Kummer having worked in a different way. At this point the existing examples could be unified. It was shown that while rings of
2040: 1843: 2011: 1985: 1756: 1736: 1638: 1588: 1568: 1376: 970: 914: 821: 1140:
with class number 1. Computational results indicate that there are a great many such fields. However, it is not even known if there are infinitely many
255:, for which the multiplicative properties are intimately tied to the structure of the class group. For example, the class group of a Dedekind domain is 543:. The group property of existence of inverse elements follows easily from the fact that, in a Dedekind domain, every non-zero ideal (except 17: 2265: 614: 1235:> 0, the ideal class group may be half the size since the class group of integral binary quadratic forms is isomorphic to the 100: 686:) is the class group. Higher K groups can also be employed and interpreted arithmetically in connection to rings of integers. 72: 2443: 2404: 79: 975: 274:
Ideal class groups (or, rather, what were effectively ideal class groups) were studied some time before the idea of an
53: 1385: 694:
It was remarked above that the ideal class group provides part of the answer to the question of how much ideals in a
322: 119: 2478: 2435: 1192: 86: 1242: 1198: 1154: 1107: 919: 830: 1761: 1686: 57: 68: 2483: 609:
Computation of the class group is hard, in general; it can be done by hand for the ring of integers in an
1883: 572: 263: 2396: 213: 1643: 2255: 2124:
is not principal is also related to the fact that the element 6 has two distinct factorisations into
1090: 2052: 1459: 702:
of the Dedekind domain, since passage from principal ideals to their generators requires the use of
2285: 314: 2159: 603: 46: 2270: 1355: 706:(and this is the rest of the reason for introducing the concept of fractional ideal, as well): 610: 568: 524: 401: 369: 145: 93: 1593: 1188: 283: 1935: 1848: 1518: 873: 621:. This result gives a bound, depending on the ring, such that every ideal class contains an 353:, as the reason for the failure of the standard method of attack on the Fermat problem (see 2453: 2414: 2304: 2250: 2245: 2047: 1094: 1078: 618: 465: 287: 217: 2461: 2384: 2016: 1819: 559:
The ideal class group is trivial (i.e. has only one element) if and only if all ideals of
8: 2259: 2175: 2125: 1990: 824: 339: 275: 182: 2299: 2290: 2275: 2155: 2099: 1970: 1741: 1721: 1623: 1573: 1553: 1361: 1236: 955: 899: 806: 753: 718: 703: 637: 326: 310: 252: 2421: 748: 2439: 2400: 2163: 1282: 717:
by sending every element to the principal (fractional) ideal it generates. This is a
591: 531:, the multiplication defined above turns the set of fractional ideal classes into an 520: 365: 291: 2457: 2388: 2371: 2167: 1680: 1290: 777: 759: 722: 485: 405: 361: 335: 306: 227: 190: 186: 476:. Ideal classes can be multiplied: if denotes the equivalence class of the ideal 2449: 2410: 864: 788: 695: 528: 489: 453: 397: 381: 248: 773: 699: 318: 279: 259: 154: 368:
do not always have unique factorization into primes (because they need not be
2472: 2280: 1617: 780:), and so have class number 1: that is, they have trivial ideal class groups. 765: 571:, and hence from satisfying unique prime factorization (Dedekind domains are 532: 354: 309:. It had been realised (probably by several people) that failure to complete 295: 256: 2376: 2295: 2171: 1333: 1141: 1086: 1082: 373: 347: 302: 231: 321:
was for a very good reason: a failure of unique factorization – i.e., the
1279: 548: 481: 377: 133: 794:
is an integral domain. It has a countably infinite set of ideal classes.
