Knowledge

Bach quadrangle

Source 📝

274:
shaped; they appear to be secondaries from craters of c2 through c5 age. Therefore, the intercrater plains unit is thought to be older than most c2 craters. Its relation to c1 craters is not clear. The highly degraded nature of c1 craters makes it impossible to determine whether the craters predate, postdate, or are contemporaneous with the intercrater plains unit. However, the presence of shallow depressions, which may be ancient craters, within this plains material suggests that the unit flooded a preexisting population of craters and therefore was emplaced sometime during the period of late heavy crater bombardment. The two proposed origins for this plains unit, as volcanic or basin-ejecta material, cannot be unambiguously resolved by geologic relations in the Bach region. However, a volcanic origin is favored because of (1) the widespread distribution of the plains material throughout the imaged regions of Mercury, (2) the apparent lack of source basins large enough to supply such great amounts of
398:
decreasing rate of resurfacing and of crater modification (Malin and Dzurisin, 1977). The smaller extent of the smooth and very smooth plains units, compared with that of older plains materials, suggests considerable heterogeneity of mercurian crustal materials. Subcrustal zones of tension may have allowed molten materials to reach the surface through fractures beneath craters, even during the period of global contraction (Solomon, 1977). Ridges of domical cross section cut some c4 craters and, at places, flank areas of young, very smooth plains material. Thus, possible volcanic extrusions associated with tectonic activity may have continued into the period of formation of c4 craters and the oldest very smooth plains material.
299:, which is probably basin ejecta. However, unlike plains material of the lunar uplands, no source basin is evident for the mercurian smooth and very smooth plains units within the imaged part of the Bach region. Although such a source basin may lie within the part not imaged, intervening areas do not contain smooth or very smooth plains materials. For these reasons we tentatively ascribe a volcanic origin to most of the smooth and very smooth plains material. The ridges appear to be of volcano-tectonic origin; the fracturing may have provided the means by which lavas reached the surface to form these younger plains units. Some very smooth and smooth plains materials that form the floors of c5 and c4 craters may be impact melt. 331:
topographically depressed areas; they are restricted to the intermediate and smooth plains units in the eastern part of the map region; (2) small (~100 km long, ~100 m high), arcuate or sinuous scarps, also confined primarily to the intermediate and smooth plains units in the eastern part of the map region; and (3) large (>100 km long, ~1 km high), broadly arcuate but locally irregular or sinuous scarps whose faces are somewhat steeper. Several of these scarps (lat 83° S., long 80°) deform craters and offset preexisting features vertically (FDS 166751). The morphology and structural relations of the scarps suggest that most result from
184: 327:(centered at lat 81° S., long 30°), ridges are domical in cross section and have smooth tops with small irregular or rimless craters along their crests; they appear to overlap both a c3 and a c1 crater (FDS 166751). In turn, these ridges are superposed by c3 craters and c4 ejecta. The ridges may be volcanotectonic features, composed of extrusives along fissures. However, they are mapped only as ridges because we cannot determine if they are volcanic material that should be mapped as a separate unit or uplifted intercrater plains. These same structures may have been the source of older plains units. 343:
scarps and ridges and, if the material is ponded extrusives or mass-wasted products, may postdate the structures. Scarps and ridges are abundant in intercrater, intermediate, and smooth plains units, but they are not embayed by intermediate and intercrater plains materials. These relations suggest that the structures began to form after emplacement of these two oldest plains units. Some of the oldest craters and basins, such as Cervantes, have polygonal shapes at least as marked as more recent craters, suggesting that some structural lineaments are older than c1 craters.
90: 378:
c2 craters have shallow interiors but moderately well preserved rim features, suggesting that at least some of these craters have undergone topographic adjustment due to isostatic phenomena (Schaber and others, 1977). This adjustment may have been facilitated by a high-temperature mantle that was conducive to "crustal plasticity" (Malin and Dzurisin, 1977). The lesser amount of intermediate plains material indicates decreasing plains formation, some localized within older basins.
3514: 2739: 20: 2751: 233:
degradational changes are systematic with increasing age, they can be used to correlate local and regional stratigraphic sequences over the map region. On the basis of this morphologic evaluation, five crater ages are defined and used to make stratigraphic assignments. However, the low sun angle at which images in the region were acquired may make craters appear younger than in other parts of Mercury where images were taken at higher sun angles.
295:. Smooth plains material embays the ejecta blanket of a c3 crater on Pushkin's rim at lat 66° S, long 28° (FDS 27402) and fills the interior and part of the outer-ring area of Bach. The distribution of these two youngest plains units may indicate that the smooth plains material as mapped is nothing more than a thin, discontinuous layer of very smooth plains material that mantles the older units. In this respect, it is similar to the lunar 394:
faulting, which substantiates the suggestion that contraction occurred concurrently with spin-down. Linear structures (other than some ridges) are thus interpreted to form as a result of these two active processes. Fracture and lineament patterns around the Caloris basin suggested to Pechmann and Melosh (1979) that Mercury's despinning period began before global contraction started and ended during the contraction's early phases.
3524: 237:
half the diameter of the outer rings. Bach's inner ring, the most complete, is open only to the southeast; it consist of an almost continuous series of sharp-crested hills. The area within it and part of the area between it and the outer ring are filled with smooth plains material. The inner rings of Cervantes and Bernini consist of discontinuous, low, rounded hills, Bernini has a small central peak.
291:
commonly within older craters. The areas of greatest concentration of smooth and very smooth plains materials also contain the most ridges, which suggests that ridges and the younger plains units are genetically related. Very smooth plains material for instance, commonly lies at the base of ridges or scarps. It occurs as small patches within the smooth plains unit that fills the crater
352:
the large basins by "smooth plains," and (5) a period of light impact cratering. Although these divisions have withstood well the assessments of subsequent investigators, they do not define a stratigraphy. Because the geologic map of the Bach region constitutes a synthesis of observation with interpretation, we shall explore several aspects of the region's geologic development.
270:(fluidized ejecta sheets or ballistically deposited secondary-crater ejecta). Plains formation occurred throughout the period when visible craters were formed and most likely throughout the period of intense impact cratering (Strom, 1977). The time scale for production and retention of plains units is crudely similar to that for the production and retention of craters. 229:, stratigraphic relations among mercurian craters are more clearly discerned because Mercury has a lower density of large craters, and its enhanced gravitational acceleration has restricted the distribution of ejecta. These attributes of the mercurian crater population allow stratigraphic sequences to be constructed over large regions. 339:. However, an extrusive origin has been suggested by Dzurisin (1978) for a scarp more than 200 km long that extends from about lat 70° S. to the map border between long 45° and 52°; he based this interpretation on albedo differences between the two sides of the scarp and on partial burial of craters transected by it. 401:
The period of tectonic adjustment of the mercurian lithosphere lasted at least through the time of formation of smooth plains material; c4 craters that formed during this period are cut by scarps and are superposed on them. Some very smooth plains material, most of which postdates c4 craters, appears
393:
Theoretical studies by Melosh (1977), based on observations recorded by Dzurisin (1978), suggested that tidal spin-down combined with core or lithospheric contraction could explain many of the tectonic features of Mercury. The scarps occurring in the polar regions do appear to be the result of thrust
389:
adjacent to the north) are apparently the expression of thrust faults; they suggest that planetary contraction may have stressed the lithosphere at about the time that c3 craters and smooth plains material were formed. Following core formation, lithospheric cooling and consequent contraction may have
377:
by Malin), occurs within the oldest (intercrater) plains material and is thought by most workers to be coeval with or older than that material. The intercrater unit, presumably volcanic extrusions through tensional fractures, is the most voluminous plains material in the map region. Many large c1 and
285:
Materials of the smooth plains and very smooth plains are also concentrated mainly in the eastern part of the map area. The smooth plains unit has a lower density of small craters than does intermediate plains material and a somewhat hummocky surface with scattered small hills and knobs. The hummocks
111:
encounters and hence not visible. The entire mapped area was covered by near-vertical photography from the second encounter, and the eastern part, from longitude 15° to about 110°, was covered by oblique photography from the first encounter. No third-encounter images were acquired. The entire visible
261:
About 60 percent of the mapped area consists of tracts of planar surfaces having a variety of small-scale textures. These tracts range in size from a few square kilometers within craters to areas larger than 10,000 km that surround and separate large craters: the so-called "intercrater plains".
