Knowledge

Mahler volume

Source đź“ť

978:, in which there is essentially only one extremiser up to affine transformations (namely the ball), there are many distinct extremisers for the lower bound - not only the cube and the octahedron, but also products of cubes and octahedra, polar bodies of products of cubes and octahedra, products of polar bodies of… well, you get the idea. It is really difficult to conceive of any sort of flow or optimisation procedure which would converge to exactly these bodies and no others; a radically different type of argument might be needed. 2644: 1148:
The Mahler volume can be defined in the same way, as the product of the volume and the polar volume, for convex bodies whose interior contains the origin regardless of symmetry. Mahler conjectured that, for this generalization, the minimum volume is obtained by a
697: 237: 1153:, with its centroid at the origin. As with the symmetric Mahler conjecture, reverse SantalĂł inequalities are known showing that the minimum volume is at least within an exponential factor of the simplex. 406: 867: 820: 1755: 542: 1075: 1525: 932:
which include these two types of shapes, as well as their affine transformations. The Mahler conjecture states that the Mahler volume of these shapes is the smallest of any
496: 304: 172: 960: 720: 1036: 469: 1010: 177: 1672: 893:
The Blaschke–Santaló inequality states that the shapes with maximum Mahler volume are the spheres and ellipsoids. The three-dimensional case of this result was
595: 566: 446: 426: 327: 277: 257: 142: 122: 1748: 1112: 1124:= 0}. This was first proven by Saint-Raymond in 1980. Later, a much shorter proof was found by Meyer. This was further generalized to convex bodies with 2533: 17: 1741: 605: 1101:. This was first proven by Nazarov, Petrov, Ryabogin, and Zvavitch for the unit cube, and later generalized to all Hanner polytopes by Jaegil Kim. 1610:
Nazarov, Fedor; Petrov, Fedor; Ryabogin, Dmitry; Zvavitch, Artem (2010). "A remark on the Mahler conjecture: local minimality of the unit cube".
2369: 2196: 1132:. The minimizers are then not necessarily Hanner polytopes, but were found to be regular polytopes corresponding to the reflection groups. 2359: 1945: 2486: 2341: 887: 2317: 1845: 1701: 917:
by which any centrally symmetric convex body can be replaced with a more sphere-like body without decreasing its Mahler volume.
336: 1937: 1724: 1211:
Iriyeh, Hiroshi; Shibata, Masataka (2020). "Symmetric Mahler's conjecture for the volume product in the 3-dimensional case".
1090:
The 2-dimensional case of the Mahler conjecture has been solved by Mahler and the 3-dimensional case by Iriyeh and Shibata.
828: 2209: 1950: 884:
Is the Mahler volume of a centrally symmetric convex body always at least that of the hypercube of the same dimension?
2298: 2189: 1571: 771: 2568: 1097:
is a strict local minimizer for the Mahler volume in the class of origin-symmetric convex bodies endowed with the
2673: 2213: 1970: 1887: 825:
The Mahler volume of the sphere is larger than the Mahler volume of the hypercube by a factor of approximately
2364: 1716: 1364: 2647: 2420: 2354: 2182: 1990: 501: 2384: 2629: 2583: 2507: 2389: 1955: 1139:
equal to zero almost everywhere on its boundary, suggesting strongly that a minimal body is a polytope.
1045: 1501: 2624: 2440: 1995: 1985: 1612: 1213: 1098: 1426:
Reisner, Shlomo; SchĂĽtt, Carsten; Werner, Elisabeth M. (2012). "Mahler's Conjecture and Curvature".
1391:
Barthe, F.; Fradelizi, M. (April 2013). "The volume product of convex bodies with many symmetries".
