Knowledge

Bifurcation theory

Source 📝

878: 682: 866: 1944: 1001: 1936: 877: 127: 681: 621:. Homoclinic bifurcations can occur supercritically or subcritically. The variant above is the "small" or "type I" homoclinic bifurcation. In 2D there is also the "big" or "type II" homoclinic bifurcation in which the homoclinic orbit "traps" the other ends of the unstable and stable manifolds of the saddle. In three or more dimensions, higher codimension bifurcations can occur, producing complicated, possibly 31: 980:
and a number of theoretical examples which are difficult to access experimentally such as the kicked top and coupled quantum wells. The dominant reason for the link between quantum systems and bifurcations in the classical equations of motion is that at bifurcations, the signature of classical orbits
522:
has an eigenvalue with modulus equal to one. If the eigenvalue is equal to one, the bifurcation is either a saddle-node (often called fold bifurcation in maps), transcritical or pitchfork bifurcation. If the eigenvalue is equal to âˆ’1, it is a period-doubling (or flip) bifurcation, and otherwise,
134:
A local bifurcation occurs when a parameter change causes the stability of an equilibrium (or fixed point) to change. In continuous systems, this corresponds to the real part of an eigenvalue of an equilibrium passing through zero. In discrete systems (described by maps), this corresponds to a fixed
956:
of a bifurcation is the number of parameters which must be varied for the bifurcation to occur. This corresponds to the codimension of the parameter set for which the bifurcation occurs within the full space of parameters. Saddle-node bifurcations and Hopf bifurcations are the only generic local
653:
of a parameter approaches a certain critical value, the speed of the oscillation slows down and the period approaches infinity. The infinite-period bifurcation occurs at this critical value. Beyond the critical value, the two fixed points emerge continuously from each other on the limit cycle to
602:
Global bifurcations occur when 'larger' invariant sets, such as periodic orbits, collide with equilibria. This causes changes in the topology of the trajectories in the phase space which cannot be confined to a small neighbourhood, as is the case with local bifurcations. In fact, the changes in
635:. Heteroclinic bifurcations are of two types: resonance bifurcations and transverse bifurcations. Both types of bifurcation will result in the change of stability of the heteroclinic cycle. At a resonance bifurcation, the stability of the cycle changes when an algebraic condition on the 989:. Many kinds of bifurcations have been studied with regard to links between classical and quantum dynamics including saddle node bifurcations, Hopf bifurcations, umbilic bifurcations, period doubling bifurcations, reconnection bifurcations, tangent bifurcations, and cusp bifurcations. 143:
at the bifurcation point. The topological changes in the phase portrait of the system can be confined to arbitrarily small neighbourhoods of the bifurcating fixed points by moving the bifurcation parameter close to the bifurcation point (hence 'local').
240: 957:
bifurcations which are really codimension-one (the others all having higher codimension). However, transcritical and pitchfork bifurcations are also often thought of as codimension-one, because the normal forms can be written with only one parameter.
573:
A phase portrait before, at, and after a homoclinic bifurcation in 2D. The periodic orbit grows until it collides with the saddle point. At the bifurcation point the period of the periodic orbit has grown to infinity and it has become a
643:. A transverse bifurcation of a heteroclinic cycle is caused when the real part of a transverse eigenvalue of one of the equilibria in the cycle passes through zero. This will also cause a change in stability of the heteroclinic cycle. 77:
occurs when a small smooth change made to the parameter values (the bifurcation parameters) of a system causes a sudden 'qualitative' or topological change in its behavior. Bifurcations occur in both continuous systems (described by
116:
Global bifurcations, which often occur when larger invariant sets of the system 'collide' with each other, or with equilibria of the system. They cannot be detected purely by a stability analysis of the equilibria (fixed
150: 520: 344: 420: 805: 742: 570: 557: 466: 286: 857: 350:
with zero real part. If the eigenvalue is equal to zero, the bifurcation is a steady state bifurcation, but if the eigenvalue is non-zero but purely imaginary, this is a
936: 831: 1445:
Stamatiou, G. & Ghikas, D. P. K. (2007). "Quantum entanglement dependence on bifurcations and scars in non-autonomous systems. The case of quantum kicked top".
901: 1498:
Galan, J.; Freire, E. (1999). "Chaos in a Mean Field Model of Coupled Quantum Wells; Bifurcations of Periodic Orbits in a Symmetric Hamiltonian System".
1332:
Founargiotakis, M.; Farantos, S. C.; Skokos, Ch.; Contopoulos, G. (1997). "Bifurcation diagrams of periodic orbits for unbound molecular systems: FH2".
972:
Bifurcation theory has been applied to connect quantum systems to the dynamics of their classical analogues in atomic systems, molecular systems, and
594:: As the bifurcation parameter increases, the limit cycle grows until it exactly intersects the saddle point, yielding an orbit of infinite duration. 977: 903:
increases from zero, a stable limit cycle emerges out of the origin via Hopf bifurcation. Here we plot the limit cycle parametrically, up to order
1410:
Wieczorek, S.; Krauskopf, B.; Simpson, T. B. & Lenstra, D. (2005). "The dynamical complexity of optically injected semiconductor lasers".