405:
However, the time of formation of c5 craters and very smooth plains material has, for the most part, been tectonically quiescent. During this period, with the exception of a scattering of extremely fresh craters and some minor mass wasting (Malin and Dzurisin, 1977), almost no geologic activity has
397:
Plains formation and cratering continued at reduced rates during the early phases of planetary cooling and contraction. c3 craters are distinguishable by partial retention of secondary craters and by locally prominent morphologic features (McCauley and others, 1981). These characteristics suggest a
360:
materials. Evidence for an intrinsic dipolar magnetic field (Ness and others, 1974) reinforces interpretations favoring a large core. This core, which formed partly as a result of radiogenic heating, produced additional heating, leading to global expansion and the formation of extensional fractures
281:
The intermediate plains material is concentrated mostly in the northeastern part of the Bach region. It is similar in morphology to intercrater plains material but has a lower density of small craters. On the basis of the reasoning applied to the intercrater plains material, the intermediate plains
708:
Prepared for the National Aeronautics and Space Administration by the U.S. Department of the Interior, U.S. Geological Survey. (Published in hardcopy as USGS Miscellaneous Investigations Series Map I–2015, as part of the Atlas of Mercury, 1:5,000,000 Geologic Series. Hardcopy is available for sale
355:
The history of the region begins prior to the formation of any presently visible surface, when Mercury's internal evolution played a key role in determining subsequent landform development. Because it is the planet nearest the Sun, Mercury represents one extreme in possible cosmochemical models of
351:
Murray and others (1975) proposed that Mercury's history could be divided into five periods: (1) accretion and differentiation, (2) "terminal heavy bombardment," (3) formation of the Caloris basin (centered off map sheet at lat 30° N., long 195° ; U.S. Geological Survey, 1979), (4) filling of
236:
Of the region's three double-ring basins, Bach (200 km in diameter) and Bernini (140 km in diameter) are moderately fresh (of c3 age) and have well-defined secondary-crater fields, whereas Cervantes (200 km in diameter) is degraded (c1). The inner rings of the three basins are about
240:
As first noted by Gault and others, the continuous ejecta blankets and secondary crater fields surrounding mercurian craters are smaller than their lunar counterparts, and the boundary between the two features is much less distinct. As a consequence, continuous and discontinuous ejecta are mapped
342:
Age relations among structural features are not readily apparent. In the Bach region, the youngest craters cut by a scarp are of c4 age; the oldest crater to superpose a scarp is a c3. These relations suggest that scarp formation occurred in c3 to c4 time. Very smooth plains material flanks some
273:
The oldest and most extensive plains material in the Bach region, the intercrater plains material, is characterized by a gently rolling surface and a high density of superposed craters less than 15 km in diameter. Most of these small craters occur in strings or clusters and are irregularly
232:
The degree of crater degradation is determined by qualitative assessment of their landforms such as rim crests, interior wall terraces and slumps, central peaks, continuous ejecta deposits, and secondary crater fields (see Malin and Dzurisin, 1977; McCauley and others, 1981). To the extent that
307:
The map region displays a wide variety of structural features, including lineaments associated with ridges, scarps, and polygonal crater walls. Joint-controlled mass movements are most likely responsible for the polygonal crater-wall segments; segments as long as 100 km suggest that these
290:
at lat 66° S., long 32°; FDS 27402). The very smooth plains unit has virtually no visible small craters and displays smoother planar surfaces than those of the smooth plains unit. It occurs in the lowest areas within smooth plains material (including areas within buried crater depressions) and
330:
Lobate scarps are the most common structural landforms in the Bach region. Almost all have convex slope profiles, rounded crests, and steep, sharply defined lobes. Three types are seen in the map region: (1) very small (<50 km long, ~100 m high), irregular scarps that commonly enclose
365:
from a more rapid rotation rate (Burns, 1976; Melosh, 1977; Melosh and Dzurisin, 1978). The major east-west lineament trend in this polar region (noted in previous section) conforms to a prediction of Melosh (1977) for the orientation of normal faults. However, no unambiguous evidence for
116:
by combining images from the first and second encounters taken at different viewing angles or by combining second-encounter images of the same area taken at different viewing angles. These combinations provided excellent qualitative control of topographic relief and a good quantitative
361:
in the lithosphere (Solomon, 1976, 1977). These fractures may have provided egress for the eruption of the oldest plains material during the period of heavy bombardment. Also about this time other structural lineaments developed, possibly as a result of stresses induced by
741:
Leake, M.A., 1982, The intercrater plains of Mercury and the Moon: Their nature, origin, and role in terrestrial planet evolution , in Advances in Planetary Geology—1982: National Aeronautics and Space Administration Technical Memorandum 84894, p. 3–
241:
together in the Bach region as "radial facies." With this exception, the morphological elements of mercurian craters are virtually identical with those on the Moon. Therefore, all of the craters within the Bach region are probably the result of impact by
853:
Strom, R.G., Murray, B. C., Eggelton, M.J.S., Danielson, G.E., Davies, M.E., Gault, D.E., Hapke, Bruce, O'Leary, Brian, Trask, N.J., Guest, J.E., Anderson, James, and Klassen, Kenneth, 1975, Preliminary imaging results from the second Mercury encounter:
737:
International Astronomical Union, 1977, Working Group for Planetary System Nomenclature, in 16th General Assembly, Grenoble, 1976, Proceedings: International Astronomical Union Transactions, v. 16B, p. 330–333, 351–
315:
Large ridges and scarps are the most prominent structural features in the low-sun-angle Mariner 10 pictures of the Bach region. They are most numerous between long 0° and 90°, where they have no preferred orientation.
164:. An unusual area between lat 69° and 80° S. and long 30° and 60° consists of young, relatively smooth plains marked by many flat-topped ridges unlike any seen in other areas of Mercury. Scarps similar to 117:
photogrammetric base. However, sun-elevation angles of the images are limited to less than 25°, and image resolutions are no higher than about 0.5 km per picture element. Therefore, the south polar
319:
Ridges may have been formed by several processes, including tectonism and extrusion, or they may be buried crater-rim segments. Several large ridges may represent uplift of plains materials by normal
3177: 172:
adjacent to the north) are relatively common throughout the Bach region. The most common terrain units in the region are the plains units, which display a wide range of small-crater densities.
402:
to postdate the scarps that it commonly embays. Superposition relations of scarps in other regions of Mercury indicate that tectonic activity may have continued into c5 time (Leake, 1982).
3193: 3099: 3072: 3527: 356:
planet formation. Even before the Mariner 10 mission, Mercury's high density and photometric properties suggested a large core, presumably iron, and a lithosphere of
3078: 3472: 3106: 406:
occurred near the mercurian south pole. The youngest smooth plains and the very smooth plains materials that occur within c5 craters may be impact melts.
3092: 2788: 3558: 160:, is 240 km in diameter and occurs at the map boundary at latitude 65° S., longitude 25° . Both Bach and Bernini display extensive fields of 863:
U.S. Geological Survey, 1979, Shaded relief map of Mercury: U.S. Geological Survey Miscellaneous Investigations Series Map I-1149, scale 1:15,000,000.