2668: 2476: 2374: 2277: 1975: 1960: 1802: 1529: 2573: 2349: 2045: 2022: 1916: 1840: 1676: 50: 474: 282: 150: 2604: 2548: 2512: 2163: 2124: 2040: 1965: 1892: 1877: 1830: 975: 914: 545: 46: 2109: 2101: 2097: 2093: 2089: 2085: 2311: 1897: 939: 705: 54: 2307: 1015: 451: 2587: 1902: 1768: 1733: 1689: 1643: 1602: 1558: 1538: 1244: 988: 2174: 1482:(1917). "Uber affine Geometrie VII: Neue Extremeingenschaften von Ellipse und Ellipsoid". 599:
is itself another unit sphere. Thus, its Mahler volume is just the square of its volume,
8: 2553: 2491: 2205: 1835: 1825: 1820: 1125: 1542: 1498:; Milman, Vitali D. (1987). "New volume ratio properties for convex symmetric bodies in 2578: 2445: 2064: 1782: 1657: 1621: 1580: 1435: 1408: 1359: 1282: 1222: 1136: 894: 580: 551: 431: 411: 312: 262: 242: 127: 107: 62: 2558: 1882: 1720: 1038:, matching the scaling behavior of the hypercube volume but with a smaller constant. 2563: 2481: 2450: 2430: 2415: 2410: 2405: 2035: 1980: 1871: 1866: 1631: 1590: 1546: 1479: 1445: 1400: 1373: 1321: 1292: 1232: 1129: 1115:, that is, convex bodies invariant under reflection on each coordinate hyperplane { 898: 39: 2242: 2678: 2425: 2379: 2327: 2322: 2293: 2055: 2026: 2000: 1921: 1906: 1815: 1787: 1764: 1685: 1639: 1598: 1554: 1240: 1094: 929: 742: 90: 31: 2252: 1651: 906: 2614: 2466: 2267: 2142: 2050: 1911: 1810: 1566: 1236: 925: 762: 723: 692:{\displaystyle {\frac {\Gamma (3/2)^{2n}4^{n}}{\Gamma ({\frac {n}{2}}+1)^{2}}}} 1635: 1594: 1297: 1270: 61:. It is known that the shapes with the largest possible Mahler volume are the 2662: 2619: 2543: 2272: 2257: 2247: 1926: 1495: 1360:"Une caractérisation volumique de certains espaces normés de dimension finie" 1135:
Reisner et al. (2010) showed that a minimizer of the Mahler volume must have
746: 94: 232:{\displaystyle \left\{x\mid x\cdot y\leq 1{\text{ for all }}y\in B\right\}.} 2609: 2262: 2232: 2147: 1449: 1404: 1339:
Saint-Raymond, J. (1980). "Sur le volume des corps convexes symétriques".
174:
is another centrally symmetric body in the same space, defined as the set
2538: 2528: 2435: 2237: 2137: 2132: 2016: 1708: 1697: 1193: 963: 58: 42: 1412: 2471: 2303: 2060: 2030: 1792: 1550: 1377: 1325: 971: 876: 758: 734: 330: 97: 1585: 921: 754: 727: 145: 101: 78: 66: 1713:
Structure and Randomness: Pages from Year One of a Mathematical Blog
2069: 1227: 1105: 738: 577: 1626: 1440: 1287: 1850: 1569:(2008). "From the Mahler conjecture to Gauss linking integrals". 1150: 77:
states that the minimum possible Mahler volume is attained by a
1312:
Reisner, Shlomo (1986). "Zonoids with minimal volume-product".
1609: 1257: 936:-dimensional symmetric convex body; it remains unsolved when 1763: 2204: 750: 1012:
times the volume of a sphere for some absolute constant
401:{\displaystyle (TB)^{\circ }=(T^{-1})^{\ast }B^{\circ }} 1702:"Open question: the Mahler conjecture on convex bodies" 1056: 838: 1711:(2009). "3.8 Mahler's conjecture for convex bodies". 1660: 1504: 1484:
Ber. Verh. Sächs. Akad. Wiss. Leipzig Math.-Phys. Kl.
1456: 1048: 1018: 991: 942: 831: 774: 708: 608: 583: 554: 504: 477: 454: 434: 414: 339: 315: 285: 265: 245: 180: 153: 130: 110: 1077:
in this bound. A result of this type is known as a
920:
The shapes with the minimum known Mahler volume are