2179: 1379: 1074: 622: 2113:
in the ideal class group has order two. Showing that there aren't any
698:
behave like elements. The other part of the answer is provided by the
563:
are principal. In this sense, the ideal class group measures how far
286:
integral quadratic forms, as put into something like a final form by
1104:> 0, then it is unknown whether there are infinitely many fields 35: 730: 209: 633: 598:
is a ring of algebraic integers, then the class number is always
2362:
Claborn, Luther (1966), "Every abelian group is a class group",
484:. The principal ideals form the ideal class which serves as an 509: 590:) may be infinite in general. In fact, every abelian group is 269: 216:
ideals. The class group is a measure of the extent to which
2395:, Cambridge Studies in Advanced Mathematics, vol. 27, 2182:
abelian extension of such a field. The Hilbert class field
1294: 1286: 636:, and the class group can be subsumed under the heading of 504:
may not exist and consequently the set of ideal classes of
2228:
with Galois group isomorphic to the ideal class group of
1328:
possess unique factorization; in fact the class group of
594:
to the ideal class group of some Dedekind domain. But if
776:), are all principal ideal domains (and in fact are all 2178:
of a number field, which can be defined as the maximal
1300: 278:
was formulated. These groups appeared in the theory of
2098:
has no solutions in integers, as it has no solutions
2055: 2019: 1993: 1973: 1938: 1886: 1851: 1822: 1764: 1744: 1724: 1689: 1646: 1626: 1596: 1576: 1556: 1521: 1462: 1388: 1364: 1245: 1201: 1157: 1110: 978: 958: 922: 902: 876: 833: 809: 27:
In number theory, measure of non-unique factorization
2150: 952:
is equal to 1 for precisely the following values of
798: 2174:. A particularly beautiful example is found in the 689: 60:. Unsourced material may be challenged and removed. 2298:—a generalisation of the class group appearing in 2090: 2034: 2005: 1979: 1959: 1920: 1872: 1837: 1785: 1750: 1730: 1710: 1671: 1632: 1608: 1582: 1562: 1542: 1507: 1448: 1370: 1267: 1223: 1179: 1132: 1085:, although Heegner's proof was not believed until 1066:{\displaystyle d=-1,-2,-3,-7,-11,-19,-43,-67,-163} 1065: 964: 944: 908: 888: 855: 827:(a product of distinct primes) other than 1, then 815: 575:if and only if they are principal ideal domains). 480:, then the multiplication = is well-defined and 740: 2470: 2236:Neither property is particularly easy to prove. 380:(that is, every ring of algebraic integers is a 1449:{\displaystyle N(a+b{\sqrt {-5}})=a^{2}+5b^{2}} 713:to the set of all nonzero fractional ideals of 602:. This is one of the main results of classical 2383: 2345: 488:for this multiplication. Thus a class has an 376:admits a unique factorization as a product of 2431:Grundlehren der mathematischen Wissenschaften 1187:is isomorphic to the class group of integral 2429: 2190:is unique and has the following properties: 2266:List of number fields with class number one 2166:of a given algebraic number field, meaning 2109:= (2), which is principal, so the class of 1268:{\displaystyle \mathbf {Q} ({\sqrt {d}}\,)} 