3113: 790:
Ness, N.F., Behannon, K.W., Lepping, R.P., Whang, Y.C., and Schatten, K.H., 1974, Magnetic field observations near Mercury: Preliminary results from
367: 3188: 3085: 266:, whereas Wilhelms and Oberbeck and others (1977) argued for an impact-related origin through processes similar to those responsible for the lunar 262:
The origin of the plains material is uncertain. Strom and others, Trask and Strom, Strom (1977), and Leake (1982) presented arguments in favor of
3466: 3028: 745:
Malin, M.C., and Dzurisin, Daniel, 1977, Landform degradation on Mercury, the Moon, and Mars: Evidence from crater depth/diameter relationships:
267: 803:
Oberbeck, V.R., Quaide, W.L., Arvidson, R.E., and Aggarwal, H.R., 1977, Comparative studies of lunar, martian and mercurian craters and plains:
728:
Dzurisin, Daniel, 1978, The tectonic and volcanic history of Mercury as inferred from studies of scarps, ridges, troughs, and other lineaments
3183: 3045: 312:. The most conspicuous trends of these lineaments are east-west, N.50° W., and N. 40° E. More trends are north-south, N.20° E., and N.70° E. 275: 476:
Gault, D. E.; Guest, J. E.; Murray, J. B.; Dzurisin, D.; Malin, M. C. (1975). "Some comparisons of impact craters on Mercury and the Moon".
3120: 846: 888: 3225: 422:
Gazetteer of Planetary Nomenclature, International Astronomical Union (IAU) Working Group for Planetary System Nomenclature (WGPSN),
821:
Schaber, G.G., Boyce, J.M., and Trask, N.J., 1977, Moon-Mercury: Large impact structures, isostasy and average crustal viscosity:
3165: 3067: 2781: 781:
Murray, B.C., Strom, R.G., Trask, N.J., and Gault, D.E., 1975, Surface history of Mercury: Implications for terrestrial planets:
754:
McCauley, J.F., Guest, J.E., Schaber, G.G., Trask, N.J., and Greeley, Ronald, 1981, Stratigraphy of the Caloris Basin, Mercury:
121:
reflects mostly large-scale processes and topographic information, whereas other mercurian quadrangle maps benefit from greater
2617: 941: 390:
closed the conduits, restricting formation of plains material (Solomon, 1977). By c4 time, such formation was greatly reduced.
225:, provide the best means of establishing the relative time-stratigraphic order of crater and basin materials. Relative to the 3397: 3235: 323:. Other ridges are arcuate to circular, which suggests that they are segments of old, subdued crater and basin rims. Near 3021: 3487: 2774: 931: 700: 3553: 3477: 3315: 2966: 3389: 3147: 2854: 856: 805: 783: 747: 730: 446:
Malin, M.C. (1976). "Comparison of large crater and multiring basin populations on Mars, Mercury and the Moon".
3517: 3014: 2797: 2549: 2443: 972: 962: 881: 3320: 3158: 2978: 2916: 2842: 1280: 812:
Pechmann, J.B., and Melosh, H.J., 1979, Global fracture patterns of a despun planet: Application to Mercury:
2892: 2866: 2816: 2599: 2569: 2463: 2438: 36: 1603: 1523: 2942: 2904: 2830: 1503: 946: 908: 772:
Melosh, H.J., and Dzurisin, Daniel, 1978, Mercurian global tectonics: A consequence of tidal despinning:
286:
within fresh c5 craters may be mantled floor materials or incipient peak rings (see, for example, crater
2043: 3441: 2954: 2928: 2880: 2048: 1843: 1290: 837:
______1977, The relationship between crustal tectonics and interior evolution in the Moon and Mercury:
2093: 2742: 1308: 874: 183: 1403: 3548: 2992: 2544: 2448: 2468: 3325: 2961: 2698: 2188: 1025: 63: 1598: 3290: 3260: 3054: 2849: 2631: 1998: 1035: 709:
from U.S. Geological Survey, Information Services, Box 25286, Federal Center, Denver, CO 80225)
3431: 2103: 3426: 3376: 3062: 3037: 2373: 2198: 2193: 2128: 1988: 1783: 1588: 1533: 1363: 1343: 936: 52: 2488: 208:
s January 14, 2008 flyby, the probe photographed previously unseen portions of this region.
3305: 2973: 2911: 2837: 2498: 2478: 2378: 2263: 1943: 1703: 1583: 1548: 1428: 1398: 1393: 1040: 1005: 985: 615: 548: 455: 386: 287: 169: 141: 128:
The imaged part of the Bach region covers about 1,570,000 km. Its surface consists of
59: 2253: 1348: 1237: 1086: 8: 3410: 3404: 3340: 3275: 2887: 2861: 2811: 2754: 2586: 2458: 2358: 2353: 2233: 2203: 2158: 2038: 1738: 1638: 1508: 1423: 1383: 1313: 1050: 1010: 990: 75: 3265: 2223: 2023: 1578: 619: 552: 459: 3300: 3250: 2937: 2899: 2825: 2718: 2594: 2539: 2513: 2433: 2398: 2368: 2363: 2113: 2083: 1983: 1898: 1888: 1873: 1868: 1778: 1678: 1668: 1618: 1573: 1498: 1468: 1458: 1333: 1328: 1303: 1275: 1045: 1015: 995: 579:
Strom, R. G.; Trask, N. J.; Guest, J. E. (1975). "Tectonism and volcanism on Mercury".
374: 324: 149: 118: 102: 71: 3436: 1553: 1438: 844:
Strom, R.G., 1977, Origin and relative age of lunar and mercurian intercrater plains:
3367: 2949: 2923: 2875: 2750: 2333: 2258: 2183: 2123: 2078: 2073: 2063: 2058: 2003: 1908: 1903: 1863: 1798: 1768: 1763: 1753: 1733: 1693: 1653: 1633: 1558: 1518: 1493: 1418: 1106: 1091: 1030: 1020: 1000: 796: 681: 627: 434: 67: 2163: 1448: 3199: 2503: 2483: 2393: 2343: 2338: 2323: 2308: 2298: 2278: 2273: 2213: 2178: 2173: 2168: 2143: 2133: 2118: 2088: 2053: 2033: 1973: 1968: 1953: 1923: 1918: 1913: 1853: 1788: 1773: 1748: 1743: 1723: 1708: 1688: 1683: 1658: 1623: 1568: 1563: 1528: 1488: 1453: 1378: 1373: 1338: 1323: 1232: 1222: 1202: 1169: 1164: 1136: 1121: 1101: 897: 830: 814: 774: 765: 756: 721: 677: 650: 623: 588: 556: 512: 485: 296: 292: 161: 157: 153: 40: 503:
Trask, N. J.; Guest, J. E. (1975). "Preliminary geologic terrain map of Mercury".
3330: 3152: 2473: 2428: 2423: 2408: 2403: 2388: 2383: 2313: 2293: 2288: 2243: 2218: 2208: 2148: 2138: 2028: 1958: 1938: 1893: 1858: 1813: 1808: 1803: 1793: 1728: 1718: 1673: 1628: 1613: 1608: 1593: 1513: 1483: 1478: 1433: 1358: 1298: 1270: 1265: 1217: 1207: 1179: 1174: 1126: 1116: 606:
Trask, N. J.; Strom, R. G. (1976). "Additional evidence of mercurian volcanism".
423: 362: 320: 165: 3310: 3285: 2518: 2508: 2493: 2453: 2418: 2413: 2303: 2283: 2268: 2248: 2238: 2228: 2153: 2108: 2098: 2068: 2018: 2013: 2008: 1993: 1963: 1933: 1928: 1883: 1878: 1838: 1828: 1818: 1713: 1698: 1663: 1648: 1543: 1538: 1473: 1443: 1408: 1388: 1368: 1353: 1318: 1242: 1159: 1154: 1068: 3255: 3542: 3497: 3457: 3270: 3245: 2523: 2328: 2318: 1978: 1948: 1848: 1833: 1643: 1413: 1260: 1184: 1111: 1096: 336: 145: 129: 48: 44: 592: 560: 516: 489: 89: 3383: 3360: 3335: 3295: 3280: 3142: 2348: 1823: 1758: 1463: 1212: 1131: 382: 332: 246: 373:
A population of large, very indistinct, degraded craters, (first noted in
3220: 2766: 2664: 309: 133: 113: 3006: 43:
poleward of latitude 65° S. It is named after the prominent crater
3462: 3171: 2649: 1227: 654: 448:
Lunar and Planetary Science Conference, 7th, Houston, 1976, Proceedings
107: 94: 19: 539:
Malin, M. C. (1976). "Observations of intercrater plains on Mercury".