1425: 1196:(1939). "Ein Minimalproblem fĂĽr konvexe Polygone". 862:{\displaystyle \left({\tfrac {\pi }{2}}\right)^{n}} 2534:Spectral theory of ordinary differential equations 1666: 1654:(1949). "An affine invariant for convex bodies of 1519: 1069: 1030: 1004: 985:proved that the Mahler volume is bounded below by 954: 861: 814: 714: 691: 589: 560: 536: 490: 463: 440: 420: 400: 321: 298: 271: 251: 231: 166: 136: 116: 57:. It is named after German-English mathematician 2660: 505: 455: 1390: 878: 1494: 1271:"Minimal volume product near Hanner polytopes" 982: 815:{\displaystyle {\frac {4^{n}}{\Gamma (n+1)}}.} 2190: 1749: 1338: 1210: 1111:The Mahler conjecture holds in the class of 905:); the full result was proven much later by 1042:proved that, more concretely, one can take 2197: 2183: 1756: 1742: 1428:International Mathematics Research Notices 1625: 1584: 1565: 1507: 1462: 1439: 1296: 1286: 1226: 1039: 974:is so difficult is that unlike the upper 765:. Its Mahler volume can be calculated as 2487:Group algebra of a locally compact group 1478: 1143: 902: 568:is preserved by linear transformations. 124:is a centrally symmetric convex body in 49:that is associated with the body and is 1846:Locally convex topological vector space 1650: 1311: 910: 888:(more unsolved problems in mathematics) 14: 2661: 1192: 2178: 1737: 1357: 1176: 1174: 1172: 1170: 1168: 1166: 749:. In particular, the polar body of a 537:{\displaystyle \det(T^{-1})^{\ast }} 1707: 1696: 1268: 1180: 24: 1341:SĂ©minaire d'initiation Ă  l'analyse 1163: 1084: 788: 709: 654: 612: 144:-dimensional Euclidean space, the 25: 2690: 1572:Geometric and Functional Analysis 1070:{\displaystyle c={\tfrac {1}{2}}} 872: 259:is the product of the volumes of 2643: 2642: 2569:Topological quantum field theory 1520:{\displaystyle \mathbb {R} ^{n}} 1104:The Mahler conjecture holds for 1951:Ekeland's variational principle 1419: 1393:American Journal of Mathematics 879:Unsolved problem in mathematics 548:, the overall Mahler volume of 1384: 1351: 1332: 1305: 1275:Journal of Functional Analysis 1262: 1251: 1204: 1186: 803: 791: 677: 657: 630: 615: 525: 508: 379: 362: 350: 340: 13: 1: 2365:Uniform boundedness principle 1717:American Mathematical Society 1472: 1365:Israel Journal of Mathematics 1093:It is known that each of the 913:) using a technique known as 544:. As these determinants are 471:and multiplies the volume of 84: 983:Bourgain & Milman (1987) 730:has the same Mahler volume. 726:. By affine invariance, any 333:linear transformation, then 7: 1971:Hermite–Hadamard inequality 571: 71:Blaschke–SantalĂł inequality 69:; this is now known as the 18:Blaschke–SantalĂł inequality 10: 2695: 2508:Invariant subspace problem 1237:10.1215/00127094-2019-0072 1079:reverse SantalĂł inequality 491:{\displaystyle B^{\circ }} 299:{\displaystyle B^{\circ }} 167:{\displaystyle B^{\circ }} 27:Concept in convex geometry 2638: 2597: 2521: 2500: 2459: 2398: 2340: 2286: 2228: 2221: 2156: 2123: 2078: 2009: 1935: 1859: 1801: 1775: 1706:Revised and reprinted in 1636:10.1215/00127094-2010-042 1613:Duke Mathematical Journal 1595:10.1007/s00039-008-0669-4 1314:Mathematische Zeitschrift 1298:10.1016/j.jfa.2013.08.008 1214:Duke Mathematical Journal 970:The main reason why this 928:, and more generally the 448:multiplies its volume by 2477:Spectrum of a C*-algebra 2157:Applications and related 1961:Fenchel-Young inequality 1530:Inventiones Mathematicae 1156: 597:-dimensional unit sphere 2574:Noncommutative geometry 1917:Legendre transformation 1841:Legendre transformation 1677:Portugaliae Mathematica 1358:Meyer, Mathieu (1986). 