1224:{\displaystyle \mathbf {Q} ({\sqrt {d}}\,)} 1180:{\displaystyle \mathbf {Q} ({\sqrt {d}}\,)} 1133:{\displaystyle \mathbf {Q} ({\sqrt {d}}\,)} 945:{\displaystyle \mathbf {Q} ({\sqrt {d}}\,)} 856:{\displaystyle \mathbf {Q} ({\sqrt {d}}\,)} 290:, a composition law was defined on certain 270:History and origin of the ideal class group 1786:{\displaystyle \mathbf {Z} /3\mathbf {Z} } 1711:{\displaystyle \mathbf {Z} /6\mathbf {Z} } 2375: 1261: 1217: 1173: 1126: 938: 849: 500:is a principal ideal. In general, such a 468:. The equivalence classes are called the 120:Learn how and when to remove this message 2420: 2334: 1093:.) This is a special case of the famous 372:), they do have the property that every 2361: 2323: 2194:Every ideal of the ring of integers of 2046:has no elements of norm 2, because the 655:its ideal class group; more precisely, 632:to their corresponding class groups is 14: 2471: 464:.) It is easily shown that this is an 420:whenever there exist nonzero elements 2117:ideal classes requires more effort. 1301:Example of a non-trivial class group 1285:rings, the class number is given in 896:, then the class number of the ring 58:adding citations to reliable sources 29: 1921:{\displaystyle N(1+{\sqrt {-5}})=6} 628:The mapping from rings of integers 460:consisting of all the multiples of 24: 25: 2495: 2151:Connections to class field theory 1151:< 0, the ideal class group of 1089:gave a later proof in 1967. (See 799:Class numbers of quadratic fields 651:) being the functor assigning to 578:The number of ideal classes (the 492:if and only if there is an ideal 323:fundamental theorem of arithmetic 298:, as was recognised at the time. 220:fails in the ring of integers of 2162:which seeks to classify all the 1779: 1766: 1704: 1691: 1672:{\displaystyle (1+{\sqrt {-5}})} 1247: 1203: 1159: 1112: 924: 835: 690:Relation with the group of units 305:was working towards a theory of 34: 1718:, so that the quotient ring of 1354:is not principal, which can be 45:needs additional citations for 2364:Pacific Journal of Mathematics 2339: 2328: 2317: 2091:{\displaystyle b^{2}+5c^{2}=2} 2029: 2023: 1948: 1942: 1909: 1890: 1861: 1855: 1832: 1826: 1666: 1647: 1531: 1525: 1508:{\displaystyle N(uv)=N(u)N(v)} 1502: 1496: 1490: 1484: 1475: 1466: 1414: 1392: 1336:of order 2. Indeed, the ideal 1262: 1251: 1218: 1207: 1174: 1163: 1127: 1116: 939: 928: 850: 839: 772:is a fourth root of 1 (i.e. a 741:Examples of ideal class groups 13: 1: 2355: 1797:were generated by an element 1195:equal to the discriminant of 554: 387: 294:of forms. This gave a finite 2262:formula for the class number 2042:cannot be 2 either, because 1809:would divide both 2 and 1 + 733:is the ideal class group of 573:unique factorization domains 18:Class number (number theory) 7: 2239: 1313:is the ring of integers of 1305:The quadratic integer ring 317:by factorisation using the 264:unique factorization domain 10: 2500: 2426:Algebraische Zahlentheorie 2397:Cambridge University Press 2346:Fröhlich & Taylor 1993 2434:. Vol. 322. Berlin: 2224:is a Galois extension of 916:of algebraic integers of 725:is the group of units of 346:-roots