132:
of a wide variety of sizes and morphologies, as well as plains units,
2723: 2681: 2657: 263: 242: 201: 188: 24: 698: 3482: 3126: 2609: 357: 719:
Burns, J.A., 1976, Consequences of the tidal slowing of Mercury:
828:
Solomon, S.C., 1976, Some aspects of core formation in Mercury:
278:, and (3) the restricted ballistic range of ejecta on Mercury. 222: 122: 3523: 641:
Strom, R. G. (1979). "Mercury: A post-Mariner 10 assessment".
250: 137: 699:
Strom, Robert G.; Michael C. Malin; Martha A. Leake (1990).
221:
Superposition relations among craters and basins, and their
3073:
Masses, Mass movements, Magnificats, Passions and Oratorios
226: 866: 668:
Wilhelms, D. E. (1976). "Mercurian volcanism questioned".
763:
Melosh, H.J., 1977, Global tectonics of a despun planet:
475: 701:"Geologic Map Of The Bach (H-15) Quadrangle Of Mercury" 3234: 125:
discrimination and, in some cases, higher resolution.
282:
unit is also tentatively ascribed a volcanic origin.
47:
within the quadrangle, which is in turn named after
3540: 144:that range from 140 to 200 km in diameter: 578: 58:Adjacent quadrangles to the north of Bach are 3022: 2782: 882: 216: 3395: 3374: 3365: 847:Physics of the Earth and Planetary Interiors 839:Physics of the Earth and Planetary Interiors 823:Physics of the Earth and Planetary Interiors 661: 534: 532: 530: 528: 526: 435:Map of the H-15 (Bach) Quadrangle of Mercury 574: 572: 570: 471: 469: 3029: 3015: 2796: 2789: 2775: 889: 875: 605: 502: 3559:Surface features of Mercury by quadrangle 3036: 523: 439: 81: 667: 634: 599: 567: 496: 466: 182: 175: 101:About half of the region was beyond the 88: 18: 3541: 55:. The quadrangle is now called H-15. 3398:Internationale Bachakademie Stuttgart 3010: 2971: 2959: 2947: 2935: 2909: 2897: 2885: 2859: 2847: 2835: 2823: 2770: 870: 640: 538: 445: 3166:Performance practice of Bach's music 800:, v. 185, no. 4146, p. 151–160. 734:, v. 83, no. B10, p. 4883–4906. 74:(270° to 0° W). It is opposite the 3478:Bach Prize (Royal Academy of Music) 860:, v. 80, no. 17, p. 2345–2356. 850:, v. 15, nos. 2–3, p. 156–172. 825:, v. 15, nos. 2–3, p. 189–201. 787:, v. 80, no. 17, p. 2508–2514. 346: 256: 148:(after which the region is named), 13: 14: 3570: 841:, v. 15, no. 15, p. 135–145. 23:Bach quadrangle as mapped by the 3522: 3513: 3512: 2749: 2738: 2737: 834:, v. 28, no. 4, p. 509–521. 818:, v. 38, no. 2, p. 243–250. 778:, v. 35, no. 2, p. 227–236. 769:, v. 31, no. 2, p. 221–243. 760:, v. 47, no. 2, p. 184–202. 751:, v. 82, no. 2, p. 376–388. 195:s view of the south polar region 140:. It includes three double-ring 3390:Johann Sebastian Bach Institute 857:Journal of Geophysical Research 806:Journal of Geophysical Research 784:Journal of Geophysical Research 748:Journal of Geophysical Research 731:Journal of Geophysical Research 713: 581:Journal of Geophysical Research 505:Journal of Geophysical Research 478:Journal of Geophysical Research 370:occurs in the Bach quadrangle. 308:fractures extend deep into the 211: 3178:Printed during Bach's lifetime 428: 416: 1: 1281:Skinakas (hypothetical basin) 409: 2570:Hypothetical moon of Mercury 682:10.1016/0019-1035(76)90128-7 628:10.1016/0019-1035(76)90129-9 541:Geophysical Research Letters 302: 7: 896: 809:, v. 82, p. 1681–1698. 70:(180° to 270° W), and 10: 3575: 3442:St. Thomas Church, Leipzig 3159:Bach's choir and orchestra 2618:Mercury-crossing asteroids 725:, v. 28, no. 4, p 453–458. 692: 217:Crater and basin materials 3508: 3450: 3419: 3353: 3213: 3135: 3053: 3044: 2985: 2921: 2873: 2809: 2804: 2732: 2711: 2691: 2674: 2639: 2630: 2608: 2585: 2578: 2562: 2532: 1289: 1251: 1193: 1145: 1077: 1059: 971: 955: 924: 917: 904: 3554:Polar regions of Mercury 156:. Another large crater, 2699:Colonization of Mercury 593:10.1029/jb080i017p02478 561:10.1029/GL003i010p00581 517:10.1029/jb080i017p02461 490:10.1029/jb080i017p02444 64:Michelangelo quadrangle 3396: 3375: 3366: 3079:Chorale harmonisations 2798:Quadrangles on Mercury 196: 98: 66:(90° to 180° W), 28: 3427:Bach House (Eisenach) 3377:Neue Bachgesellschaft 3148:Church music in Latin 3038:Johann Sebastian Bach 2044:Kuan Han-Chʻing 643:Space Science Reviews 186: 92: 53:Johann Sebastian Bach 22: 16:Quadrangle on Mercury 3473:Bach Prize (Hamburg) 3405:J.S. Bach Foundation 2094:Li Chʻing-Chao 387:Discovery quadrangle 170:Discovery quadrangle 62:(0° to 90° W), 60:Discovery quadrangle 3432:Bach House (Köthen) 3411:List of Bach choirs 2550:Inter-crater plains 620:1976Icar...28..559T 553:1976GeoRL...3..581M 460:1976LPSC....7.3589M 375:stereoscopic images 112:area may be viewed 78:at the north pole. 76:Borealis quadrangle 3093:Organ compositions 655:10.1007/bf00221842 197: 99: 72:Debussy quadrangle 29: 3536: 3535: 3368:Bach Gesellschaft 3349: 3348: 3209: 3208: 3100:Keyboard and lute 3004: 3003: 2999: 2998: 2764: 2763: 2707: 2706: 2626: 2625: 2558: 2557: 1604:ChƏng ChʼƏl 1599:Chiang Kʻui 1238:Santa MarĂ­a Rupes 1107:Mearcair Planitia 1092:Borealis Planitia 1087:Apārangi Planitia 587:(17): 2478–2507. 511:(17): 2461–2477. 484:(17): 2444–2460. 