1198:Mathematica (Zutphen) B 955:{\displaystyle n\geq 4} 715:{\displaystyle \Gamma } 546:multiplicative inverses 2674:Geometric inequalities 2630:Tomita–Takesaki theory 2605:Approximation property 2549:Calculus of variations 2164:Convexity in economics 2098:(lower) ideally convex 1956:Fenchel–Moreau theorem 1946:CarathĂ©odory's theorem 1668: 1521: 1128:that are more general 1071: 1032: 1031:{\displaystyle c>0} 1006: 980: 956: 915:Steiner symmetrization 863: 816: 716: 693: 591: 562: 538: 492: 465: 464:{\displaystyle \det T} 442: 422: 402: 323: 300: 273: 253: 233: 168: 138: 118: 55:linear transformations 47:dimensionless quantity 2625:Banach–Mazur distance 2588:Generalized functions 2086:Convex series related 1986:Shapley–Folkman lemma 1674:-dimensional space". 1669: 1522: 1405:10.1353/ajm.2013.0018 1258:Nazarov et al. (2010) 1144:For asymmetric bodies 1099:Banach–Mazur distance 1072: 1033: 1007: 1005:{\displaystyle c^{n}} 968: 957: 864: 817: 717: 694: 592: 576:The polar body of an 563: 539: 493: 466: 443: 423: 403: 324: 301: 274: 254: 239:The Mahler volume of 234: 169: 139: 119: 73:. The still-unsolved 2370:Kakutani fixed-point 2355:Riesz representation 1976:Krein–Milman theorem 1769:variational analysis 1719:. pp. 216–219. 1658: 1502: 1269:Kim, Jaegil (2014). 1113:unconditional bodies 1046: 1016: 989: 940: 899:Wilhelm Blaschke 829: 772: 733:The polar body of a 706: 606: 581: 552: 502: 475: 452: 432: 412: 337: 313: 283: 263: 243: 178: 151: 128: 108: 2554:Functional calculus 2513:Mahler's conjecture 2492:Von Neumann algebra 2206:Functional analysis 1966:Jensen's inequality 1836:Lagrange multiplier 1826:Convex optimization 1821:Convex metric space 1543:1987InMat..88..319B 1490:. Leipzig: 412–420. 1450:10.1093/imrn/rnr003 209: for all  40:centrally symmetric 2579:Riemann hypothesis 2278:Topological vector 2094:(cs, bcs)-complete 2065:Algebraic interior 1783:Convex combination 1664: 1551:10.1007/BF01388911 1517: 1378:10.1007/BF02765029 1326:10.1007/BF01164009 1137:Gaussian curvature 1067: 1065: 1028: 1002: 952: 859: 847: 812: 712: 689: 587: 558: 534: 488: 461: 438: 418: 398: 319: 296: 269: 249: 229: 164: 134: 114: 2656: 2655: 2559:Integral operator 2336: 2335: 2172: 2171: 1726:978-0-8218-4695-7 1700:(March 8, 2007). 1667:{\displaystyle n} 1480:Blaschke, Wilhelm 1130:reflection groups 1064: 846: 807: 687: 668: 590:{\displaystyle n} 561:{\displaystyle B} 441:{\displaystyle B} 421:{\displaystyle T} 322:{\displaystyle T} 272:{\displaystyle B} 252:{\displaystyle B} 210: 137:{\displaystyle n} 117:{\displaystyle B} 89:A convex body in 75:Mahler conjecture 16:(Redirected from 2686: 2646: 2645: 2564:Jones polynomial 2482:Operator algebra 2226: 2225: 2199: 2192: 2185: 2176: 2175: 2090:(cs, lcs)-closed 2036:Effective domain 1991:Robinson–Ursescu 1867:Convex conjugate 1758: 1751: 1744: 1735: 1734: 1730: 1705: 1693: 1673: 1671: 1670: 1665: 1652:SantalĂł, Luis A. 1647: 1629: 1606: 1588: 1562: 1526: 1524: 1523: 1518: 1516: 1515: 1510: 1491: 1466: 1463:Kuperberg (2008) 1460: 1454: 1453: 1443: 1423: 1417: 1416: 1388: 1382: 1381: 1355: 1349: 1348: 1336: 1330: 1329: 1309: 1303: 1302: 1300: 1290: 1281:(4): 2360–2402. 