of unity, for any 2310: 2214:is a principal ideal in 2206:is an integral ideal of 1293:case, they are given in 1073:. This result was first 2479:Algebraic number theory 2393:Algebraic number theory 2377:10.2140/pjm.1966.18.219 2160:algebraic number theory 2105:One also computes that 2013:, a contradiction. But 1932:(x) would divide 2. If 1609:{\displaystyle J\neq R} 1356:proved by contradiction 1100:If, on the other hand, 865:quadratic extension of 604:algebraic number theory 370:principal ideal domains 313:in the general case of 230:of the group, which is 2430: 2271:Principal ideal domain 2092: 2036: 2007: 1981: 1961: 1960:{\displaystyle N(x)=1} 1922: 1874: 1873:{\displaystyle N(2)=4} 1839: 1787: 1752: 1732: 1712: 1673: 1634: 1610: 1584: 1564: 1544: 1543:{\displaystyle N(u)=1} 1509: 1450: 1372: 1269: 1225: 1189:binary quadratic forms 1181: 1134: 1067: 966: 946: 910: 890: 889:{\displaystyle d<0} 857: 817: 611:algebraic number field 569:principal ideal domain 527:, or more generally a 525:algebraic number field 448:. (Here the notation ( 338:in that group for the 247:The theory extends to 146:algebraic number field 2286:Fermat's Last Theorem 2256:Brauer–Siegel theorem 2198:becomes principal in 2093: 2037: 2008: 1982: 1962: 1923: 1875: 1840: 1788: 1753: 1733: 1713: 1674: 1635: 1611: 1585: 1565: 1545: 1510: 1451: 1373: 1270: 1226: 1182: 1144:with class number 1. 1135: 1091:Stark–Heegner theorem 1068: 967: 947: 911: 891: 858: 818: 787:is a field, then the 360:Somewhat later again 315:Fermat's Last Theorem 2484:Ideals (ring theory) 2305:Arakelov class group 2251:Class number problem 2246:Class number formula 2053: 2048:Diophantine equation 2035:{\displaystyle N(x)} 2017: 1991: 1971: 1936: 1884: 1849: 1838:{\displaystyle N(x)} 1820: 1762: 1742: 1722: 1687: 1644: 1624: 1594: 1574: 1554: 1519: 1460: 1386: 1362: 1243: 1199: 1155: 1108: 1095:class number problem 976: 956: 920: 900: 874: 831: 807: 764:, where ω is a cube 466:equivalence relation 288:Carl Friedrich Gauss 218:unique factorization 54:improve this article 2176:Hilbert class field 2120:The fact that this 2006:{\displaystyle J=R} 825:square-free integer 292:equivalence classes 253:fields of fractions 69:"Ideal class group" 2385:Fröhlich, Albrecht 2300:algebraic geometry 2291:Narrow class group 2276:Algebraic K-theory 2210:then the image of 2186:of a number field 2164:abelian extensions 2156:Class field theory 2088: 2032: 2003: 1977: 1957: 1918: 1870: 1845:would divide both 1835: 1783: 1748: 1728: 1708: 1669: 1630: 1606: 1580: 1560: 1540: 1505: 1456:, which satisfies 1446: 1368: 1265: 1237:narrow class group 1221: 1177: 1130: 1063: 962: 942: 906: 886: 853: 813: 719:group homomorphism 709:Define a map from 638:algebraic K-theory 547:) is a product of 521:algebraic integers 366:algebraic integers 2445:978-3-540-65399-8 2406:978-0-521-43834-6 2168:Galois extensions 2132:6 = 2 × 3 = (1 + 1980:{\displaystyle x} 1907: 1758:is isomorphic to 1751:{\displaystyle J} 1731:{\displaystyle R} 1664: 1640:modulo the ideal 1633:{\displaystyle R} 1583:{\displaystyle R} 1563:{\displaystyle u} 1412: 1371:{\displaystyle R} 1283:quadratic