2233: 2063: 865: 1226:
Peters, A. D.; Jaffé, C.; Delos, J. B. (1994). "Quantum Manifestations of Bifurcations of Classical Orbits: An Exactly Solvable Model".
1669: 1664: 360: 1367:
Monteiro, T. S. & Saraga, D. S. (2001). "Quantum Wells in Tilted Fields:Semiclassical Amplitudes and Phase Coherence Times".
1943: 1703: 1675: 347: 1648: 1617: 1585: 1076: 1896: 1843: 471: 295: 2176: 2411: 1150: 1125: 17: 2218: 1906: 1181:"Quantum manifestations of bifurcations of closed orbits in the photoabsorption spectra of atoms in electric fields" 2093: 1278: 289: 147:
More technically, consider the continuous dynamical system described by the ordinary differential equation (ODE)
747: 130:
Period-halving bifurcations (L) leading to order, followed by period doubling bifurcations (R) leading to chaos.
79: 1911: 1277:
Courtney, Michael; Jiao, Hong; Spellmeyer, Neal; Kleppner, Daniel; Gao, J.; Delos, J. B.; et al. (1995).
690: 235:{\displaystyle {\dot {x}}=f(x,\lambda )\quad f\colon \mathbb {R} ^{n}\times \mathbb {R} \to \mathbb {R} ^{n}.} 1901: 87: 1533:
Kleppner, D.; Delos, J. B. (2001). "Beyond quantum mechanics: Insights from the work of Martin Gutzwiller".
2258: 2166: 2031: 636: 425: 245: 2510: 961: 546: 83: 109:
Local bifurcations, which can be analysed entirely through changes in the local stability properties of
2515: 2171: 1696: 669: 2238: 1627: 2286: 836: 536: 639:
of the equilibria in the cycle is satisfied. This is usually accompanied by the birth or death of a
1990: 973: 1935: 2151: 1916: 1823: 530: 1891: 906: 2191: 1803: 113:, periodic orbits or other invariant sets as parameters cross through critical thresholds; and 2341: 2248: 2046: 1873: 1808: 1783: 1689: 1631: 1044: 939: 541: 62: 810: 668:
Global bifurcations can also involve more complicated sets such as chaotic attractors (e.g.
2351: 2103: 2003: 1848: 1542: 1507: 1464: 1419: 1376: 1341: 1290: 1235: 1192: 1034: 1029: 661: 2181: 1630:. "Journal of differential equations", Febrer 2011, vol. 250, nĂșm. 4, pp. 1967–2023. 886: 598:: When the bifurcation parameter increases further, the limit cycle disappears completely. 8: 2311: 2268: 2253: 2098: 2051: 2036: 2021: 1921: 1828: 1813: 1798: 1014: 650: 1853: 1546: 1511: 1468: 1423: 1380: 1345: 1294: 1239: 1196: 2489: 2356: 2186: 2073: 2068: 1838: 1558: 1480: 1454: 1392: 1314: 1259: 1208: 1024: 1019: 1006: 632: 136: 1519: 1353: 649:
in which a stable node and saddle point simultaneously occur on a limit cycle. As the
2361: 2326: 2316: 2213: 1833: 1755: 1644: 1613: 1581: 1562: 1396: 1306: 1251: 1212: 1146: 1121: 1072: 1064: 1000: 982: 110: 70: 2376: 1484: 1318: 94: 2469: 2381: 2331: 2228: 2156: 2108: 1985: 1970: 1965: 1760: 1550: 1515: 1476: 1472: 1427: 1384: 1349: 1298: 1263: 1243: 1200: 575: 552: 351: 50: 1431: 2401: 2296: 2223: 2056: 1868: 1858: 1638: 1605: 1109: 2391: 2336: 1302: 1247: 1165:
James P. Keener, "Infinite Period Bifurcation and Global Bifurcation Branches",
2484: 2451: 2446: 2441: 2243: 2133: 2128: 2026: 1975: 1765: 1117: 1039: 640: 631:
in which a limit cycle collides with two or more saddle points; they involve a
54: 1554: 1388: 27:
Study of sudden qualitative behavior changes caused by small parameter changes
2504: 2479: 2436: 2426: 2421: 2321: 2301: 2161: 2083: 1980: 1788: 986: 1204: 2431: 2396: 2306: 2263: 2118: 2113: 1712: 1310: 1255: 655: 622: 618: 583: 58: 2078: 1180: 2416: 2406: 2291: 2041: 1863: 1770: 1459: 953: 614: 587: 66: 46: 42: 2474: 2371: 1818: 1331: 603:
topology extend out to an arbitrarily large distance (hence 'global').