162:secondary craters 105:during the three 68:Neruda quadrangle 3566: 3526: 3516: 3515: 3401: 3380: 3371: 3232: 3231: 3202: 3200:New Bach Edition 3180: 3168: 3161: 3123: 3116: 3114:Orchestral works 3109: 3102: 3095: 3088: 3081: 3051: 3050: 3031: 3024: 3017: 3008: 3007: 2807: 2806: 2791: 2784: 2777: 2768: 2767: 2753: 2741: 2740: 2637: 2636: 2583: 2582: 2104:Liang Kʻai 1309:Africanus Horton 1233:Resolution Rupes 1223:Enterprise Rupes 1203:Antoniadi Dorsum 1170:Goldstone Vallis 1165:Goldstone Catena 1137:Utaridi Planitia 1122:Stilbon Planitia 1102:Caloris Planitia 922: 921: 891: 884: 877: 868: 867: 707: 705: 686: 685: 665: 659: 658: 638: 632: 631: 603: 597: 596: 576: 565: 564: 536: 521: 520: 500: 494: 493: 473: 464: 463: 443: 437: 432: 426: 420: 368:tensional faults 347:Geologic history 297:Cayley Formation 257:Plains materials 207: 194: 114:stereoscopically 35:encompasses the 3574: 3573: 3569: 3568: 3567: 3565: 3564: 3563: 3549:Bach quadrangle 3539: 3538: 3537: 3532: 3504: 3493:Bach quadrangle 3446: 3437:CafĂ© Zimmermann 3415: 3345: 3291:Riemenschneider 3238: 3230: 3205: 3198: 3189:Reconstructions 3176: 3164: 3157: 3131: 3119: 3112: 3105: 3098: 3091: 3086:Songs and arias 3084: 3077: 3040: 3035: 3005: 3000: 2990: 2976: 2964: 2952: 2940: 2926: 2914: 2902: 2890: 2878: 2864: 2852: 2840: 2828: 2814: 2800: 2795: 2765: 2760: 2728: 2703: 2687: 2670: 2641: 2622: 2604: 2574: 2554: 2528: 2449:Sholem Aleichem 1285: 1276:Rembrandt Basin 1271:Raditladi Basin 1266:Pantheon Fossae 1253: 1247: 1218:Discovery Rupes 1208:Adventure Rupes 1195: 1189: 1180:Haystack Vallis 1175:Haystack Catena 1147: 1141: 1127:Suisei Planitia 1117:Sobkou Planitia 1079: 1073: 1061: 1055: 967: 951: 932:Albedo features 913: 900: 895: 716: 703: 695: 690: 689: 666: 662: 639: 635: 604: 600: 577: 568: 547:(10): 581–584. 537: 524: 501: 497: 474: 467: 444: 440: 433: 429: 421: 417: 412: 381:Scarps such as 363:tidal spin-down 349: 305: 259: 249:, and possibly 219: 214: 205: 192: 181: 166:Discovery Rupes 93:Photomosaic of 87: 33:Bach quadrangle 17: 12: 11: 5: 3572: 3562: 3561: 3556: 3551: 3534: 3533: 3531: 3530: 3520: 3509: 3506: 3505: 3503: 3502: 3501: 3500: 3490: 3485: 3480: 3475: 3470: 3460: 3458:Bach festivals 3454: 3452: 3448: 3447: 3445: 3444: 3439: 3434: 3429: 3423: 3421: 3417: 3416: 3414: 3413: 3408: 3402: 3393: 3387: 3381: 3372: 3363: 3357: 3355: 3351: 3350: 3347: 3346: 3344: 3343: 3338: 3333: 3328: 3323: 3318: 3313: 3308: 3303: 3298: 3293: 3288: 3283: 3278: 3273: 3268: 3263: 3258: 3253: 3248: 3242: 3240: 3229: 3228: 3223: 3217: 3215: 3211: 3210: 3207: 3206: 3204: 3203: 3196: 3194:Transcriptions 3191: 3186: 3181: 3174: 3169: 3162: 3155: 3150: 3145: 3139: 3137: 3133: 3132: 3130: 3129: 3124: 3117: 3110: 3103: 3096: 3089: 3082: 3075: 3070: 3065: 3059: 3057: 3048: 3042: 3041: 3034: 3033: 3026: 3019: 3011: 3002: 3001: 2997: 2996: 2983: 2982: 2970: 2958: 2946: 2933: 2932: 2920: 2908: 2896: 2884: 2871: 2870: 2858: 2846: 2834: 2821: 2820: 2805: 2802: 2801: 2794: 2793: 2786: 2779: 2771: 2762: 2761: 2759: 2758: 2746: 2733: 2730: 2729: 2727: 2726: 2721: 2715: 2713: 2709: 2708: 2705: 2704: 2702: 2701: 2695: 2693: 2689: 2688: 2686: 2685: 2678: 2676: 2672: 2671: 2669: 2668: 2667:(2018–present) 2662: 2654: 2645: 2643: 2634: 2628: 2627: 2624: 2623: 2621: 2620: 2614: 2612: 2606: 2605: 2603: 2602: 2597: 2591: 2589: 2580: 2576: 2575: 2573: 2572: 2566: 2564: 2560: 2559: 2556: 2555: 2553: 2552: 2547: 2542: 2536: 2534: 2530: 2529: 2527: 2526: 2521: 2516: 2511: 2506: 2501: 2496: 2491: 2486: 2481: 2476: 2471: 2466: 2461: 2456: 2451: 2446: 2441: 2436: 2431: 2426: 2421: 2416: 2411: 2406: 2401: 2396: 2391: 2386: 2381: 2376: 2371: 2366: 2361: 2356: 2351: 2346: 2341: 2336: 2331: 2326: 2321: 2316: 2311: 2306: 2301: 2296: 2291: 2286: 2281: 2276: 2271: 2266: 2261: 2256: 2251: 2246: 2241: 2236: 2231: 2226: 2221: 2216: 2211: 2206: 2201: 2196: 2191: 2186: 2181: 2176: 2171: 2166: 2161: 2156: 2151: 2146: 2141: 2136: 2131: 2126: 2121: 2116: 2111: 2106: 2101: 2096: 2091: 2086: 2081: 2076: 2071: 2066: 2061: 2056: 2051: 2046: 2041: 2036: 2031: 2026: 2021: 2016: 2011: 2006: 2001: 1996: 1991: 1986: 1981: 1976: 1971: 1966: 1961: 1956: 1951: 1946: 1941: 1936: 1931: 1926: 1921: 1916: 1911: 1906: 1901: 1896: 1891: 1886: 1881: 1876: 1871: 1866: 1861: 1856: 1851: 1846: 1844:Guido d'Arezzo 1841: 1836: 1831: 1826: 1821: 1816: 1811: 1806: 1801: 1796: 1791: 1786: 1781: 1776: 1771: 1766: 1761: 1756: 1751: 1746: 1741: 1736: 1731: 1726: 1721: 1716: 1711: 1706: 1701: 1696: 1691: 1686: 1681: 1676: 1671: 1666: 1661: 1656: 1651: 1646: 1641: 1636: 1631: 1626: 1621: 1616: 1611: 1606: 1601: 1596: 1591: 1586: 1581: 1576: 1571: 1566: 1561: 1556: 1551: 1546: 1541: 1536: 1531: 1526: 1521: 1516: 1511: 1506: 1501: 1496: 1491: 1486: 1481: 1476: 1471: 1466: 1461: 1456: 1451: 1446: 1441: 1436: 1431: 1426: 1421: 1416: 1411: 1406: 1401: 1396: 1391: 1386: 1381: 1376: 1371: 1366: 1361: 1356: 1351: 1346: 1341: 1336: 1331: 1326: 1321: 1316: 1311: 1306: 1301: 1295: 1293: 1287: 1286: 1284: 1283: 1278: 1273: 1268: 1263: 1257: 1255: 1249: 1248: 1246: 1245: 1243:Victoria Rupes 1240: 1235: 1230: 1225: 1220: 1215: 1210: 1205: 1199: 1197: 1191: 1190: 1188: 1187: 1182: 1177: 1172: 1167: 1162: 1160:Arecibo Vallis 1157: 1155:Arecibo Catena 1151: 1149: 1143: 1142: 1140: 1139: 1134: 1129: 1124: 1119: 1114: 1109: 1104: 1099: 1094: 1089: 1083: 1081: 1075: 1074: 1072: 1071: 1069:Caloris Montes 1065: 1063: 1057: 1056: 1054: 1053: 1048: 1043: 1038: 1033: 1028: 1023: 1018: 1013: 1008: 1003: 998: 993: 988: 983: 977: 975: 969: 968: 966: 965: 959: 957: 953: 952: 950: 949: 947:Magnetic field 944: 939: 934: 928: 926: 919: 915: 914: 912: 911: 905: 902: 901: 894: 893: 886: 879: 871: 865: 864: 861: 851: 842: 835: 826: 819: 810: 801: 788: 779: 770: 761: 752: 743: 739: 735: 726: 715: 712: 711: 710: 694: 691: 688: 687: 676:(4): 551–558. 