integer 1259: 1215: 1171: 1124: 965:{\displaystyle d} 936: 909:{\displaystyle R} 847: 816:{\displaystyle d} 778:Euclidean domains 774:square root of −1 619:Minkowski's bound 537:ideal class group 406:fractional ideals 325:– to hold in the 307:cyclotomic fields 282:: in the case of 187:fractional ideals 138:ideal class group 130: 129: 122: 104: 16:(Redirected from 2491: 2465: 2433: 2422:Neukirch, Jürgen 2417: 2380: 2379: 2349: 2343: 2337: 2332: 2326: 2321: 2145: 2144: 2138: 2137: 2097: 2095: 2094: 2089: 2081: 2080: 2065: 2064: 2041: 2039: 2038: 2033: 2012: 2010: 2009: 2004: 1986: 1984: 1983: 1978: 1966: 1964: 1963: 1958: 1927: 1925: 1924: 1919: 1908: 1900: 1879: 1877: 1876: 1871: 1844: 1842: 1841: 1836: 1816:. Then the norm 1815: 1814: 1792: 1790: 1789: 1784: 1782: 1774: 1769: 1757: 1755: 1754: 1749: 1737: 1735: 1734: 1729: 1717: 1715: 1714: 1709: 1707: 1699: 1694: 1678: 1676: 1675: 1670: 1665: 1657: 1639: 1637: 1636: 1631: 1615: 1613: 1612: 1607: 1590:. First of all, 1589: 1587: 1586: 1581: 1569: 1567: 1566: 1561: 1549: 1547: 1546: 1541: 1514: 1512: 1511: 1506: 1455: 1453: 1452: 1447: 1445: 1444: 1429: 1428: 1413: 1405: 1377: 1375: 1374: 1369: 1349: 1348: 1323: 1322: 1274: 1272: 1271: 1266: 1260: 1255: 1250: 1230: 1228: 1227: 1222: 1216: 1211: 1206: 1186: 1184: 1183: 1178: 1172: 1167: 1162: 1139: 1137: 1136: 1131: 1125: 1120: 1115: 1072: 1070: 1069: 1064: 971: 969: 968: 963: 951: 949: 948: 943: 937: 932: 927: 915: 913: 912: 907: 895: 893: 892: 887: 862: 860: 859: 854: 848: 843: 838: 822: 820: 819: 814: 584: 583: 567:is from being a 486:identity element 362:Richard Dedekind 249:Dedekind domains 243: 234:, is called the 225: 207: 198: 191:ring of integers 180: 171: 152: 125: 118: 114: 111: 105: 103: 62: 38: 30: 21: 2499: 2498: 2494: 2493: 2492: 2490: 2489: 2488: 2469: 2468: 2446: 2436:Springer-Verlag 2407: 2358: 2353: 2352: 2344: 2340: 2333: 2329: 2322: 2318: 2313: 2242: 2158:is a branch of 2153: 2142: 2140: 2135: 2133: 2076: 2072: 2060: 2056: 2054: 2051: 2050: 2018: 2015: 2014: 1992: 1989: 1988: 1972: 1969: 1968: 1937: 1934: 1933: 1899: 1885: 1882: 1881: 1850: 1847: 1846: 1821: 1818: 1817: 1812: 1810: 1778: 1770: 1765: 1763: 1760: 1759: 1743: 1740: 1739: 1723: 1720: 1719: 1703: 1695: 1690: 1688: 1685: 1684: 1656: 1645: 1642: 1641: 1625: 1622: 1621: 1595: 1592: 1591: 1575: 1572: 1571: 1555: 1552: 1551: 1550:if and only if 1520: 1517: 1516: 1461: 1458: 1457: 1440: 1436: 1424: 1420: 1404: 1387: 1384: 1383: 1363: 1360: 1359: 1346: 1344: 1320: 1318: 1303: 1254: 1246: 1244: 1241: 1240: 1210: 1202: 1200: 1197: 1196: 1166: 1158: 1156: 1153: 1152: 1119: 1111: 1109: 1106: 1105: 977: 974: 973: 957: 954: 953: 931: 923: 921: 918: 917: 901: 898: 897: 875: 872: 871: 842: 834: 832: 829: 828: 808: 805: 804: 801: 789:polynomial ring 743: 696:Dedekind domain 692: 661: 646: 581: 580: 557: 529:Dedekind domain 519:is the ring of 454:principal ideal 398:integral domain 390: 382:Dedekind domain 280:quadratic forms 272: 239: 221: 205: 200: 194: 178: 173: 169: 162: 157: 148: 126: 115: 109: 106: 63: 61: 51: 39: 28: 23: 22: 15: 12: 11: 5: 2497: 2487: 2486: 2481: 2467: 2466: 2444: 2418: 2405: 2389:Taylor, Martin 