Knowledge

Asymmetric cell division

Source 📝

198:, asymmetric cell division plays an important role in neural development. Neuroblasts are the progenitor cells which divide asymmetrically to give rise to another neuroblast and a ganglion mother cell (GMC). The neuroblast repeatedly undergoes this asymmetric cell division while the GMC continues on to produce a pair of neurons. Two proteins play an important role in setting up this cell fate asymmetry in the neuroblast, Prospero and Numb. These proteins are both synthesized in the neuroblast and segregate into only the GMC during divisions. Numb is a suppressor of Notch, therefore the asymmetric segregation of Numb to the basal cortex biases the response of the daughter cells to Notch signaling, resulting in two distinct cell fates. Prospero is required for gene regulation in GMCs. It is equally distributed throughout the neuroblast cytoplasm, but becomes localized at the basal cortex when the neuroblast starts to undergo mitosis. Once the GMC buds off from the basal cortex, Prospero becomes translocated into the GMC nucleus to act as a transcription factor. 347:
transcripts associated with other functions fail to exhibit such a localization. Moreover, disruption of microtubule polymerization with nocodazole, and of actin polymerization with cytochalisin B, shows the cytoskeleton is also important in this asymmetry. It appears that microtubules are not required to recruit the mRNA to the centrosome, and that actin is required to attach the centrosome to the cortex. Finally, introducing multiple centrosomes into one cell by inhibiting cytokinesis shows that mRNA dependably localizes on the correct centrosome, suggesting intrinsic differences between each centrosomal composition. It is important to note that these results reflect experiments performed after the first two divisions, yet still demonstrate a different molecular means of establishing asymmetry in a dividing cell.
111: 299:. Embryos inherit a single centrosome which localizes in the prospective larger CD cell cytoplasm and emits radial microtubules during anaphase that contribute to both the mitotic spindle as well as cortical asters. However, the microtubule organizing center of the prospective smaller AB cell emits only microtubules that commit to the mitotic spindle and not cortical bound asters. When embryos are compressed or deformed, asymmetric spindles still form, and staining for gamma tubulin reveals that the second microtubule organizing center lacks the molecular signature of a centrosome. Furthermore, when centrosome number is doubled, 222:. In other words, the loss of apical cortical myosin allows hydrostatic pressure to push against the apical cell membrane, increasing the size of the apical region that is bound to become the larger neuroblast after cell division. Generation of apical and basal myosin flows simultaneously results in symmetric cell division, and delaying of basal myosin flows prevents normal expansion of the basal region of the dividing cell. Although this mechanism is spindle-independent, the spindle is important for setting up the cleavage furrow position, for bringing myosin to the cleavage furrow, and for driving basal myosin clearing. 320:, but relies on a modified mechanism. Compression experiments on the robusta embryo do not affect asymmetric division, suggesting the mechanism, like tubifex, uses a cortical independent molecular pathway. In robusta, antibody staining reveals that the mitotic spindle forms symmetrically until metaphase and stems from two biastral centrosomes. At the onset of metaphase, asymmetry becomes apparent as the centrosome of the prospective larger CD cell lengthens cortical asters while the asters of the prospective smaller AB cell become downregulated. Experiments using 368:), and another that maybe of the same potency or stimulated to further differentiate into specialized cell types such as neurons. This stimulated differentiation arises from many factors which can be divided into two broad categories: intrinsic and extrinsic. Intrinsic factors generally involve differing amounts of cell-fate determinants being distributed into each daughter cell. Extrinsic factors involve interactions with neighboring cells and the micro and macro environment of the precursor cell. 218:, resulting in the timely loss of myosin and Rok from the apical cortex at anaphase onset. The apical myosin flows basally to where the cleavage furrow is positioned. Subsequently, the proteins Tum and Pav at the central spindle recruit myosin to increase myosin concentration, generating a myosin gradient to drive apical myosin flow from the basal cortex. This spatiotemporal control of myosin localization results in the asymmetric loss of cortical tension that normally pushes against 275: 171:
The alignment of the spindle is mediated by the PAR proteins, which regulate the positioning of the centrosomes along the A/P axis as well as the movement of the mitotic spindle along the A/P axis. Following this first asymmetric division, the AB daughter cell divides symmetrically, giving rise to ABa and ABp, while the P1 daughter cell undergoes another asymmetric cell division to produce P2 and EMS. This division is also dependent on the distribution of the PAR proteins.