660: 633: 614:(4): 559–563. 598: 566: 522: 495: 465: 438: 427: 414: 413: 411: 408: 348: 345: 337:reverse faults 304: 301: 258: 255: 218: 215: 213: 210: 180: 174: 86: 80: 15: 9: 6: 4: 3: 2: 3571: 3560: 3557: 3555: 3552: 3550: 3547: 3546: 3544: 3529: 3525: 3521: 3519: 3511: 3510: 3507: 3499: 3496: 3495: 3494: 3491: 3489: 3486: 3484: 3481: 3479: 3476: 3474: 3471: 3468: 3464: 3461: 3459: 3456: 3455: 3453: 3449: 3443: 3440: 3438: 3435: 3433: 3430: 3428: 3425: 3424: 3422: 3418: 3412: 3409: 3406: 3403: 3400: 3399: 3394: 3391: 3388: 3385: 3382: 3379: 3378: 3373: 3370: 3369: 3364: 3362: 3359: 3358: 3356: 3354:Organizations 3352: 3342: 3339: 3337: 3334: 3332: 3329: 3327: 3324: 3322: 3319: 3317: 3314: 3312: 3309: 3307: 3304: 3302: 3299: 3297: 3294: 3292: 3289: 3287: 3284: 3282: 3279: 3277: 3274: 3272: 3269: 3267: 3264: 3262: 3259: 3257: 3254: 3252: 3249: 3247: 3244: 3243: 3241: 3237: 3233: 3227: 3224: 3222: 3219: 3218: 3216: 3212: 3201: 3197: 3195: 3192: 3190: 3187: 3185: 3182: 3179: 3175: 3173: 3170: 3167: 3163: 3160: 3156: 3154: 3151: 3149: 3146: 3144: 3141: 3140: 3138: 3134: 3128: 3125: 3122: 3118: 3115: 3111: 3108: 3107:Chamber music 3104: 3101: 3097: 3094: 3090: 3087: 3083: 3080: 3076: 3074: 3071: 3069: 3066: 3064: 3061: 3060: 3058: 3056: 3052: 3049: 3047: 3043: 3039: 3032: 3027: 3025: 3020: 3018: 3013: 3012: 3009: 2994: 2989: 2984: 2980: 2975: 2968: 2963: 2956: 2951: 2944: 2939: 2934: 2930: 2925: 2918: 2913: 2906: 2901: 2894: 2889: 2882: 2877: 2872: 2868: 2863: 2856: 2851: 2844: 2839: 2832: 2827: 2822: 2818: 2813: 2808: 2803: 2799: 2792: 2787: 2785: 2780: 2778: 2773: 2772: 2769: 2757: 2756: 2752: 2747: 2745: 2744: 2735: 2734: 2731: 2725: 2722: 2720: 2717: 2716: 2714: 2710: 2700: 2697: 2696: 2694: 2690: 2683: 2680: 2679: 2677: 2673: 2666: 2663: 2660: 2659: 2655: 2652: 2651: 2647: 2646: 2644: 2638: 2635: 2633: 2629: 2619: 2616: 2615: 2613: 2611: 2607: 2601: 2598: 2596: 2593: 2592: 2590: 2588: 2584: 2581: 2577: 2571: 2568: 2567: 2565: 2561: 2551: 2548: 2546: 2545:Ghost craters 2543: 2541: 2538: 2537: 2535: 2531: 2525: 2522: 2520: 2517: 2515: 2512: 2510: 2507: 2505: 2502: 2500: 2497: 2495: 2492: 2490: 2487: 2485: 2482: 2480: 2477: 2475: 2472: 2470: 2467: 2465: 2462: 2460: 2457: 2455: 2452: 2450: 2447: 2445: 2442: 2440: 2437: 2435: 2432: 2430: 2427: 2425: 2422: 2420: 2417: 2415: 2412: 2410: 2407: 2405: 2402: 2400: 2397: 2395: 2392: 2390: 2387: 2385: 2382: 2380: 2377: 2375: 2372: 2370: 2367: 2365: 2362: 2360: 2357: 2355: 2352: 2350: 2347: 2345: 2342: 2340: 2337: 2335: 2332: 2330: 2327: 2325: 2322: 2320: 2317: 2315: 2312: 2310: 2307: 2305: 2302: 2300: 2297: 2295: 2292: 2290: 2287: 2285: 2282: 2280: 2277: 2275: 2272: 2270: 2267: 2265: 2262: 2260: 2257: 2255: 2252: 2250: 2247: 2245: 2242: 2240: 2237: 2235: 2232: 2230: 2227: 2225: 2222: 2220: 2217: 2215: 2212: 2210: 2207: 2205: 2202: 2200: 2197: 2195: 2192: 2190: 2187: 2185: 2182: 2180: 2177: 2175: 2172: 2170: 2167: 2165: 2162: 2160: 2157: 2155: 2152: 2150: 2147: 2145: 2142: 2140: 2137: 2135: 2132: 2130: 2127: 2125: 2122: 2120: 2117: 2115: 2112: 2110: 2107: 2105: 2102: 2100: 2097: 2095: 2092: 2090: 2087: 2085: 2082: 2080: 2077: 2075: 2072: 2070: 2067: 2065: 2062: 2060: 2057: 2055: 2052: 2050: 2047: 2045: 2042: 2040: 2037: 2035: 2032: 2030: 2027: 2025: 2022: 2020: 2017: 2015: 2012: 2010: 2007: 2005: 2002: 2000: 1999:Judah Ha-Levi 1997: 1995: 1992: 1990: 1987: 1985: 1982: 1980: 1977: 1975: 1972: 1970: 1967: 1965: 1962: 1960: 1957: 1955: 1952: 1950: 1947: 1945: 1942: 1940: 1937: 1935: 1932: 1930: 1927: 1925: 1922: 1920: 1917: 1915: 1912: 1910: 1907: 1905: 1902: 1900: 1897: 1895: 1892: 1890: 1887: 1885: 1882: 1880: 1877: 1875: 1872: 1870: 1867: 1865: 1862: 1860: 1857: 1855: 1852: 1850: 1847: 1845: 1842: 1840: 1837: 1835: 1832: 1830: 1827: 1825: 1822: 1820: 1817: 1815: 1812: 1810: 1807: 1805: 1802: 1800: 1797: 1795: 1792: 1790: 1787: 1785: 1782: 1780: 1777: 1775: 1772: 1770: 1767: 1765: 1762: 1760: 1757: 1755: 1752: 1750: 1747: 1745: 1742: 1740: 1737: 1735: 1732: 1730: 1727: 1725: 1722: 1720: 1717: 1715: 1712: 1710: 1707: 1705: 1702: 1700: 1697: 1695: 1692: 1690: 1687: 1685: 1682: 1680: 1677: 1675: 1672: 1670: 1667: 1665: 1662: 1660: 1657: 1655: 1652: 1650: 1647: 1645: 1642: 1640: 1637: 1635: 1632: 1630: 1627: 1625: 1622: 1620: 1617: 1615: 1612: 1610: 1607: 1605: 1602: 1600: 1597: 1595: 1592: 1590: 1587: 1585: 1582: 1580: 1577: 1575: 1572: 1570: 1567: 1565: 1562: 1560: 1557: 1555: 1552: 1550: 1547: 1545: 