2386: 2346: 2088: 1750: 1735: 967: 2123: 97:
in 1885 in the first paper in mathematics showing such a behavior.
1628:
Generic bifurcations of low codimension of planar Filippov Systems
126: 90:
differential equations) and discrete systems (described by maps).
1793: 1745: 569: 1409: 1093:
L'Équilibre d'une masse fluide animĂ©e d'un mouvement de rotation
960:
An example of a well-studied codimension-two bifurcation is the
105:
It is useful to divide bifurcations into two principal classes:
2366: 1681: 1276: 578:. After the bifurcation there is no longer a periodic orbit. 139:
with modulus equal to one. In both cases, the equilibrium is
30: 976:. Bifurcation theory has also been applied to the study of 833:, around the origin. A homoclinic bifurcation occurs around 664:
in which a limit cycle collides with a nonhyperbolic cycle.
1626:
Guardia, M.; Martinez-Seara, M.; Teixeira, M. A. (2011).
1279:"Closed Orbit Bifurcations in Continuum Stark Spectra" 909: 889: 839: 813: 750: 693: 474: 428: 363: 298: 248: 153: 1062: 996: 357:
For discrete dynamical systems, consider the system
1169:, Vol. 41, No. 1 (August, 1981), pp. 127–144. 1143:
Bifurcation Theory and Methods of Dynamical Systems
515:{\displaystyle {\textrm {d}}f_{x_{0},\lambda _{0}}} 339:{\displaystyle {\textrm {d}}f_{x_{0},\lambda _{0}}} 930: 895: 851: 825: 799: 736: 514: 460: 414: 338: 280: 234: 1640:Global bifurcations and Chaos: Analytical Methods 1603: 968:Applications in semiclassical and quantum physics 2502: 1225: 1444: 947: 93:The name "bifurcation" was first introduced by 1366: 871:A detailed view of the homoclinic bifurcation. 34:Phase portrait showing saddle-node bifurcation 1697: 1532: 938:. The exact computation is explained on the 415:{\displaystyle x_{n+1}=f(x_{n},\lambda )\,.} 1497: 1704: 1690: 1575: 800:{\displaystyle {\dot {y}}=-x+\mu y+2x^{2}} 1610:Bifurcation Theory and Catastrophe Theory 1458: 606:Examples of global bifurcations include: 582:: For small parameter values, there is a 408: 219: 210: 196: 1578:Chaos in Classical and Quantum Mechanics 1178: 1108: 737:{\displaystyle {\dot {x}}=\mu x+y-x^{2}} 687:A Hopf bifurcation occurs in the system 568: 526:Examples of local bifurcations include: 125: 29: 1636: 45:study of changes in the qualitative or 14: 2503: 1670:Bifurcations and Two Dimensional Flows 564: 1685: 1071:. London: Thompson. pp. 96–111. 654:disrupt the oscillation and form two 121: 461:{\displaystyle (x_{0},\lambda _{0})} 281:{\displaystyle (x_{0},\lambda _{0})} 100: 1844:Measure-preserving dynamical system 1726: 1167:SIAM Journal on Applied Mathematics 1140: 422:Then a local bifurcation occurs at 61:, and the solutions of a family of 24: 1676:Introduction to Bifurcation theory 985:points out in his classic work on 25: 2527: 2412:Oleksandr Mykolayovych Sharkovsky 1658: 1942: 1934: 1711: 1145:. World Scientific. p. 26. 1099:, vol.7, pp. 259-380, Sept 1885. 999: 876: 864: 680: 1569: 1526: 1500:Reports on Mathematical Physics 1491: 1438: 1403: 1360: 852:{\displaystyle \mu =0.06605695} 187: 65:. Most commonly applied to the 2177:Rabinovich–Fabrikant equations 1576:Gutzwiller, Martin C. (1990). 1477:10.1016/j.physleta.2007.04.003 1325: 1270: 1219: 1179:Gao, J.; Delos, J. B. (1997). 1172: 1159: 1134: 1102: 1085: 1056: 455: 429: 405: 386: 275: 249: 242:A local bifurcation occurs at 214: 184: 172: 13: 1: 1632:DOI:10.1016/j.jde.2010.11.016 1597: 1580:. New York: Springer-Verlag. 