Knowledge

Blattner's conjecture

Source 📝

231:
for a discrete series representation to the maximal torus of a maximal compact group. The problem in proving the Blattner formula is that this only gives the character on the regular elements of the maximal torus, and one also needs to control its behavior on the singular elements. For non-discrete
236:
the character is identically zero on the non-singular elements of the maximal compact subgroup, but the representation is not zero on this subgroup. In this case the character is a distribution on the maximal compact subgroup with support on the singular elements.
253:, theorem 2), where it was first referred to as "Blattner's Conjecture," despite the results of that paper having been obtained without knowledge of Blattner's question and notwithstanding Blattner's not having made such a conjecture. 180: 232:
irreducible representations the formal restriction of Harish-Chandra's character formula need not give the decomposition under the maximal compact subgroup: for example, for the principal series representations of SL
279:
by infinitesimal methods which were totally new and completely different from those of Hecht and Schmid (1975). Part of the impetus for Enright’s paper (1979) came from several sources: from
761: 80: 437:
Enright, Thomas J (1979), "On the fundamental series of a real semisimple Lie algebra: their irreducibility, resolutions and multiplicity formulae",
559: 381: 66:
Blattner's formula says that if a discrete series representation with infinitesimal character λ is restricted to a maximal compact subgroup
800: 249:
as a question Blattner raised, not a conjecture made by Blattner. Blattner did not publish it in any form. It first appeared in print in
347:
Enright, Thomas J; Wallach, Nolan R (1978), "The fundamental series of representations of a real semisimple Lie algebra",
228: 291:. In Enright (1979) multiplicity formulae are given for the so-called mock-discrete series representations also. 29: 309:
Enright, Thomas J; Varadarajan, V. S. (1975), "On an infinitesimal characterization of the discrete series.",
275:
proved Blattner's conjecture for linear semisimple groups. Blattner's conjecture (formula) was also proved by
659:
Schmid, Wilfried (1975a), "Some properties of square-integrable representations of semisimple Lie groups",
379:
Enright, Thomas J (1978), "On the algebraic construction and classification of Harish-Chandra modules",
557:
Schmid, Wilfried (1968), "Homogeneous complex manifolds and representations of semisimple Lie groups",
759:
Wallach, Nolan R (1976), "On the Enright-Varadarajan modules: a construction of the discrete series",
40: 705:
Schmid, Wilfried (1975b), "On the characters of the discrete series. The Hermitian symmetric case",
707: 477: 44: 631:
Schmid, Wilfried (1970), "On the realization of the discrete series of a semisimple Lie group.",
661: 439: 311: 296: 246: 55: 805: 784: 744: 716: 698: 652: 606: 568: 550: 506: 468: 412: 390: 372: 340: 175:{\displaystyle \sum _{w\in W_{K}}\epsilon (\omega )Q(w(\mu +\rho _{c})-\lambda -\rho _{n})} 8: 720: 572: 394: 748: 686: 594: 510: 456: 328: 295:
used his ideas to obtain results on the construction and classification of irreducible
615: 421: 752: 732: 678: 640: 620: 586: 538: 514: 494: 426: 192:
is the number of ways a vector can be written as a sum of non-compact positive roots