1542: 1540: 1537: 1535: 1532: 1530: 1527: 1525: 1522: 1520: 1517: 1515: 1512: 1510: 1507: 1505: 1502: 1500: 1497: 1495: 1492: 1490: 1487: 1485: 1482: 1480: 1477: 1475: 1472: 1470: 1467: 1465: 1462: 1460: 1457: 1455: 1452: 1450: 1447: 1445: 1442: 1440: 1437: 1435: 1432: 1430: 1427: 1425: 1422: 1420: 1417: 1415: 1412: 1410: 1407: 1405: 1402: 1400: 1397: 1395: 1392: 1390: 1387: 1385: 1382: 1380: 1377: 1375: 1372: 1370: 1367: 1365: 1362: 1360: 1357: 1355: 1352: 1350: 1347: 1345: 1342: 1340: 1337: 1335: 1332: 1330: 1327: 1325: 1322: 1320: 1317: 1315: 1312: 1310: 1307: 1305: 1302: 1300: 1297: 1296: 1294: 1292: 1288: 1282: 1279: 1277: 1274: 1272: 1269: 1267: 1264: 1262: 1261:Caloris Basin 1259: 1258: 1256: 1250: 1244: 1241: 1239: 1236: 1234: 1231: 1229: 1226: 1224: 1221: 1219: 1216: 1214: 1211: 1209: 1206: 1204: 1201: 1200: 1198: 1192: 1186: 1185:Simeiz Vallis 1183: 1181: 1178: 1176: 1173: 1171: 1168: 1166: 1163: 1161: 1158: 1156: 1153: 1152: 1150: 1144: 1138: 1135: 1133: 1130: 1128: 1125: 1123: 1120: 1118: 1115: 1113: 1112:Odin Planitia 1110: 1108: 1105: 1103: 1100: 1098: 1097:Budh Planitia 1095: 1093: 1090: 1088: 1085: 1084: 1082: 1076: 1070: 1067: 1066: 1064: 1060:Mountains and 1058: 1052: 1049: 1047: 1044: 1042: 1039: 1037: 1034: 1032: 1029: 1027: 1024: 1022: 1019: 1017: 1014: 1012: 1009: 1007: 1004: 1002: 999: 997: 994: 992: 989: 987: 984: 982: 979: 978: 976: 974: 970: 964: 961: 960: 958: 954: 948: 945: 943: 940: 938: 935: 933: 930: 929: 927: 923: 920: 916: 910: 907: 906: 903: 899: 892: 887: 885: 880: 878: 873: 872: 869: 862: 859: 858: 852: 849: 848: 843: 840: 836: 833: 832: 827: 824: 820: 817: 816: 811: 808: 807: 802: 799: 798: 793: 789: 786: 785: 780: 777: 776: 771: 768: 767: 762: 759: 758: 753: 750: 749: 744: 740: 736: 733: 732: 727: 724: 723: 718: 717: 702: 697: 696: 683: 679: 675: 671: 664: 656: 652: 648: 644: 637: 629: 625: 621: 617: 613: 609: 602: 594: 590: 586: 582: 575: 573: 571: 562: 558: 554: 550: 546: 542: 535: 533: 531: 529: 527: 518: 514: 510: 506: 499: 491: 487: 483: 479: 472: 470: 461: 457: 454:: 3589–3602. 453: 449: 442: 436: 431: 425: 419: 415: 407: 403: 399: 395: 391: 388: 384: 379: 376: 371: 369: 364: 359: 353: 344: 340: 338: 334: 328: 326: 322: 317: 313: 311: 300: 298: 294: 289: 283: 279: 277: 271: 269: 268:Cayley Plains 265: 254: 252: 248: 247:planetesimals 244: 238: 234: 230: 228: 224: 209: 204: 203: 191: 190: 185: 178: 173: 171: 167: 163: 159: 155: 151: 147: 143: 139: 135: 131: 126: 124: 120: 115: 110: 109: 104: 96: 91: 84: 79: 77: 73: 69: 65: 61: 56: 54: 50: 46: 42: 38: 34: 26: 21: 3492: 3451:Other topics 3407:(St. Gallen) 3384:Bach Archive 3361:Bach Society 3239:and scholars 3143:Bach cantata 3046:Compositions 2987: 2962:Michelangelo 2748: 2736: 2656: 2648: 2469:SveinsdĂłttir 2374:Rachmaninoff 2199:Michelangelo 2194:Mendes Pinto 2129:Ma Chih-Yuan 1784:Gainsborough 1589:Chao Meng-Fu 1534:Brunelleschi 1364:Amru Al-Qays 1344:Al-Hamadhani 1213:Beagle Rupes 1132:Tir Planitia 1026:Michelangelo 980: 855: 845: 838: 829: 822: 813: 804: 795: 791: 782: 773: 764: 755: 746: 729: 720: 714:Bibliography 673: 669: 663: 646: 642: 636: 611: 607: 601: 584: 580: 544: 540: 508: 504: 498: 481: 477: 451: 447: 441: 430: 418: 404: 400: 396: 392: 383:Vostok Rupes 380: 372: 354: 350: 341: 329: 318: 314: 306: 284: 280: 272: 260: 239: 235: 231: 220: 212:Stratigraphy 200: 198: 187: 176: 134:fault scarps 127: 119:geologic map 106: 100: 82: 57: 32: 30: 3467:Competition 3392:(Göttingen) 3236:Biographers 3121:Fugal works 2850:Shakespeare 2665:BepiColombo 2661:(2004–2015) 2653:(1973–1975) 2632:Exploration 2499:Villa-Lobos 2479:To Ngoc Van 2444:Shakespeare 2379:Raden Saleh 2264:Mussorgskij 1944:Hovnatanian 1704:Dostoevskij 1584:Chaikovskij 1549:Callicrates 1429:Baranauskas 1399:Aristoxenes 1394:Apollodorus 1146:Canyons and 1036:Shakespeare 973:Quadrangles 963:Quadrangles 649:(1): 3–70. 310:lithosphere 288:Callicrates 276:impact melt 179:photography 85:photography 37:south polar 3543:Categories 3463:Bach Medal 3172:BACH motif 2650:Mariner 10 2459:Stravinsky 2359:Praxiteles 2354:Polygnotus 2234:Monteverdi 2204:Mickiewicz 2159:Mark Twain 1739:Enheduanna 1639:Cunningham 1509:Botticelli 1424:Balanchine 1384:Anguissola 1314:Ahmad Baba 1252:Basins and 1228:Hero Rupes 1194:Ridges and 1078:Plains and 937:Atmosphere 792:Mariner 10 410:References 243:meteorites 108:Mariner 10 103:terminator 95:Mariner 10 83:Mariner 10 27:spacecraft 3488:Portraits 3469:(Leipzig) 3386:(Leipzig) 3301:Schmieder 3184:Reception 3136:More info 2974:Discovery 2912:Beethoven 2838:Raditladi 2724:Sub-Earth 2682:Mercury-P 2658:MESSENGER 2610:Asteroids 2579:Astronomy 2514:Xiao Zhao 2489:VelĂĄzquez 2434:Scarlatti 2399:Rembrandt 2384:Raditladi 2369:Qi Baishi 2364:Prokofiev 2114:Lovecraft 2084:Lermontov 1984:Izquierdo 1899:Hiroshige 1889:Hemingway 1874:Hawthorne 1869:Hauptmann 1779:Futabatei 1679:Derzhavin 1669:Delacroix 1619:Coleridge 1574:Cervantes 1499:Boccaccio 1469:Belinskij 1459:Beethoven 1404:AƛvaghoáčŁa 1334:Al-Akhtal 1329:Akutagawa 1304:Abu Nuwas 1062:volcanoes 1041:Raditladi 1006:Discovery 986:Beethoven 918:Geography 325:Boccaccio 