1520:10.1016/S0034-4877(99)80148-7 1432:10.1016/j.physrep.2005.06.003 1354:10.1016/S0009-2614(97)00931-7 1114:Nonlinear Dynamics and Chaos 948:Codimension of a bifurcation 560:(secondary Hopf) bifurcation 7: 1912:PoincarĂ© recurrence theorem 1303:10.1103/PhysRevLett.74.1538 1248:10.1103/PhysRevLett.73.2825 992: 962:Bogdanov–Takens bifurcation 647:Infinite-period bifurcation 10: 2532: 1907:Poincaré–Bendixson theorem 931:{\displaystyle \mu ^{3/2}} 523:it is a Hopf bifurcation. 2460: 2277: 2259:Swinging Atwood's machine 2204: 2142: 2012: 1999: 1951: 1932: 1902:Krylov–Bogolyubov theorem 1882: 1779: 1719: 1637:Wiggins, Stephen (1988). 974:resonant tunneling diodes 537:Transcritical bifurcation 2167:Lotka–Volterra equations 1991:Synchronization of chaos 1794:axiom A dynamical system 1334:Chemical Physics Letters 1050: 676:Examples of bifurcations 629:Heteroclinic bifurcation 2152:Double scroll attractor 1917:Stable manifold theorem 1824:False nearest neighbors 1555:10.1023/A:1017512925106 1389:10.1023/A:1017546721313 1205:10.1103/PhysRevA.56.356 590:in the first quadrant. 2192:Van der Pol oscillator 2172:Mackey–Glass equations 1804:Box-counting dimension 1678:by John David Crawford 1643:. New York: Springer. 1608:; et al. (1994). 1535:Foundations of Physics 1369:Foundations of Physics 1069:Differential Equations 1067:; Hall, G. R. (2006). 932: 897: 853: 827: 826:{\displaystyle \mu =0} 801: 738: 611:Homoclinic bifurcation 599: 516: 462: 416: 340: 282: 236: 131: 63:differential equations 35: 2342:Svetlana Jitomirskaya 2249:Multiscroll attractor 2094:Interval exchange map 2047:Dyadic transformation 2032:Complex quadratic map 1874:Topological conjugacy 1809:Correlation dimension 1784:Anosov diffeomorphism 1141:Luo, Dingjun (1997). 1045:Tennis racket theorem 933: 898: 854: 828: 802: 739: 572: 542:Pitchfork bifurcation 517: 463: 417: 341: 283: 237: 129: 49:structure of a given 33: 2352:Edward Norton Lorenz 1604:Afrajmovich, V. S.; 1035:Geomagnetic reversal 1030:Feigenbaum constants 907: 896:{\displaystyle \mu } 887: 837: 811: 748: 691: 662:Blue sky catastrophe 586:at the origin and a 472: 426: 361: 296: 246: 151: 2312:Mitchell Feigenbaum 2254:Population dynamics 2239:HĂ©non–Heiles system 2099:Irrational rotation 2052:Dynamical billiards 2037:Coupled map lattice 1897:Liouville's theorem 1829:Hausdorff dimension 1814:Conservative system 1799:Bifurcation diagram 1547:2001FoPh...31..593K 1512:1999RpMP...44...87G 1469:2007PhLA..368..206S 1424:2005PhR...416....1W 1381:2001FoPh...31..355M 1346:1997CPL...277..456F 1295:1995PhRvL..74.1538C 1240:1994PhRvL..73.2825P 1197:1997PhRvA..56..356G 1110:Strogatz, Steven H. 1015:Bifurcation diagram 565:Global bifurcations 2511:Bifurcation theory 2490:Santa Fe Institute 2357:Aleksandr Lyapunov 2187:Three-body problem 2074:Gingerbreadman map 1961:Bifurcation theory 1839:Lyapunov stability 1665:Nonlinear dynamics 1025:Catastrophe theory 1020:Bifurcation memory 1007:Mathematics portal 981:becomes large, as 928: 893: 849: 823: 797: 734: 633:heteroclinic cycle 600: 549:(flip) bifurcation 533:(fold) bifurcation 512: 458: 412: 336: 278: 232: 137:Floquet multiplier 132: 122:Local bifurcations 39:Bifurcation theory 36: 2516:Nonlinear systems 2498: 2497: 2362:BenoĂźt Mandelbrot 2327:Martin Gutzwiller 2317:Peter Grassberger 2200: 2199: 2182:Rössler attractor 1930: 1929: 1834:Invariant measure 1756:Lyapunov exponent 1672:by Elmer G. Wiens 1650:978-0-387-96775-2 1619:978-3-540-65379-0 1587:978-0-387-97173-5 1447:Physics Letters A 1234:(21): 2825–2828. 