1266: 1260: 1255: 1249: 1248: 1230: 1221:(6): 1077–1134. 1208: 1202: 1201: 1190: 1184: 1178: 1095:Hanner polytopes 1076: 1074: 1073: 1068: 1066: 1057: 1040:Kuperberg (2008) 1037: 1035: 1034: 1029: 1011: 1009: 1008: 1003: 1001: 1000: 961: 959: 958: 953: 930:Hanner polytopes 907:Luis SantalĂł 880: 868: 866: 865: 860: 858: 857: 852: 848: 839: 821: 819: 818: 813: 808: 806: 786: 785: 776: 721: 719: 718: 713: 698: 696: 695: 690: 688: 686: 685: 684: 669: 661: 652: 651: 650: 641: 640: 625: 610: 596: 594: 593: 588: 567: 565: 564: 559: 543: 541: 540: 535: 533: 532: 523: 522: 497: 495: 494: 489: 487: 486: 470: 468: 467: 462: 447: 445: 444: 439: 427: 425: 424: 419: 407: 405: 404: 399: 397: 396: 387: 386: 377: 376: 358: 357: 328: 326: 325: 320: 305: 303: 302: 297: 295: 294: 278: 276: 275: 270: 258: 256: 255: 250: 238: 236: 235: 230: 225: 221: 211: 208: 173: 171: 170: 165: 163: 162: 143: 141: 140: 135: 123: 121: 120: 115: 93:is defined as a 21: 2694: 2693: 2689: 2688: 2687: 2685: 2684: 2683: 2669:Convex geometry 2659: 2658: 2657: 2652: 2634: 2598:Advanced topics 2593: 2517: 2496: 2455: 2421:Hilbert–Schmidt 2394: 2385:Gelfand–Naimark 2332: 2282: 2217: 2203: 2173: 2168: 2152: 2119: 2074: 2005: 1931: 1922:Semi-continuity 1907:Convex function 1888:Logarithmically 1855: 1816:Convex geometry 1797: 1788:Convex function 1771: 1765:Convex analysis 1762: 1727: 1659: 1656: 1655: 1567:Kuperberg, Greg 1511: 1506: 1505: 1503: 1500: 1499: 1475: 1470: 1469: 1461: 1457: 1424: 1420: 1389: 1385: 1356: 1352: 1337: 1333: 1310: 1306: 1267: 1263: 1256: 1252: 1209: 1205: 1191: 1187: 1179: 1164: 1159: 1146: 1126:symmetry groups 1123: 1087: 1085:Partial results 1055: 1047: 1044: 1043: 1017: 1014: 1013: 996: 992: 990: 987: 986: 941: 938: 937: 926:cross polytopes 891: 890: 885: 882: 875: 853: 837: 833: 832: 830: 827: 826: 787: 781: 777: 775: 773: 770: 769: 743:dual polyhedron 707: 704: 703: 680: 676: 660: 653: 646: 642: 633: 629: 621: 611: 609: 607: 604: 603: 582: 579: 578: 574: 553: 550: 549: 528: 524: 515: 511: 503: 500: 499: 482: 478: 476: 473: 472: 453: 450: 449: 433: 430: 429: 413: 410: 409: 392: 388: 382: 378: 369: 365: 353: 349: 338: 335: 334: 314: 311: 310: 290: 286: 284: 281: 280: 264: 261: 260: 244: 241: 240: 207: 185: 181: 179: 176: 175: 158: 154: 152: 149: 148: 129: 126: 125: 109: 106: 105: 91:Euclidean space 87: 32:convex geometry 28: 23: 22: 15: 12: 11: 5: 2692: 2682: 2681: 2676: 2671: 2654: 2653: 2651: 2650: 2639: 2636: 2635: 2633: 2632: 2627: 2622: 2617: 2615:Choquet theory 2612: 2607: 2601: 2599: 2595: 2594: 2592: 2591: 2581: 2576: 2571: 2566: 2561: 2556: 2551: 2546: 2541: 2536: 2531: 2525: 2523: 2519: 2518: 2516: 2515: 2510: 2504: 2502: 2498: 2497: 2495: 2494: 2489: 2484: 2479: 2474: 2469: 2467:Banach algebra 2463: 2461: 2457: 2456: 2454: 2453: 2448: 2443: 2438: 2433: 2428: 2423: 2418: 2413: 2408: 2402: 2400: 2396: 2395: 2393: 2392: 2390:Banach–Alaoglu 2387: 2382: 2377: 2372: 2367: 2362: 2357: 2352: 2346: 2344: 2338: 2337: 2334: 2333: 2331: 2330: 2325: 2320: 2318:Locally convex 2315: 2301: 2296: 2290: 2288: 2284: 2283: 2281: 2280: 2275: 2270: 2265: 2260: 2255: 2250: 2245: 2240: 2235: 2229: 2223: 2219: 