303:Structure 264:volcanism 202:MESSENGER 189:MESSENGER 177:MESSENGER 150:Cervantes 51:composer 25:MESSENGER 3518:Category 3483:Three Bs 3321:Williams 3266:Glöckner 3251:Dadelsen 3226:Students 3153:Passions 3063:Cantatas 2993:features 2979:features 2967:features 2955:features 2943:features 2929:features 2917:features 2905:features 2893:features 2888:Eminescu 2881:features 2867:features 2862:Victoria 2855:features 2843:features 2831:features 2817:features 2812:Borealis 2743:Category 2692:See also 2675:Proposed 2642:and past 2587:Transits 2464:Sullivan 2439:Schubert 2334:Petrarch 2259:Murasaki 2254:MunkĂĄcsy 2184:Melville 2124:Lysippus 2079:Leopardi 2074:Larrocha 2064:Kurosawa 2059:Kunisada 2004:Kalidasa 1909:Hodgkins 1904:Hitomaro 1864:Harunobu 1799:Ghiberti 1769:Flaubert 1764:Firdousi 1754:Faulkner 1734:Eminescu 1694:Dominici 1654:De Graft 1634:Couperin 1559:Carducci 1519:Bramante 1504:Boethius 1494:Bjornson 1419:Balagtas 1349:Al-Jāhiz 1080:plateaus 1051:Victoria 1011:Eminescu 991:Borealis 942:Features 385:(in the 358:silicate 321:faulting 245:, small 168:(in the 39:part of 3341:Zehnder 3306:Schulze 3286:Neumann 3271:Hofmann 2938:Debussy 2900:Tolstoj 2826:Hokusai 2719:Fiction 2712:Related 2684:(~2031) 2640:Current 2540:Geology 2504:Vivaldi 2484:Tolstoj 2394:Raphael 2344:Picasso 2339:Phidias 2324:Oskison 2309:Neumann 2299:Nureyev 2279:Nampeyo 2274:Nabokov 2224:MoliĂšre 2214:Mistral 2179:Matisse 2174:Matabei 2169:Martial 2144:Mansart 2134:Machaut 2119:Lu Hsun 2089:Lessing 2054:Kulthum 2034:Kipling 2024:KertĂ©sz 1989:Janáček 1974:Imhotep 1969:Ictinus 1954:Hun Kal 1924:Holberg 1919:Holbein 1914:Hokusai 1854:Han Kan 1789:Gauguin 1774:Flaiano 1749:Equiano 1744:Enwonwu 1724:Eastman 1709:Dowland 1689:Dickens 1684:Desprez 1659:Debussy 1624:Copland 1579:CĂ©zanne 1569:Calvino 1564:Carolan 1529:Bruegel 1489:Bernini 1454:Beckett 1379:Angelou 1374:Aneirin 1339:Alencar 1324:Aksakov 1291:Craters 1148:valleys 1046:Tolstoj 1016:Hokusai 996:Debussy 956:Regions 925:General 909:Outline 898:Mercury 797:Science 693:Sources 616:Bibcode 549:Bibcode 456:Bibcode 293:Pushkin 199:During 158:Pushkin 154:Bernini 130:craters 49:Baroque 41:Mercury 3498:crater 3420:Places 3336:Wollny 3311:Spitta 3261:Forkel 3221:Family 3214:People 3068:Motets 3055:by BWV 2950:Neruda 2924:Kuiper 2876:Derain 2755:Portal 2474:Titian 2429:Sander 2424:Rudaki 2409:Rivera 2404:Renoir 2389:Rameau 2314:Nizami 2294:Neruda 2289:Nawahi 2244:Mozart 2219:Mofolo 2209:Milton 2149:Mansur 2139:Mahler 2049:Kuiper 2029:Khansa 1959:Hurley 1939:Horace 1894:Hesiod 1859:Handel 1824:Goethe 1814:Glinka 1809:Giotto 1804:Gibran 1794:Geddes 1729:Eitoku 1719:Dvorak 1674:Derain 1629:Copley 1614:Chu Ta 1609:Chopin 1594:Chekov 1554:CamĂ”es 1524:BrontĂ« 1514:Brahms 1484:Berkel 1479:Benoit 1439:BartĂłk 1434:Balzac 1359:Amaral 1299:Abedin 1254:fossae 1031:Neruda 1021:Kuiper 1001:Derain 831:Icarus 815:Icarus 775:Icarus 766:Icarus 757:Icarus 722:Icarus 670:Icarus 608:Icarus 333:thrust 251:comets 223:ejecta 152:, and 142:basins 138:ridges 136:, and 123:albedo 97:images 3528:Audio 3331:Wolff 3316:Terry 3276:Jones 3246:Basso 2986:H-15 2972:H-11 2960:H-12 2948:H-13 2936:H-14 2874:H-10 2595:Earth 2563:Moons 2533:Other 2519:Yeats 2509:Vyasa 2494:Verdi 2454:Sinan 2419:Rodin 2414:Rizal 2304:Nervo 2284:Navoi 2269:Myron 2249:Munch 2239:Moody 2229:Monet 2164:MartĂ­ 2154:March 2109:Liszt 2099:Li Po 2069:Lange 2039:Kƍshƍ 2019:Kenko 2014:Keats 2009:Karsh 1994:Jokai 1964:Ibsen 1934:Homer 1929:Holst 1884:Heine 1879:Haydn 1839:Grieg 1829:Gogol 1819:Gluck 1714:Durer 1699:Donne 1664:Degas 1649:Dario 1544:Byron 1539:Burns 1474:Bello 1449:Bashƍ 1444:Barma 1409:Atget 1389:Anyte 1369:Andal 1354:Alver 1319:Ailey 1196:rupes 704:(PDF) 206:' 193:' 3465:and 3326:Wolf 3296:Rust 3281:Maul 3256:DĂŒrr 3127:Anh. 2988:Bach 2922:H-6 2910:H-7 2898:H-8 2886:H-9 2860:H-2 2848:H-3 2836:H-4 2824:H-5 2810:H-1 2600:Mars 2524:Zola 2329:Ovid 2319:Okyo 2189:Mena 1979:Ives 1949:Hugo 1849:Hals 1834:Goya 1644:Dali 1414:Bach 981:Bach 742:534. 738:355. 424:Bach 227:Moon 146:Bach 45:Bach 31:The 2349:Poe 1759:Fet 1464:Bek 678:doi 651:doi 624:doi 589:doi 557:doi 513:doi 486:doi 335:or 3545:: 2995:) 2981:) 2969:) 2957:) 2945:) 2931:) 2919:) 2907:) 2895:) 2883:) 2869:) 2857:) 2845:) 2833:) 2819:) 794:: 674:28 672:. 647:24 645:. 622:. 612:28 610:. 585:80 583:. 569:^ 555:. 543:. 525:^ 509:80 507:. 482:80 480:. 468:^ 450:. 253:. 3030:e 3023:t 3016:v 2991:( 2977:( 2965:( 2953:( 2941:( 2927:( 2915:( 2903:( 2891:( 2879:( 2865:( 2853:( 2841:( 2829:( 2815:( 2790:e 2783:t 2776:v 890:e 883:t 876:v 706:. 684:. 680:: 657:. 653:: 630:. 626:: 618:: 595:. 591:: 563:. 559:: 551:: 545:3 519:. 515:: 492:. 488:: 462:. 458:: 452:7

Index


MESSENGER
south polar
Mercury
Bach
Baroque
Johann Sebastian Bach
Discovery quadrangle
Michelangelo quadrangle
Neruda quadrangle
Debussy quadrangle
Borealis quadrangle

Mariner 10
terminator
Mariner 10
stereoscopically
geologic map
albedo
craters
fault scarps
ridges
basins
Bach
Cervantes
Bernini
Pushkin
secondary craters
Discovery Rupes
Discovery quadrangle

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