1091:Henri PoincarĂ©. " 1078:978-0-495-01265-8 983:Martin Gutzwiller 760: 703: 479: 303: 163: 101:Bifurcation types 71:dynamical systems 18:Bifurcation point 16:(Redirected from 2523: 2470:Butterfly effect 2382:Itamar Procaccia 2332:Brosl Hasslacher 2229:Elastic pendulum 2157:Duffing equation 2104:Kaplan–Yorke map 2022:Arnold's cat map 2010: 2009: 1986:Stability theory 1971:Dynamical system 1966:Control of chaos 1946: 1938: 1922:Takens's theorem 1854:PoincarĂ© section 1724: 1723: 1706: 1699: 1692: 1683: 1682: 1654: 1623: 1592: 1591: 1573: 1567: 1566: 1530: 1524: 1523: 1495: 1489: 1488: 1462: 1460:quant-ph/0702172 1453:(3–4): 206–214. 1442: 1436: 1435: 1407: 1401: 1400: 1364: 1358: 1357: 1340:(5–6): 456–464. 1329: 1323: 1322: 1289:(9): 1538–1541. 1274: 1268: 1267: 1223: 1217: 1216: 1176: 1170: 1163: 1157: 1156: 1138: 1132: 1131: 1106: 1100: 1097:Acta Mathematica 1089: 1083: 1082: 1060: 1009: 1004: 1003: 940:Hopf bifurcation 937: 935: 934: 929: 927: 926: 922: 902: 900: 899: 894: 880: 868: 858: 856: 855: 850: 832: 830: 829: 824: 806: 804: 803: 798: 796: 795: 762: 761: 753: 743: 741: 740: 735: 733: 732: 705: 704: 696: 684: 617:collides with a 576:homoclinic orbit 553:Hopf bifurcation 521: 519: 518: 513: 511: 510: 509: 508: 496: 495: 481: 480: 477: 467: 465: 464: 459: 454: 453: 441: 440: 421: 419: 418: 413: 398: 397: 379: 378: 352:Hopf bifurcation 345: 343: 342: 337: 335: 334: 333: 332: 320: 319: 305: 304: 301: 287: 285: 284: 279: 274: 273: 261: 260: 241: 239: 238: 233: 228: 227: 222: 213: 205: 204: 199: 165: 164: 156: 51:family of curves 21: 2531: 2530: 2526: 2525: 2524: 2522: 2521: 2520: 2501: 2500: 2499: 2494: 2462: 2456: 2402:Caroline Series 2297:Mary Cartwright 2279: 2273: 2224:Double pendulum 2206: 2196: 2145: 2138: 2064:Exponential map 2015: 2001: 1995: 1953: 1947: 1940: 1926: 1892:Ergodic theorem 1885: 1878: 1869:Stable manifold 1859:Recurrence plot 1775: 1729: 1715: 1710: 1661: 1651: 1620: 1600: 1595: 1588: 1574: 1570: 1531: 1527: 1496: 1492: 1443: 1439: 1412:Physics Reports 1408: 1404: 1365: 1361: 1330: 1326: 1283:Phys. Rev. Lett 1275: 1271: 1228:Phys. Rev. Lett 1224: 1220: 1177: 1173: 1164: 1160: 1153: 1139: 1135: 1128: 1120:. p. 262. 1107: 1103: 1090: 1086: 1079: 1063:Blanchard, P.; 1061: 1057: 1053: 1005: 998: 995: 970: 950: 943: 918: 914: 910: 908: 905: 904: 888: 885: 884: 881: 872: 869: 860: 838: 835: 834: 812: 809: 808: 791: 787: 752: 751: 749: 746: 745: 728: 724: 695: 694: 692: 689: 688: 685: 567: 547:Period-doubling 504: 500: 491: 487: 486: 482: 476: 475: 473: 470: 469: 449: 445: 436: 432: 427: 424: 423: 393: 389: 368: 364: 362: 359: 358: 328: 324: 315: 311: 310: 306: 300: 299: 297: 294: 293: 269: 265: 256: 252: 247: 244: 243: 223: 218: 217: 209: 200: 195: 194: 155: 154: 152: 149: 148: 135:point having a 124: 103: 57:of a family of 55:integral curves 28: 23: 22: 15: 12: 11: 5: 2529: 2519: 2518: 2513: 2496: 2495: 2493: 2492: 2487: 2485:Predictability 2482: 2477: 2472: 2466: 2464: 2458: 2457: 2455: 2454: 2452:Lai-Sang Young 2449: 2447:James A. Yorke 2444: 2442:Amie Wilkinson 2439: 2434: 2429: 2424: 2419: 2414: 2409: 2404: 2399: 2394: 2389: 2384: 2379: 2377:Henri PoincarĂ© 2374: 2369: 2364: 2359: 