2218: 2202: 2201: 2194: 2187: 2179: 2170: 2169: 2167: 2166: 2160: 2158: 2154: 2153: 2151: 2150: 2145: 2143:Strong duality 2140: 2135: 2129: 2127: 2121: 2120: 2118: 2117: 2082: 2080: 2076: 2075: 2073: 2072: 2067: 2058: 2053: 2051:John ellipsoid 2048: 2043: 2038: 2033: 2019: 2013: 2011: 2007: 2006: 2004: 2003: 1998: 1993: 1988: 1983: 1978: 1973: 1968: 1963: 1958: 1953: 1948: 1942: 1940: 1938:results (list) 1933: 1932: 1930: 1929: 1924: 1919: 1914: 1912:Invex function 1909: 1900: 1895: 1890: 1885: 1880: 1874: 1869: 1863: 1861: 1857: 1856: 1854: 1853: 1848: 1843: 1838: 1833: 1828: 1823: 1818: 1813: 1811:Choquet theory 1807: 1805: 1799: 1798: 1796: 1795: 1790: 1785: 1779: 1777: 1776:Basic concepts 1773: 1772: 1761: 1760: 1753: 1746: 1738: 1732: 1731: 1725: 1694: 1680:(in Spanish). 1663: 1648: 1620:(3): 419–430. 1607: 1579:(3): 870–892. 1563: 1537:(2): 319–340. 1514: 1509: 1496:Bourgain, Jean 1492: 1474: 1471: 1468: 1467: 1455: 1418: 1399:(2): 311–347. 1383: 1372:(3): 317–326. 1350: 1331: 1320:(3): 339–346. 1304: 1261: 1250: 1203: 1185: 1161: 1160: 1158: 1155: 1145: 1142: 1141: 1140: 1133: 1119: 1109: 1102: 1091: 1086: 1083: 1063: 1060: 1054: 1051: 1027: 1024: 1021: 999: 995: 951: 948: 945: 886: 883: 877: 874: 873:Extreme shapes 871: 856: 851: 845: 842: 836: 823: 822: 811: 805: 802: 799: 796: 793: 790: 784: 780: 763:cross polytope 724:Gamma function 711: 700: 699: 683: 679: 675: 672: 667: 664: 659: 656: 649: 645: 639: 636: 632: 628: 624: 620: 617: 614: 586: 573: 570: 557: 531: 527: 521: 518: 514: 510: 507: 485: 481: 460: 457: 437: 417: 395: 391: 385: 381: 375: 372: 368: 364: 361: 356: 352: 348: 345: 342: 318: 293: 289: 268: 248: 228: 224: 220: 217: 214: 206: 203: 200: 197: 194: 191: 188: 184: 161: 157: 133: 113: 104:interior. If 86: 83: 26: 9: 6: 4: 3: 2: 2691: 2680: 2677: 2675: 2672: 2670: 2667: 2666: 2664: 2649: 2641: 2640: 2637: 2631: 2628: 2626: 2623: 2621: 2620:Weak topology 2618: 2616: 2613: 2611: 2608: 2606: 2603: 2602: 2600: 2596: 2589: 2585: 2582: 2580: 2577: 2575: 2572: 2570: 2567: 2565: 2562: 2560: 2557: 2555: 2552: 2550: 2547: 2545: 2544:Index theorem 2542: 2540: 2537: 2535: 2532: 2530: 2527: 2526: 2524: 2520: 2514: 2511: 2509: 2506: 2505: 2503: 2501:Open problems 2499: 2493: 2490: 2488: 2485: 2483: 2480: 2478: 2475: 2473: 2470: 2468: 2465: 2464: 2462: 2458: 2452: 2449: 2447: 2444: 2442: 2439: 2437: 2434: 2432: 2429: 2427: 2424: 2422: 2419: 2417: 2414: 2412: 2409: 2407: 2404: 2403: 2401: 2397: 2391: 2388: 2386: 2383: 2381: 2378: 2376: 2373: 2371: 2368: 2366: 2363: 2361: 2358: 2356: 2353: 2351: 2348: 2347: 2345: 2343: 2339: 2329: 2326: 2324: 2321: 2319: 2316: 2313: 2309: 2305: 2302: 2300: 2297: 2295: 2292: 2291: 2289: 2285: 2279: 2276: 2274: 2271: 2269: 2266: 2264: 2261: 2259: 2256: 2254: 2251: 2249: 2246: 2244: 2241: 2239: 2236: 2234: 2231: 2230: 2227: 2224: 2220: 2215: 2211: 2207: 2200: 2195: 2193: 2188: 2186: 2181: 2180: 2177: 2165: 2162: 2161: 2159: 2155: 2149: 2146: 2144: 2141: 2139: 2136: 2134: 2131: 2130: 2128: 2126: 2122: 2115: 2113: 2107: 2105: 2099: 2095: 2091: 2087: 2084: 2083: 2081: 2077: 2071: 2068: 2066: 2062: 2059: 2057: 2054: 2052: 2049: 2047: 2044: 2042: 2039: 2037: 2034: 2032: 2028: 2024: 2020: 2018: 2015: 2014: 2012: 2008: 2002: 1999: 1997: 1994: 1992: 1989: 1987: 1984: 1982: 1981:Mazur's lemma 1979: 