112: 113: 115: 167:(partitioning defective), which are a conserved group of proteins that function in establishing cell polarity during development. These proteins are initially distributed uniformly throughout the zygote and then become polarized with the creation of the posterior pole. This series of events allows the single celled zygote to obtain polarity through an unequal distribution of multiple factors. 184: 329:
forced symmetric division in a significant number of embryos. Treatment with either drug at these concentrations fails to disrupt normal centrosome dynamics, suggesting that a balance of microtubule polymerization and depolymerization represents another mechanism for establishing asymmetric cell division in spilarian development.
190:(blue) is asymmetrically distributed within the neuroblast. Following cell division, the GMC contains the Numb protein which suppresses Notch signaling. The other daughter cell is receptive to Notch signaling, causing distinct cellular responses, and ultimately two distinct cell fates between the daughter cells. 206:
Without the presence of Inscuteable, the positioning of the mitotic spindle and the cell fate determinants in relationship to each other becomes randomized. Inscuteable mutants display a uniform distribution of Miranda and Numb at the cortex, and the resulting daughter cells display identical neuronal fates.
201:
Other proteins present in the neuroblast mediate the asymmetric localization of Numb and Prospero. Miranda is an anchoring protein that binds to Prospero and keeps it in the basal cortex. Following the generation of the GMC, Miranda releases Prospero and then becomes degraded. The segregation of Numb
225:
Actomyosin-based cortical flows direct a reorganization of the plasma membrane and cell cortex of the neuroblast, which is needed to generate the size difference between daughter cells. Early in mitosis, cortical flows collect membrane folds and protrusions around the apical pole forming a polarized
209:
In addition to the two daughter cells having separate fates, they have different cell sizes; the resulting neuroblast is much larger than the GMC. However, unlike with the proper segregation of fate determinants, asymmetric cell division that gives rise to cell size asymmetry is spindle-independent.
170:
The single cell is now set up to undergo an asymmetric cell division, however the orientation in which the division occurs is also an important factor. The mitotic spindle must be oriented correctly to ensure that the proper cell fate determinants are distributed appropriately to the daughter cells.
278:
Asymmetric cell division is integral during development. In spiralia, the first cleavage can be either symmetric or asymmetric, as shown in the left panel. Asymmetry can be accomplished through simple unequal segregation of cell fate determinants across a single plane, through sequestration of cell
35:
divide asymmetrically to give rise to two distinct daughter cells: one copy of the original stem cell as well as a second daughter programmed to differentiate into a non-stem cell fate. (In times of growth or regeneration, stem cells can also divide symmetrically, to produce two identical copies of
205:
The mitotic spindle must also align parallel to the asymmetrically distributed cell fate determinants to allow them to become segregated into one daughter cell and not the other. The mitotic spindle orientation is mediated by Inscuteable, which is segregated to the apical cortex of the neuroblast.
44:
between the cells, from surrounding cells, or from the precursor cell. This mechanism is known as extrinsic asymmetric cell division. In the second mechanism, the prospective daughter cells are inherently different at the time of division of the mother cell. Because this latter mechanism does not
162:
flux resulting in the movement of the pronucleus and centrosomes towards one pole. The centrosomes deposited by the sperm are responsible for the establishment of the posterior pole within the zygote. Sperm with mutant or absent centrosomes fail to establish a posterior pole. The establishment of
328:
support this observation. Taxol, which stabilized microtubules, forced a significant number of embryos to cleave symmetrically when used at a moderate concentration. Moreover, embryos treated with nocodazole, which sequesters tubulin dimers and promotes microtubule depolymerization, similarly
420:
contain rare subpopulation of cancer stem cells which are capable to divide asymmetrically. The asymmetric division in these cells is regulated by cancer niche (microenvironment) and Wnt pathway. Blocking the Wnt pathway with IWP2 (WNT antagonist) or siRNA-TCF4 resulted in high suppression of
346:
experiments show that mRNA transcripts co-localize with centrosomes during early cleavage. Consequently, these transcripts are inherited in a stereotypical fashion to distinct cells. All mRNA transcripts followed have been implicated in body axis patterning, and in situ hybridization for
279:
fate determinants in a polar lobe which is absorbed by one of the daughter cells, or a combination of both processes. The right panel summarizes the mechanisms of spiralian asymmetric cleavage discussed here. Red features indicate the molecule(s) implicated in establishing asymmetry.