2354: 2349: 2344: 2339: 2334: 2329: 2324: 2319: 2314: 2309: 2304: 2299: 2294: 2289: 2283: 2281: 2275: 2274: 2272: 2271: 2266: 2261: 2256: 2251: 2246: 2244:Kicked rotator 2241: 2236: 2231: 2226: 2221: 2216: 2214:Chua's circuit 2210: 2208: 2202: 2201: 2198: 2197: 2195: 2194: 2189: 2184: 2179: 2174: 2169: 2164: 2159: 2154: 2148: 2146: 2143: 2140: 2139: 2137: 2136: 2134:Zaslavskii map 2131: 2129:Tinkerbell map 2126: 2121: 2116: 2111: 2106: 2101: 2096: 2091: 2086: 2081: 2076: 2071: 2066: 2061: 2060: 2059: 2049: 2044: 2039: 2034: 2029: 2024: 2018: 2016: 2013: 2007: 1997: 1996: 1994: 1993: 1988: 1983: 1978: 1976:Ergodic theory 1973: 1968: 1963: 1957: 1955: 1949: 1948: 1933: 1931: 1928: 1927: 1925: 1924: 1919: 1914: 1909: 1904: 1899: 1894: 1888: 1886: 1883: 1880: 1879: 1877: 1876: 1871: 1866: 1861: 1856: 1851: 1846: 1841: 1836: 1831: 1826: 1821: 1816: 1811: 1806: 1801: 1796: 1791: 1786: 1780: 1777: 1776: 1774: 1773: 1768: 1766:Periodic point 1763: 1758: 1753: 1748: 1743: 1738: 1732: 1730: 1727: 1721: 1717: 1716: 1709: 1708: 1701: 1694: 1686: 1680: 1679: 1673: 1667: 1660: 1659:External links 1657: 1656: 1655: 1649: 1634: 1624: 1618: 1599: 1596: 1594: 1593: 1586: 1568: 1541:(4): 593–612. 1525: 1506:(1–2): 87–94. 1490: 1437: 1418:(1–2): 1–128. 1402: 1375:(2): 355–370. 1359: 1324: 1269: 1218: 1191:(1): 356–364. 1171: 1158: 1151: 1133: 1126: 1118:Addison-Wesley 1101: 1084: 1077: 1065:Devaney, R. L. 1054: 1052: 1049: 1048: 1047: 1042: 1040:Phase portrait 1037: 1032: 1027: 1022: 1017: 1011: 1010: 994: 991: 978:laser dynamics 969: 966: 949: 946: 945: 944: 925: 921: 917: 913: 892: 882: 875: 873: 870: 863: 861: 848: 845: 842: 822: 819: 816: 794: 790: 786: 783: 780: 777: 774: 771: 768: 765: 759: 756: 731: 727: 723: 720: 717: 714: 711: 708: 702: 699: 686: 679: 677: 666: 665: 659: 644: 641:periodic orbit 626: 566: 563: 562: 561: 558:Neimark–Sacker 555: 550: 544: 539: 534: 507: 503: 499: 494: 490: 485: 468:if the matrix 457: 452: 448: 444: 439: 435: 431: 411: 407: 404: 401: 396: 392: 388: 385: 382: 377: 374: 371: 367: 331: 327: 323: 318: 314: 309: 277: 272: 268: 264: 259: 255: 251: 231: 226: 221: 216: 212: 208: 203: 198: 193: 190: 186: 183: 180: 177: 174: 171: 168: 162: 159: 141:non-hyperbolic 123: 120: 119: 118: 114: 102: 99: 95:Henri PoincarĂ© 53:, such as the 26: 9: 6: 4: 3: 2: 2528: 2517: 2514: 2512: 2509: 2508: 2506: 2491: 2488: 2486: 2483: 2481: 2480:Edge of chaos 2478: 2476: 2473: 2471: 2468: 2467: 2465: 2459: 2453: 2450: 2448: 2445: 2443: 2440: 2438: 2437:Marcelo Viana 2435: 2433: 2430: 2428: 2427:Audrey Terras 2425: 2423: 2422:Floris Takens 2420: 2418: 2415: 2413: 2410: 2408: 2405: 2403: 2400: 2398: 2395: 2393: 2390: 2388: 2385: 2383: 2380: 2378: 2375: 2373: 2370: 2368: 2365: 2363: 2360: 2358: 2355: 2353: 2350: 2348: 2345: 2343: 2340: 2338: 2335: 2333: 2330: 2328: 2325: 2323: 2322:Celso Grebogi 2320: 2318: 2315: 2313: 2310: 2308: 2305: 2303: 2302:Chen Guanrong 2300: 2298: 2295: 2293: 2290: 2288: 2287:Michael Berry 2285: 2284: 2282: 2276: 2270: 2267: 2265: 2262: 2260: 2257: 2255: 2252: 2250: 2247: 2245: 2242: 2240: 2237: 2235: 2232: 2230: 2227: 2225: 2222: 2220: 2217: 2215: 2212: 2211: 2209: 2203: 2193: 2190: 2188: 2185: 2183: 2180: 2178: 2175: 2173: 2170: 2168: 2165: 2163: 2162:Lorenz system 2160: 2158: 2155: 2153: 2150: 2149: 2147: 2141: 2135: 2132: 2130: 2127: 2125: 2122: 2120: 2117: 2115: 2112: 2110: 2109:Langton's ant 