2381: 2370:(2): 219–222, 2357: 2354: 2351: 2350: 2338: 2327: 2315: 2314: 2312: 2309: 2308: 2307: 2302: 2293: 2288: 2283: 2278: 2273: 2268: 2263: 2253: 2248: 2241: 2238: 2234: 2233: 2219: 2152: 2149: 2148: 2147: 2087: 2084: 2079: 2075: 2071: 2068: 2063: 2059: 2031: 2028: 2025: 2022: 2002: 1999: 1996: 1987:is a unit and 1976: 1956: 1953: 1950: 1947: 1944: 1941: 1917: 1914: 1911: 1906: 1903: 1898: 1895: 1892: 1889: 1869: 1866: 1863: 1860: 1857: 1854: 1834: 1831: 1828: 1825: 1781: 1777: 1773: 1768: 1747: 1727: 1706: 1702: 1698: 1693: 1668: 1663: 1660: 1655: 1652: 1649: 1629: 1616:, because the 1605: 1602: 1599: 1579: 1559: 1539: 1536: 1533: 1530: 1527: 1524: 1504: 1501: 1498: 1495: 1492: 1489: 1486: 1483: 1480: 1477: 1474: 1471: 1468: 1465: 1443: 1439: 1435: 1432: 1427: 1423: 1419: 1416: 1411: 1408: 1403: 1400: 1397: 1394: 1391: 1367: 1352: 1351: 1302: 1299: 1264: 1258: 1253: 1249: 1220: 1214: 1209: 1205: 1176: 1170: 1165: 1161: 1129: 1123: 1118: 1114: 1081:and proven by 1062: 1059: 1056: 1053: 1050: 1047: 1044: 1041: 1038: 1035: 1032: 1029: 1026: 1023: 1020: 1017: 1014: 1011: 1008: 1005: 1002: 999: 996: 993: 990: 987: 984: 981: 961: 941: 935: 930: 926: 905: 885: 882: 879: 852: 846: 841: 837: 812: 800: 797: 796: 795: 781: 742: 739: 700:group of units 691: 688: 659: 644: 556: 553: 508:may only be a 389: 386: 319:roots of unity 271: 268: 262:the ring is a 260:if and only if 203: 176: 167: 160: 155:quotient group 128: 127: 42: 40: 33: 26: 9: 6: 4: 3: 2: 2496: 2485: 2482: 2480: 2477: 2476: 2474: 2463: 2459: 2455: 2451: 2447: 2441: 2437: 2432: 2427: 2423: 2419: 2416: 2412: 2408: 2402: 2398: 2394: 2390: 2386: 2382: 2378: 2373: 2369: 2365: 2360: 2359: 2347: 2342: 2336: 2335:Neukirch 1999 2331: 2325: 2320: 2316: 2306: 2303: 2301: 2297: 2294: 2292: 2289: 2287: 2284: 2282: 2281:Galois theory 2279: 2277: 2274: 2272: 2269: 2267: 2264: 2261: 2257: 2254: 2252: 2249: 2247: 2244: 2243: 2237: 2231: 2227: 2223: 2220: 2217: 2213: 2209: 2205: 2201: 2197: 2193: 2192: 2191: 2189: 2185: 2181: 2177: 2173: 2170:with abelian 2169: 2165: 2161: 2157: 2131: 2130: 2129: 2127: 2123: 2118: 2116: 2112: 2108: 2103: 2101: 2085: 2082: 2077: 2073: 2069: 2066: 2061: 2057: 2049: 2045: 2026: 2020: 2000: 1997: 1994: 1974: 1954: 1951: 1945: 1939: 1931: 1915: 1912: 1904: 1901: 1896: 1893: 1887: 1867: 1864: 1858: 1852: 1829: 1823: 1808: 1804: 1800: 1796: 1775: 1771: 1745: 1725: 1700: 1696: 1682: 1661: 1658: 1653: 1650: 1627: 1619: 1618:quotient ring 1603: 1600: 1597: 1577: 1570:is a unit in 1557: 1537: 1534: 1528: 1522: 1499: 1493: 1487: 1481: 1478: 1472: 1469: 1463: 1441: 1437: 1433: 1430: 1425: 1421: 1417: 1409: 1406: 1401: 1398: 1395: 1389: 1381: 1365: 1357: 1342: 1339: 1338: 1337: 1335: 1331: 1327: 1316: 1312: 1308: 1298: 1296: 1292: 1288: 1284: 1281: 1276: 1256: 1238: 1234: 1212: 1194: 1190: 1168: 1150: 1145: 1143: 1142:number fields 1121: 1103: 1098: 1096: 1092: 1088: 1084: 1080: 1076: 1060: 1057: 1054: 1051: 1048: 1045: 1042: 1039: 1036: 1033: 1030: 1027: 1024: 1021: 1018: 1015: 1012: 1009: 1006: 1003: 1000: 997: 994: 991: 988: 985: 982: 979: 959: 933: 903: 883: 880: 877: 869: 868: 844: 826: 810: 793: 790: 