1977: 1974: 1972: 1969: 1967: 1964: 1962: 1959: 1957: 1954: 1952: 1949: 1947: 1944: 1943: 1941: 1939: 1934: 1928: 1927:Subderivative 1925: 1923: 1920: 1918: 1915: 1913: 1910: 1908: 1904: 1901: 1899: 1896: 1894: 1891: 1889: 1886: 1884: 1881: 1879: 1875: 1873: 1870: 1868: 1865: 1864: 1862: 1858: 1852: 1849: 1847: 1844: 1842: 1839: 1837: 1834: 1832: 1829: 1827: 1824: 1822: 1819: 1817: 1814: 1812: 1809: 1808: 1806: 1804: 1803:Topics (list) 1800: 1794: 1791: 1789: 1786: 1784: 1781: 1780: 1778: 1774: 1770: 1766: 1759: 1754: 1752: 1747: 1745: 1740: 1739: 1736: 1728: 1722: 1718: 1714: 1710: 1703: 1699: 1695: 1691: 1687: 1683: 1679: 1678: 1661: 1653: 1649: 1645: 1641: 1637: 1633: 1628: 1623: 1619: 1615: 1614: 1608: 1604: 1600: 1596: 1592: 1587: 1582: 1578: 1574: 1573: 1568: 1564: 1560: 1556: 1552: 1548: 1544: 1540: 1536: 1532: 1531: 1512: 1497: 1493: 1489: 1486:(in German). 1485: 1481: 1477: 1476: 1464: 1459: 1451: 1447: 1442: 1437: 1433: 1429: 1422: 1414: 1410: 1406: 1402: 1398: 1394: 1387: 1379: 1375: 1371: 1367: 1366: 1361: 1354: 1346: 1342: 1335: 1327: 1323: 1319: 1315: 1308: 1299: 1294: 1289: 1284: 1280: 1276: 1272: 1265: 1259: 1254: 1246: 1242: 1238: 1234: 1229: 1224: 1220: 1216: 1215: 1207: 1199: 1195: 1189: 1182: 1177: 1175: 1173: 1171: 1169: 1167: 1162: 1154: 1152: 1138: 1134: 1131: 1127: 1122: 1118: 1114: 1110: 1107: 1103: 1100: 1096: 1092: 1089: 1088: 1082: 1080: 1061: 1058: 1052: 1049: 1041: 1025: 1022: 1019: 997: 993: 984: 979: 977: 973: 967: 965: 949: 946: 943: 935: 931: 927: 923: 918: 916: 912: 908: 904: 900: 896: 889: 870: 854: 849: 843: 840: 834: 809: 800: 797: 794: 782: 778: 768: 767: 766: 764: 760: 756: 752: 748: 747:dual polytope 744: 740: 736: 731: 729: 725: 681: 673: 670: 665: 662: 647: 643: 637: 634: 626: 622: 618: 602: 601: 600: 598: 584: 569: 555: 547: 529: 519: 516: 512: 483: 479: 458: 435: 415: 393: 389: 383: 373: 370: 366: 359: 354: 346: 343: 332: 316: 307: 291: 287: 266: 246: 226: 222: 218: 215: 212: 204: 201: 198: 195: 192: 189: 186: 182: 159: 155: 147: 131: 111: 103: 99: 96: 92: 82: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 41: 37: 36:Mahler volume 33: 19: 2610:Balanced set 2584:Distribution 2522:Applications 2375:Krein–Milman 2360:Closed graph 2148:Weak duality 2111: 2103: 2023:Orthogonally 1712: 1709:Tao, Terence 1698:Tao, Terence 1681: 1675: 1617: 1611: 1586:math/0610904 1576: 1570: 1534: 1528: 1487: 1483: 1458: 1431: 1427: 1421: 1396: 1392: 1386: 1369: 1363: 1353: 1344: 1340: 1334: 1317: 1313: 1307: 1278: 1274: 1264: 1253: 1218: 1212: 1206: 1197: 1194:Mahler, Kurt 1188: 1147: 1120: 1116: 1078: 981: 969: 933: 919: 892: 824: 732: 701: 575: 308: 88: 74: 70: 35: 29: 2539:Heat kernel 2529:Hardy space 2436:Trace class 2350:Hahn–Banach 2312:Topological 2138:Duality gap 2133:Dual system 2017:Convex hull 1684:: 155–161. 1434:(1): 1–16. 408:. Applying 59:Kurt Mahler 43:convex body 2663:Categories 2472:C*-algebra 2287:Properties 2061:Radial set 2031:Convex set 1793:Convex set 1473:References 1228:1706.01749 1200:: 118–127. 