2107: 2105: 2102: 2100: 2097: 2095: 2092: 2090: 2087: 2085: 2084:Horseshoe map 2082: 2080: 2077: 2075: 2072: 2070: 2067: 2065: 2062: 2058: 2055: 2054: 2053: 2050: 2048: 2045: 2043: 2040: 2038: 2035: 2033: 2030: 2028: 2025: 2023: 2020: 2019: 2017: 2011: 2008: 2005: 1998: 1992: 1989: 1987: 1984: 1982: 1981:Quantum chaos 1979: 1977: 1974: 1972: 1969: 1967: 1964: 1962: 1959: 1958: 1956: 1950: 1945: 1941: 1937: 1923: 1920: 1918: 1915: 1913: 1910: 1908: 1905: 1903: 1900: 1898: 1895: 1893: 1890: 1889: 1887: 1881: 1875: 1872: 1870: 1867: 1865: 1862: 1860: 1857: 1855: 1852: 1850: 1847: 1845: 1842: 1840: 1837: 1835: 1832: 1830: 1827: 1825: 1822: 1820: 1817: 1815: 1812: 1810: 1807: 1805: 1802: 1800: 1797: 1795: 1792: 1790: 1789:Arnold tongue 1787: 1785: 1782: 1781: 1778: 1772: 1769: 1767: 1764: 1762: 1759: 1757: 1754: 1752: 1749: 1747: 1744: 1742: 1739: 1737: 1734: 1733: 1731: 1725: 1722: 1718: 1714: 1707: 1702: 1700: 1695: 1693: 1688: 1687: 1684: 1677: 1674: 1671: 1668: 1666: 1663: 1662: 1652: 1646: 1642: 1641: 1635: 1633: 1629: 1625: 1621: 1615: 1611: 1607: 1606:Arnold, V. I. 1602: 1601: 1589: 1583: 1579: 1572: 1564: 1560: 1556: 1552: 1548: 1544: 1540: 1536: 1529: 1521: 1517: 1513: 1509: 1505: 1501: 1494: 1486: 1482: 1478: 1474: 1470: 1466: 1461: 1456: 1452: 1448: 1441: 1433: 1429: 1425: 1421: 1417: 1413: 1406: 1398: 1394: 1390: 1386: 1382: 1378: 1374: 1370: 1363: 1355: 1351: 1347: 1343: 1339: 1335: 1328: 1320: 1316: 1312: 1308: 1304: 1300: 1296: 1292: 1288: 1284: 1280: 1273: 1265: 1261: 1257: 1253: 1249: 1245: 1241: 1237: 1233: 1229: 1222: 1214: 1210: 1206: 1202: 1198: 1194: 1190: 1186: 1182: 1175: 1168: 1162: 1154: 1152:981-02-2094-4 1148: 1144: 1137: 1129: 1127:0-201-54344-3 1123: 1119: 1115: 1111: 1105: 1098: 1094: 1088: 1080: 1074: 1070: 1066: 1059: 1055: 1046: 1043: 1041: 1038: 1036: 1033: 1031: 1028: 1026: 1023: 1021: 1018: 1016: 1013: 1012: 1008: 1002: 997: 990: 988: 987:quantum chaos 984: 979: 975: 965: 963: 958: 955: 941: 923: 919: 915: 911: 890: 879: 874: 867: 862: 846: 843: 840: 820: 817: 814: 792: 788: 784: 781: 778: 775: 772: 769: 766: 763: 757: 754: 729: 725: 721: 718: 715: 712: 709: 706: 700: 697: 683: 678: 675: 674: 673: 671: 663: 660: 657: 656:saddle points 652: 648: 645: 642: 638: 634: 630: 627: 624: 620: 616: 612: 609: 608: 607: 604: 597: 593: 589: 585: 581: 577: 571: 559: 556: 554: 551: 548: 545: 543: 540: 538: 535: 532: 529: 528: 527: 524: 505: 501: 497: 492: 488: 483: 450: 446: 442: 437: 433: 409: 402: 399: 394: 390: 383: 380: 375: 372: 369: 365: 355: 353: 349: 329: 325: 321: 316: 312: 307: 291: 270: 266: 262: 257: 253: 229: 224: 206: 201: 191: 188: 181: 178: 175: 169: 166: 160: 157: 145: 142: 138: 128: 115: 112: 108: 107: 106: 98: 96: 91: 89: 85: 81: 76: 72: 68: 64: 60: 59:vector fields 56: 52: 48: 44: 40: 32: 19: 2432:Mary Tsingou 2397:David Ruelle 2392:Otto Rössler 2337:Michel HĂ©non 2307:Leon O. Chua 2264:Tilt-A-Whirl 2234:FPUT problem 2119:Standard map 2114:Logistic map 1960: 1939: 1740: 1713:Chaos theory 1639: 1612:. Springer. 