114: 226:
membrane reservoir. As myosin clears from the apical cortex and cleavage furrow ingression causes hydrostatic pressure to increase, the stores of membrane within the reservoir are used to expand the apical region which becomes the larger daughter cell after division.
371:
In addition to the aforementioned Drosophila neuronal example, it was proposed that the macrosensory organs of the Drosophila, specifically the glial cells, also arise from a similar set of asymmetric division from a single progenitor cell via regulation of the
404:, and could therefore constitute an early step in the tumorogenic transformation of stem and progenitor cells. In normal non-tumor stem cells, a number of genes have been described which are responsible for pluripotency, such as 290:
has been shown to demonstrate an interesting asymmetric cell division at the point of first embryonic cleavage. Unlike the classic idea of cortical differences at the zygotic membrane that determine spindle asymmetry in the
384:. In this manner, the daughter cell is forced to interact with the heavily sulfated molecules, which stimulate it to differentiate while the other daughter cell remains in the original niche in a quiescent state. 428:
in asymmetric cell divisions which are involved in tumor growth are loss-of-function mutations. The first suggestion that loss of asymmetric cell division might be involved in tumorigenesis came from studies of
437:
in situ. In these mutants cells divide more symmetrically and generate mis-specified progeny that fail to exit the cell cycle and differentiate, but rather proliferate continuously and form a tumor cell mass.
380:. An example of how extrinsic factors bring about this phenomenon is the physical displacement of one of the daughter cells out of the original stem cell niche, exposing it to signalling molecules such as 39:
In principle, there are two mechanisms by which distinct properties may be conferred on the daughters of a dividing cell. In one, the daughter cells are initially equivalent but a difference is induced by
416:. These genes have been discovered also in the case of cancer stem cells, and shows that their aberrant expression is essential for the formation of tumor cell mass. For example, it has been shown that 261:), research into the processes that govern spiralian development is comparatively lacking. However, one unifying feature shared among spiralia is the pattern of cleavage in the early embryo known as 214:
and its upstream components. Apical localization of Pins (Partner of Inscuteable) by Inscuteable allows Pins-dependent apical Protein Kinase N (Pkn) localization during metaphase. Pkn inhibits
364:
undergoes many cell divisions that give rise to various cell types, including embryonic stem cells. Asymmetric divisions of these embryonic cells gives rise to one cell of the same potency (
773:
Sadler PL, Shakes DC (January 2000). "Anucleate Caenorhabditis elegans sperm can crawl, fertilize oocytes and direct anterior-posterior polarization of the 1-cell embryo".
130:, a series of asymmetric cell divisions in the early embryo are critical in setting up the anterior/posterior, dorsal/ventral, and left/right axes of the body plan. After 1889:
Gho M, Bellaïche Y, Schweisguth F (August 1999). "Revisiting the Drosophila microchaete lineage: a novel intrinsically asymmetric cell division generates a glial cell".
985:
Ikeshima-Kataoka H, Skeath JB, Nabeshima Y, Doe CQ, Matsuzaki F (December 1997). "Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions".
433:. Studies of loss-of-function mutations in key regulators of asymmetric cell division including lgl, aurA, polo, numb and brat, revealed hyperproliferative 332:
Ilyanasa obsoleta: A third, less traditional mechanism contributing to asymmetric cell division in spiralian development has been discovered in the mollusk
334: 693:"The spd-2 gene is required for polarization of the anteroposterior axis and formation of the sperm asters in the Caenorhabditis elegans zygote" 365: 1257:"Cell Polarity Regulates Biased Myosin Activity and Dynamics during Asymmetric Cell Division via Drosophila Rho Kinase and Protein Kinase N" 1424:"Consumption of a polarized membrane reservoir drives asymmetric membrane expansion during the unequal divisions of neural stem cells" 640:
Cowan CR, Hyman AA (September 2004). "Centrosomes direct cell polarity independently of microtubule assembly in C. elegans embryos".
241:) represent a diverse clade of animals whose species comprise the bulk of the bilaterian animals present today. Examples include 2128: 1658: 734:"Centrosome maturation and mitotic spindle assembly in C. elegans require SPD-5, a protein with multiple coiled-coil domains" 202:
is mediated by Pon (the partner of Numb protein). Pon binds to Numb and colocalizes with it during neuroblast cell division.
1787:
Lambert JD, Nagy LM (December 2002). "Asymmetric inheritance of centrosomally localized mRNAs during embryonic cleavages".