770: 724: 670: 610: 576: 486: 448: 416: 398: 358: 349: 320: 33: 780: 740: 694: 648: 602: 546: 522: 502: 464: 408: 368: 336: 271:
proved Blattner's conjecture for groups whose symmetric space is Hermitian, and
560:
Proceedings of the National Academy of Sciences of the United States of America
382:
Proceedings of the National Academy of Sciences of the United States of America
794: 736: 682: 644: 590: 542: 498: 263:
showed that Blattner's formula gave an upper bound for the multiplicities of
475:
Hecht, Henryk; Schmid, Wilfried (1975), "A proof of Blattner's conjecture",
624: 430: 403: 581: 17: 775: 728: 690: 490: 460: 363: 332: 598: 674: 452: 324: 227:
Blattner's formula is what one gets by formally restricting the
527:-cohomology spaces attached to hermitian symmetric spaces" 58:, despite not being formulated as a conjecture by him. 83: 762:
Annales Scientifiques de l'École Normale Supérieure
245:Harish-Chandra orally attributed the conjecture to 308: 280: 174: 257:mentioned a special case of it slightly earlier. 792: 74:with highest weight μ occurs with multiplicity 346: 288: 520: 254: 474: 272: 774: 614: 580: 521:Okamoto, Kiyosato; Ozeki, Hideki (1967), 420: 402: 362: 216:is half the sum of the non-compact roots 758: 704: 658: 436: 378: 292: 284: 276: 268: 260: 793: 630: 556: 250: 299:of any real semisimple Lie algebra. 209:is half the sum of the compact roots 801:Representation theory of Lie groups 13: 14: 817: 281:Enright & Varadarajan (1975) 229:Harish-Chandra character formula 30:discrete series representations 169: 147: 128: 122: 116: 110: 1: 302: 70:, then the representation of 531:Osaka Journal of Mathematics 289:Enright & Wallach (1978) 219:ε is the sign character of W 61: 7: 54:-types). It is named after 10: 822: 255:Okamoto & Ozeki (1967) 240: 41:restricted representations 273:Hecht & Schmid (1975) 708:Inventiones Mathematicae 478:Inventiones Mathematicae 45:maximal compact subgroup 28:is a description of the 633:Rice University Studies 523:"On square-integrable 404:10.1073/pnas.75.3.1063 297:Harish-Chandra modules 176: 662:Annals of Mathematics 440:Annals of Mathematics 312:Annals of Mathematics 247:Robert James Blattner 199:is the Weyl group of 177: 56:Robert James Blattner 22:Blattner's conjecture 582:10.1073/pnas.59.1.56 81: 776:10.24033/asens.1304 721:1975InMat..30...47S 573:1968PNAS...59...56S 395:1978PNAS...75.1063E 729:10.1007/BF01389847 491:10.1007/BF01404112 364:10.1007/bf02392301 267:-representations, 172: 106: 39:in terms of their 26:Blattner's formula 665:, Second Series, 84: 50:(their so-called 813: 787: 778: 755: 701: 655: 627: 618: 584: 553: 526: 517: 471: 433: 424: 406: 389:(3): 1063–1065, 375: 366: 350:Acta Mathematica 343: 181: 179: 178: 173: 168: 167: 146: 145: 105: 104: 103: 34:semisimple group 821: 820: 816: 815: 814: 812: 811: 810: 791: 790: 675:10.2307/1971043 524: 453:10.2307/1971244 325:10.2307/1970970 305: 243: 235: 222: 215: 208: 198: 163: 159: 141: 137: 99: 95: 88: 82: 79: 78: 64: 12: 11: 5: 819: 809: 808: 803: 789: 788: 756: 702: 669:(3): 535–564, 656: 628: 554: 518: 485:(2): 129–154, 472: 434: 376: 344: 304: 301: 293:Enright (1978) 285:Wallach (1976) 277:Enright (1979) 269:Schmid (1975b) 261:Schmid (1975a) 242: 239: 233: 225: 224: 220: 217: 213: 210: 206: 203: 196: 193: 183: 182: 171: 166: 162: 158: 155: 152: 149: 144: 140: 136: 133: 130: 127: 124: 121: 118: 115: 112: 109: 102: 98: 94: 91: 87: 63: 60: 9: 6: 4: 3: 2: 818: 807: 804: 802: 799: 798: 