1181:Tao (2007) 972:conjecture 922:hypercubes 759:octahedron 735:polyhedron 331:invertible 146:polar body 98:convex set 85:Definition 67:ellipsoids 65:and solid 2446:Unbounded 2441:Transpose 2399:Operators 2328:Separable 2323:Reflexive 2308:Algebraic 2294:Barrelled 2046:Hypograph 1627:0905.0867 1441:1009.3583 1288:1212.2544 1106:zonotopes 964:Terry Tao 947:≥ 841:π 789:Γ 755:hypercube 728:ellipsoid 710:Γ 655:Γ 613:Γ 530:∗ 517:− 484:∘ 394:∘ 384:∗ 371:− 355:∘ 292:∘ 216:∈ 202:≤ 196:⋅ 190:∣ 160:∘ 102:non-empty 79:hypercube 51:invariant 2648:Category 2460:Algebras 2342:Theorems 2299:Complete 2268:Schwartz 2214:glossary 2070:Zonotope 2041:Epigraph 1413:23525797 966:writes: 739:polytope 572:Examples 2451:Unitary 2431:Nuclear 2416:Compact 2411:Bounded 2406:Adjoint 2380:Min–max 2273:Sobolev 2258:Nuclear 2248:Hilbert 2243:FrĂ©chet 2208: ( 2125:Duality 2027:Pseudo- 2001:Ursescu 1898:Pseudo- 1872:Concave 1851:Simplex 1831:Duality 1690:0039293 1644:2730574 1603:2438998 1559:0880954 1539:Bibcode 1245:4085078 1151:simplex 909: ( 901: ( 741:is its 722:is the 95:compact 2679:Volume 2426:Normal 2263:Orlicz 2253:Hölder 2233:Banach 2222:Spaces 2210:topics 2108:, and 2079:Series 1996:Simons 1903:Quasi- 1893:Proper 1878:Closed 1723:  1688:  1642:  1601:  1557:  1411:  1243:  895:proven 757:is an 702:where 329:is an 53:under 34:, the 2238:Besov 1936:Main 1622:arXiv 1581:arXiv 1436:arXiv 1409:JSTOR 1283:arXiv 1223:arXiv 1157:Notes 976:bound 962:. As 100:with 63:balls 45:is a 38:of a 2586:(or 2304:Dual 2056:Lens 2010:Sets 1860:Maps 1767:and 1721:ISBN 1432:2012 1023:> 911:1949 903:1917 751:cube 279:and 2110:(Hw 1632:doi 1618:154 1591:doi 1547:doi 1527:". 1446:doi 1401:doi 1397:135 1374:doi 1322:doi 1318:192 1293:doi 1279:266 1233:doi 1219:169 897:by 761:or 753:or 745:or 737:or 506:det 498:by 456:det 428:to 309:If 30:In 2665:: 2212:– 2102:(H 2100:, 2096:, 2092:, 2029:) 2025:, 1905:) 1883:K- 1715:. 1686:MR 1640:MR 1638:. 1630:. 1616:. 1599:MR 1597:. 1589:. 1577:18 1575:. 1555:MR 1553:. 1545:. 1535:88 1533:. 1488:69 1444:. 1430:. 1407:. 1395:. 1370:55 1368:. 1362:. 1345:81 1343:. 1316:. 1291:. 1277:. 1273:. 1241:MR 1239:. 1231:. 1217:. 1165:^ 1081:. 924:, 869:. 306:. 81:. 2590:) 2314:) 2310:/ 2306:( 2216:) 2198:e 2191:t 2184:v 2116:) 2114:) 2112:x 2106:) 2104:x 2088:( 2063:/ 2021:( 1876:( 1757:e 1750:t 1743:v 1729:. 1704:. 1692:. 1682:8 1662:n 1646:. 1634:: 1624:: 1605:. 1593:: 1583:: 1561:. 1549:: 1541:: 1513:n 1508:R 1465:. 1452:. 1448:: 1438:: 1415:. 1403:: 1380:. 1376:: 1347:. 1328:. 1324:: 1301:. 1295:: 1285:: 1247:. 1235:: 1225:: 1183:. 1121:i 1117:x 1108:. 1062:2 1059:1 1053:= 1050:c 1026:0 1020:c 998:n 994:c 950:4 944:n 934:n 881:: 855:n 850:) 844:2 835:( 810:. 804:) 801:1 798:+ 795:n 792:( 783:n 779:4 682:2 678:) 674:1 671:+ 666:2 663:n 658:( 648:n 644:4 638:n 635:2 631:) 627:2 623:/ 619:3 616:( 585:n 556:B 526:) 520:1 513:T 509:( 480:B 459:T 436:B 416:T 390:B 380:) 374:1 367:T 363:( 360:= 351:) 347:B 344:T 341:( 317:T 288:B 267:B 247:B 227:. 223:} 219:B 213:y 205:1 199:y 193:x 187:x 183:{ 156:B 132:n 112:B 20:)

Index

Blaschke–Santaló inequality
convex geometry
centrally symmetric
convex body
dimensionless quantity
invariant
linear transformations
Kurt Mahler
balls
ellipsoids
hypercube
Euclidean space
compact
convex set
non-empty
polar body
invertible
multiplicative inverses
n {\displaystyle n} -dimensional unit sphere
Gamma function
ellipsoid
polyhedron
polytope
dual polyhedron
dual polytope
cube
hypercube
octahedron
cross polytope
(more unsolved problems in mathematics)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