786: 782: 779: 775: 771: 767: 763: 762: 757: 756: 751: 750: 745: 744: 738: 736: 732: 728: 724: 720: 716: 712: 707: 705: 701: 697: 687: 685: 681: 677: 673: 669: 665: 658: 654: 650: 643: 639: 635: 631: 626: 624: 620: 616: 612: 607: 605: 601: 597: 593: 589: 585: 576: 574: 570: 566: 562: 552: 550: 546: 542: 538: 534: 533:abelian group 530: 526: 522: 518: 513: 511: 507: 503: 499: 495: 491: 487: 483: 479: 475: 471: 470:ideal classes 467: 463: 459: 455: 451: 447: 443: 439: 435: 431: 427: 423: 419: 415: 411: 407: 404:~ on nonzero 403: 399: 395: 385: 383: 379: 375: 371: 367: 363: 358: 356: 355:regular prime 352: 349: 345: 341: 337: 333: 328: 324: 320: 316: 312: 308: 304: 299: 297: 296:abelian group 293: 289: 285: 281: 277: 267: 265: 261: 258: 254: 250: 245: 242: 237: 233: 229: 224: 219: 215: 211: 206: 197: 192: 188: 184: 179: 170: 163: 156: 151: 147: 143: 139: 135: 124: 121: 113: 110:February 2010 102: 99: 95: 92: 88: 85: 81: 78: 74: 71: –  70: 66: 65:Find sources: 59: 55: 49: 48: 43:This article 41: 37: 32: 31: 19: 2425: 2392: 2367: 2363: 2348:, Theorem 58 2341: 2330: 2324:Claborn 1966 2319: 2296:Picard group 2235: 2229: 2225: 2221: 2215: 2211: 2207: 2203: 2199: 2195: 2187: 2183: 2172:Galois group 2154: 2126:irreducibles 2121: 2119: 2114: 2110: 2106: 2104: 2043: 1929: 1806: 1802: 1798: 1794: 1358:as follows. 1353: 1340: 1329: 1325: 1314: 1310: 1306: 1304: 1295:OEIS A000924 1287:OEIS A003649 1277: 1232: 1193:discriminant 1148: 1146: 1101: 1099: 1087:Harold Stark 1083:Kurt Heegner 866: 802: 791: 784: 769: 760: 754: 747: 734: 726: 714: 710: 708: 693: 683: 679: 675: 671: 667: 663: 656: 652: 648: 641: 629: 627: 615:discriminant 608: 599: 595: 587: 582:class number 579: 577: 564: 560: 558: 549:prime ideals 544: 540: 536: 516: 515:However, if 514: 505: 501: 497: 493: 477: 473: 469: 461: 457: 452:) means the 449: 445: 441: 437: 433: 429: 425: 421: 417: 413: 409: 393: 391: 378:prime ideals 374:proper ideal 359: 350: 348:prime number 343: 331: 303:Ernst Kummer 300: 273: 246: 240: 236:class number 235: 222: 201: 195: 174: 165: 158: 149: 141: 137: 131: 116: 107: 97: 90: 83: 76: 64: 52:Please help 47:verification 44: 2202:, i.e., if 1324:). It does 1075:conjectured 482:commutative 432:such that ( 400:, define a 142:class group 134:mathematics 2473:Categories 2462:0956.11021 2356:References 2260:asymptotic 2180:unramified 1681:isomorphic 1343:= (2, 1 + 1289:; for the 746:The rings 729:, and its 634:functorial 623:ideal norm 592:isomorphic 555:Properties 496:such that 388:Definition 251:and their 80:newspapers 2139:) × (1 − 1902:− 1659:− 1601:≠ 1407:− 1382:function 1291:imaginary 1058:− 1049:− 1040:− 1031:− 1022:− 1013:− 1004:− 995:− 986:− 766:root of 1 678:), where 613:of small 214:principal 144:) of an 2424:(1999). 