1609: 1577: 1571: 1538: 1534: 1528: 1503: 1499: 1493: 1450: 1446: 1440: 1415: 1411: 1405: 1372: 1368: 1362: 1337: 1333: 1327: 1286: 1282: 1272: 1231: 1227: 1221: 1188: 1185:Phys. Rev. A 1184: 1174: 1166: 1161: 1142: 1136: 1113: 1104: 1096: 1092: 1087: 1068: 1058: 971: 959: 951: 667: 646: 628: 619:saddle point 610: 605: 601: 595: 592:Middle panel 591: 584:saddle point 579: 525: 356: 146: 140: 133: 104: 92: 74: 67:mathematical 43:mathematical 38: 37: 2417:Nina Snaith 2407:Yakov Sinai 2292:Rufus Bowen 2042:Duffing map 2027:Baker's map 1952:Theoretical 1864:SRB measure 1771:Phase space 1741:Bifurcation 954:codimension 637:eigenvalues 615:limit cycle 613:in which a 596:Right panel 588:limit cycle 531:Saddle-node 75:bifurcation 47:topological 2505:Categories 2475:Complexity 2372:Edward Ott 2219:Convection 2144:Continuous 1819:Ergodicity 1598:References 847:0.06605695 580:Left panel 348:eigenvalue 111:equilibria 2387:Mary Rees 2347:Bryna Kra 2280:theorists 2089:Ikeda map 2079:HĂ©non map 2069:Gauss map 1751:Limit set 1736:Attractor 1563:116944147 1397:120968155 1213:120255640 912:μ 891:μ 841:μ 815:μ 776:μ 767:− 758:˙ 722:− 710:μ 701:˙ 625:dynamics. 502:λ 447:λ 403:λ 326:λ 267:λ 215:→ 207:× 192:: 182:λ 161:˙ 69:study of 2463:articles 2205:Physical 2124:Tent map 2014:Discrete 1954:branches 1884:Theorems 1720:Concepts 1485:15562617 1319:21573702 1311:10059054 1256:10057205 1112:(1994). 993:See also 290:Jacobian 117:points). 80:ordinary 2461:Related 2269:Weather 2207:systems 2000:Chaotic 1746:Fractal 1543:Bibcode 1508:Bibcode 1465:Bibcode 1420:Bibcode 1377:Bibcode 1342:Bibcode 1291:Bibcode 1264:1641622 1236:Bibcode 1193:Bibcode 807:, when 623:chaotic 346:has an 292:matrix 288:if the 88:partial 41:is the 2367:Hee Oh 2002:maps ( 1849:Mixing 1647:  1616:  1584:  1561:  1483:  1395:  1317:  1309:  1262:  1254:  1211:  1149:  1124:  1075:  670:crises 2278:Chaos 2057:outer 1761:Orbit 1559:S2CID 1481:S2CID 1455:arXiv 1393:S2CID 1315:S2CID 1260:S2CID 1209:S2CID 1051:Notes 942:page. 651:limit 84:delay 2004:list 1728:Core 1645:ISBN 1614:ISBN 1582:ISBN 1307:PMID 1252:PMID 1147:ISBN 1122:ISBN 1073:ISBN 952:The 744:and 73:, a 1551:doi 1516:doi 1473:doi 1451:368 1428:doi 1416:416 1385:doi 1350:doi 1338:277 1299:doi 1244:doi 1201:doi 1095:". 883:As 672:). 86:or 2507:: 1557:. 1549:. 1539:31 1537:. 1514:. 1504:44 1502:. 1479:. 1471:. 1463:. 1449:. 1426:. 1414:. 1391:. 1383:. 1373:31 1371:. 1348:. 1336:. 1313:. 1305:. 1297:. 1287:74 1285:. 1281:. 1258:. 1250:. 1242:. 1232:73 1230:. 1207:. 1199:. 1189:56 1187:. 1183:. 1116:. 964:. 354:. 82:, 2006:) 1705:e 1698:t 1691:v 1653:. 1622:. 1590:. 1565:. 1553:: 1545:: 1522:. 1518:: 1510:: 1487:. 1475:: 1467:: 1457:: 1434:. 1430:: 1422:: 1399:. 1387:: 1379:: 1356:. 1352:: 1344:: 1321:. 1301:: 1293:: 1266:. 1246:: 1238:: 1215:. 1203:: 1195:: 1155:. 1130:. 1081:. 924:2 920:/ 916:3 859:. 844:= 821:0 818:= 793:2 789:x 785:2 782:+ 779:y 773:+ 770:x 764:= 755:y 730:2 726:x 719:y 716:+ 713:x 707:= 698:x 658:. 506:0 498:, 493:0 489:x 484:f 478:d 456:) 451:0 443:, 438:0 434:x 430:( 410:. 406:) 400:, 395:n 391:x 387:( 384:f 381:= 376:1 373:+ 370:n 366:x 330:0 322:, 317:0 313:x 308:f 302:d 276:) 271:0 263:, 258:0 254:x 250:( 230:. 225:n 220:R 211:R 202:n 197:R 189:f 185:) 179:, 176:x 173:( 170:f 167:= 158:x 20:)

Index

Bifurcation point

mathematical
topological
family of curves
integral curves
vector fields
differential equations
mathematical
dynamical systems
ordinary
delay
partial
Henri Poincaré
equilibria

Floquet multiplier
Jacobian
eigenvalue
Hopf bifurcation
Saddle-node
Transcritical bifurcation
Pitchfork bifurcation
Period-doubling
Hopf bifurcation
Neimark–Sacker

homoclinic orbit
saddle point
limit cycle

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