2024:"Wnt and the cancer niche: paracrine interactions with gastrointestinal cancer cells undergoing asymmetric cell division" 1307:"Spatio-temporally separated cortical flows and spindle geometry establish physical asymmetry in fly neural stem cells" 303:
embryos cleave symmetrically, suggesting this monoastral mechanism of asymmetric cell division is centrosome dependent.
46: 1745:"Asymmetrization of first cleavage by transient disassembly of one spindle pole aster in the leech Helobdella robusta" 2071:
Gonzalez C (June 2007). "Spindle orientation, asymmetric division and tumour suppression in Drosophila stem cells".
1926:"Chondroitin sulfate sulfation motifs as putative biomarkers for isolation of articular cartilage progenitor cells" 901:
Matsuzaki F (February 2000). "Asymmetric division of Drosophila neural stem cells: a basis for neural diversity".
2148: 2123:. Progress in Molecular and Subcellular Biology. Vol. 45. Berlin, Heidelberg, New York: Springer Verlag. 1045:"Spatiotemporally Controlled Myosin Relocalization and Internal Pressure Generate Sibling Cell Size Asymmetry" 455:
Morrison SJ, Kimble J (June 2006). "Asymmetric and symmetric stem-cell divisions in development and cancer".
215: 857:
Schneider SQ, Bowerman B (2003). "Cell polarity and the cytoskeleton in the Caenorhabditis elegans zygote".
400:
exit and differentiation. Disruption of asymmetric cell division leads to aberrant self-renewal and impairs
810:"C. elegans PAR proteins function by mobilizing and stabilizing asymmetrically localized protein complexes" 163:
this polarity initiates the polarized distribution of a group of proteins present in the zygote called the
605:
Goldstein B, Hird SN (May 1996). "Specification of the anteroposterior axis in Caenorhabditis elegans".
138:
to allow for the first asymmetric cell division. This first division produces two distinctly different
1476:"Actin-dependent membrane polarization reveals the mechanical nature of the neuroblast polarity cycle" 1680: 51:
asymmetry. The term asymmetric cell division usually refers to such intrinsic asymmetric divisions.
401: 253:. Although much is known at the cellular and molecular level about the other bilateralian clades ( 1305:
Roubinet C, Tsankova A, Pham TT, Monnard A, Caussinus E, Affolter M, Cabernard C (November 2017).
1363: 417: 413: 373: 90: 1584:"Asymmetric recruitment and actin-dependent cortical flows drive the neuroblast polarity cycle" 84: 1697:
Shimizu T, Ishii R, Takahashi H (June 1998). "Unequal cleavage in the early Tubifex embryo".
409: 377: 339: 45:
depend on interactions of cells with each other or with their environment, it must rely on
1847: 1796: 1375: 1318: 1113: 1056: 994: 870: 821: 649: 464: 946:"Control of daughter cell fates during asymmetric division: interaction of Numb and Notch" 8: 1364:"Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows" 1159:"Asymmetric cortical extension shifts cleavage furrow position in Drosophila neuroblasts" 381: 1851: 1800: 1641:
Henry JJ, Martindale MQ (1999). "Conservation and innovation in spiralian development".
1448: 1423: 1379: 1322: 1117: 1060: 998: 825: 653: 468: 2096: 2048: 2023: 1999: 1974: 1950: 1925: 1871: 1820: 1722: 1668: 1618: 1583: 1559: 1524: 1500: 1475: 1399: 1339: 1306: 1237: 1183: 1158: 1134: 1101: 1077: 1044: 1018: 926: 673: 582: 561: 498: 343: 308: 210:
The mechanism instead relies on the spatial and temporal organization of myosin on the
962: 945: 914: 750: 733: 183: 2124: 2088: 2053: 2004: 1975:"Asymmetric cell division of stem and progenitor cells during homeostasis and cancer" 1955: 1906: 1863: 1812: 1766: 1714: 1710: 1654: 1623: 1605: 1564: 1546: 1505: 1453: 1391: 1344: 1278: 1229: 1188: 1139: 1082: 1010: 967: 918: 874: 839: 790: 755: 714: 665: 622: 587: 539: 490: 262: 2100: 1726: 1241: 1043:
Pham TT, Monnard A, Helenius J, Lund E, Lee N, Müller DJ, Cabernard C (March 2019).