2391:(1993), 2240:See also 2100:modulo 5 731:cokernel 617:, using 402:relation 210:subgroup 164: / 2454:1697859 2415:1215934 2141:√ 2134:√ 1811:√ 1805:, then 1738:modulo 1345:√ 1319:√ 640:, with 490:inverse 336:torsion 257:trivial 208:is its 189:of the 181:is the 153:is the 94:scholar 2460:  2452:  2442:  2413:  2403:  1793:. If 1515:, and 1378:has a 1334:cyclic 1231:. For 870:. If 758:, and 723:kernel 721:; its 600:finite 535:, the 523:in an 510:monoid 396:is an 311:proofs 301:Later 284:binary 232:finite 226:. The 199:, and 172:where 136:, the 96:  89:  82:  75:  67:  2311:Notes 2115:other 1967:then 1928:, so 1079:Gauss 863:is a 823:is a 704:units 340:field 327:rings 276:ideal 228:order 183:group 101:JSTOR 87:books 2440:ISBN 2401:ISBN 2258:—an 1880:and 1380:norm 1280:real 1278:For 1147:For 881:< 768:and 666:) = 424:and 140:(or 73:news 2458:Zbl 2372:doi 1801:of 1683:to 1679:is 1620:of 1332:is 1326:not 1239:of 1191:of 1077:by 1061:163 803:If 783:If 586:of 539:of 472:of 456:of 440:= ( 428:of 412:by 408:of 392:If 357:). 342:of 238:of 212:of 193:of 185:of 132:In 56:by 2475:: 2456:. 2450:MR 2448:. 2438:. 2428:. 2411:MR 2409:, 2399:, 2387:; 2368:18 2366:, 2146:). 2143:−5 2136:−5 2128:: 2102:. 1813:−5 1347:−5 1321:−5 1309:= 1297:. 1275:. 1097:. 1052:67 1043:43 1034:19 1025:11 972:: 752:, 606:. 551:. 512:. 498:IJ 416:~ 266:. 244:. 2464:. 2374:: 2232:. 2230:K 2226:K 2222:L 2218:. 2216:L 2212:I 2208:K 2204:I 2200:L 2196:K 2188:K 2184:L 2122:J 2111:J 2107:J 2086:2 2083:= 2078:2 2074:c 2070:5 2067:+ 2062:2 2058:b 2044:R 2030:) 2027:x 2024:( 2021:N 2001:R 1998:= 1995:J 1975:x 1955:1 1952:= 1949:) 1946:x 1943:( 1940:N 1930:N 1916:6 1913:= 1910:) 1905:5 1897:+ 1894:1 1891:( 1888:N 1868:4 1865:= 1862:) 1859:2 1856:( 1853:N 1833:) 1830:x 1827:( 1824:N 1807:x 1803:R 1799:x 1795:J 1780:Z 1776:3 1772:/ 1767:Z 1746:J 1726:R 1705:Z 1701:6 1697:/ 1692:Z 1667:) 1662:5 1654:+ 1651:1 1648:( 1628:R 1604:R 1598:J 1578:R 1558:u 1538:1 1535:= 1532:) 1529:u 1526:( 1523:N 1503:) 1500:v 1497:( 1494:N 1491:) 1488:u 1485:( 1482:N 1479:= 1476:) 1473:v 1470:u 1467:( 1464:N 1442:2 1438:b 1434:5 1431:+ 1426:2 1422:a 1418:= 1415:) 1410:5 1402:b 1399:+ 1396:a 1393:( 1390:N 1366:R 1350:) 1341:J 1330:R 1317:( 1315:Q 1311:Z 1307:R 1263:) 1257:d 1252:( 1248:Q 1233:d 1219:) 1213:d 1208:( 1204:Q 1175:) 1169:d 1164:( 1160:Q 1149:d 1128:) 1122:d 1117:( 1113:Q 1102:d 1055:, 1046:, 1037:, 1028:, 1019:, 1016:7 1010:, 1007:3 1001:, 998:2 992:, 989:1 983:= 980:d 960:d 940:) 934:d 929:( 925:Q 904:R 884:0 878:d 867:Q 851:) 845:d 840:( 836:Q 811:d 792:k 785:k 770:i 761:Z 755:Z 749:Z 735:R 727:R 715:R 711:R 684:R 682:( 680:C 676:R 674:( 672:C 670:× 668:Z 664:R 662:( 660:0 657:K 653:R 649:R 647:( 645:0 642:K 630:R 596:R 588:R 565:R 561:R 545:R 541:R 517:R 506:R 502:J 494:J 478:I 474:R 462:a 458:R 450:a 446:J 444:) 442:b 438:I 436:) 434:a 430:R 426:b 422:a 418:J 414:I 410:R 394:R 351:p 344:p 334:- 332:p 241:K 223:K 204:K 202:P 196:K 177:K 175:J 168:K 166:P 161:K 159:J 150:K 123:) 117:( 112:) 108:( 98:· 91:· 84:· 77:· 50:. 20:)

Index

Class number (number theory)

verification
improve this article
adding citations to reliable sources
"Ideal class group"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
mathematics
algebraic number field
quotient group
group
fractional ideals
ring of integers
subgroup
principal
unique factorization
order
finite
Dedekind domains
fields of fractions
trivial
if and only if
unique factorization domain
ideal
quadratic forms

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.