796: 786: 782: 777: 772: 769:(1): 81–101, 768: 764: 763: 757: 754: 750: 746: 742: 738: 734: 730: 726: 722: 718: 715:(1): 47–144, 714: 710: 709: 703: 700: 696: 692: 688: 684: 680: 676: 672: 668: 664: 663: 657: 654: 650: 646: 642: 639:(2): 99–108, 638: 634: 629: 626: 622: 617: 612: 608: 604: 600: 596: 592: 588: 583: 578: 574: 570: 566: 562: 561: 555: 552: 548: 544: 540: 536: 532: 528: 519: 516: 512: 508: 504: 500: 496: 492: 488: 484: 480: 479: 473: 470: 466: 462: 458: 454: 450: 446: 442: 441: 435: 432: 428: 423: 418: 414: 410: 405: 400: 396: 392: 388: 384: 383: 377: 374: 370: 365: 360: 357:(1–2): 1–32, 356: 352: 351: 345: 342: 338: 334: 330: 326: 322: 318: 314: 313: 307: 306: 300: 298: 294: 290: 286: 282: 278: 274: 270: 266: 262: 258: 256: 252: 248: 238: 230: 218: 211: 204: 202: 194: 191: 188: 187: 186: 164: 160: 156: 153: 150: 142: 138: 134: 131: 125: 119: 113: 107: 100: 96: 92: 89: 85: 77: 76: 75: 73: 69: 59: 57: 53: 49: 46: 42: 38: 35: 32:of a general 31: 27: 23: 19: 766: 760: 712: 706: 666: 660: 636: 632: 567:(1): 56–59, 564: 558: 534: 530: 482: 476: 444: 438: 386: 380: 354: 348: 316: 310: 264: 259: 251:Schmid (1968 244: 226: 200: 189: 184: 71: 67: 65: 51: 47: 36: 25: 21: 15: 806:Conjectures 447:(1): 1–82, 319:(1): 1–15, 18:mathematics 795:Categories 537:: 95–110, 303:References 753:120935812 737:0020-9910 683:0003-486X 645:0035-4996 591:0027-8424 543:0030-6126 515:123048659 499:0020-9910 161:ρ 157:− 154:λ 151:− 139:ρ 132:μ 114:ω 108:ϵ 93:∈ 86:∑ 62:Statement 625:16591593 431:16592507 785:0422518 745:0396854 717:Bibcode 699:0579165 691:1971043 653:0277668 607:0225930 569:Bibcode 551:0229260 507:0396855 469:0541329 461:1971244 413:0480871 391:Bibcode 373:0476814 341:0476921 333:1970970 241:History 783:  751:  743:  735:  697:  689:  681:  651:  643:  623:  616:286000 613:  605:  597:  589:  549:  541:  513:  505:  497:  467:  459:  429:  422:411407 419:  411:  371:  339:  331:  185:where 749:S2CID 687:JSTOR 599:58599 595:JSTOR 511:S2CID 457:JSTOR 329:JSTOR 43:to a 733:ISSN 679:ISSN 641:ISSN 621:PMID 587:ISSN 539:ISSN 495:ISSN 427:PMID 771:doi 725:doi 671:doi 667:102 611:PMC 577:doi 487:doi 449:doi 445:110 417:PMC 399:doi 359:doi 355:140 321:doi 317:102 24:or 16:In 797:: 781:MR 779:, 765:, 747:, 741:MR 739:, 731:, 723:, 713:30 711:, 695:MR 693:, 685:, 677:, 649:MR 647:, 637:56 635:, 619:, 609:, 603:MR 601:, 593:, 585:, 575:, 565:59 563:, 547:MR 545:, 533:, 529:, 509:, 503:MR 501:, 493:, 483:31 481:, 465:MR 463:, 455:, 443:, 425:, 415:, 409:MR 407:, 397:, 387:75 385:, 369:MR 367:, 353:, 337:MR 335:, 327:, 315:, 287:, 283:, 20:, 773:: 767:4 727:: 719:: 673:: 579:: 571:: 535:4 525:∂ 489:: 451:: 401:: 393:: 361:: 323:: 265:K 234:2 223:. 221:K 214:n 212:ρ 207:c 205:ρ 201:K 197:K 195:W 190:Q 170:) 165:n 148:) 143:c 135:+ 129:( 126:w 123:( 120:Q 117:) 111:( 101:K 97:W 90:w 72:K 68:K 52:K 48:K 37:G

Index

mathematics
discrete series representations
semisimple group
restricted representations
maximal compact subgroup
Robert James Blattner
Harish-Chandra character formula
Robert James Blattner
Schmid (1968
Okamoto & Ozeki (1967)
Schmid (1975a)
Schmid (1975b)
Hecht & Schmid (1975)
Enright (1979)
Enright & Varadarajan (1975)
Wallach (1976)
Enright & Wallach (1978)
Enright (1978)
Harish-Chandra modules
Annals of Mathematics
doi
10.2307/1970970
JSTOR
1970970
MR
0476921
Acta Mathematica
doi
10.1007/bf02392301
MR

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.