2080: 2043: 2035: 1994: 1986: 1945: 1937: 1898: 1875: 1855: 1824: 1804: 1756: 1706: 1646: 1613: 1595: 1554: 1536: 1495: 1487: 1443: 1435: 1403: 1383: 1334: 1326: 1268: 1219: 1178: 1170: 1129: 1121: 1072: 1064: 1022: 1002: 957: 910: 866: 829: 782: 745: 704: 677: 657: 614: 577: 569: 529: 480: 472: 930: 502: 1650: 1525:"Phases of cortical actomyosin dynamics coupled to the neuroblast polarity cycle" 1491: 1439: 1273: 1256: 286: 219: 64: 24: 1761: 1744: 1330: 1068: 238: 72: 41: 1990: 834: 809: 2142: 1609: 1550: 808:
Cheeks RJ, Canman JC, Gabriel WN, Meyer N, Strome S, Goldstein B (May 2004).
396:
cells, asymmetric cell division balances proliferation and self-renewal with
258: 131: 60: 28: 1941: 1902: 1174: 573: 2092: 2057: 2022:
Xin HW, Ambe CM, Ray S, Kim BK, Koizumi T, Wiegand GW, et al. (2013).
2008: 1959: 1910: 1816: 1770: 1627: 1568: 1509: 1457: 1395: 1348: 1282: 1233: 1192: 1143: 1086: 922: 878: 843: 794: 759: 718: 709: 692: 669: 618: 591: 534: 517: 494: 274: 246: 143: 68: 1867: 1718: 1014: 971: 786: 626: 543: 1157:
Connell M, Cabernard C, Ricketson D, Doe CQ, Prehoda KE (November 2011).
485: 211: 187: 119:
Asymmetric cell divisions during the first steps of the embryogenesis of
1808: 1600: 1541: 1387: 1125: 661: 476: 1224: 1207: 434: 430: 397: 393: 321: 296: 250: 155: 151: 139: 59:
In order for asymmetric division to take place the mother cell must be
164: 2039: 1924:
Hayes AJ, Tudor D, Nowell MA, Caterson B, Hughes CE (February 2008).
357: 254: 159: 32: 2084: 1362:
Mayer M, Depken M, Bois JS, Jülicher F, Grill SW (September 2010).
425: 234: 147: 95: 80: 1859: 1006: 984: 1255:
Tsankova A, Pham TT, Garcia DS, Otte F, Cabernard C (July 2017).
242: 312:
exhibits a similar asymmetry in the first embryonic division as
31:
which give rise to daughter cells of equivalent fates. Notably,
27:
with different cellular fates. This is in contrast to symmetric
732:
Hamill DR, Severson AF, Carter JC, Bowerman B (November 2002).
361: 135: 1643:
Reproductive Strategies and Developmental Patterns in Annelids
295:
embryo, the first cleavage in tubifex relies on the number of
16:
Production of two daughter cells with different cellular fates
405: 325: 76: 1156: 731: 1304: 1102:"A spindle-independent cleavage furrow positioning pathway" 562:"Asymmetric cell division and axis formation in the embryo" 1972: 1838:
Jan YN, Jan LY (April 1998). "Asymmetric cell division".
690: 1923: 807: 1973:
Gómez-López S, Lerner RG, Petritsch C (February 2014).
1888: 1361: 1208:"Drosophila neuroblasts: a model for stem cell biology" 1042: 1254: 1696: 896: 894: 892: 890: 888: 1099: 174: 1100:Cabernard C, Prehoda KE, Doe CQ (September 2010). 885: 1582:Oon, Chet Huan; Prehoda, Kenneth E (2019-05-08). 1523:Oon, Chet Huan; Prehoda, Kenneth E (2021-11-15). 1422:LaFoya, Bryce; Prehoda, Kenneth E. (April 2023). 856: 356:Animals are made up of a vast number of distinct 2140: 691:O'Connell KF, Maxwell KN, White JG (June 2000). 351: 2118: 1930:The Journal of Histochemistry and Cytochemistry 1640: 1474:LaFoya, Bryce; Prehoda, Kenneth E. (May 2021). 71:of these events has been most studied in three 67:must be aligned with the axis of polarity. The 515: 454: 2021: 1473: 1421: 1205: 604: 555: 553: 158:are deposited within the egg, which causes a 1882: 772: 101: 1786: 1742: 229: 94:. A later focus has been on development in 1782: 1780: 1692: 1690: 1581: 1522: 639: 598: 559: 550: 2047: 1998: 1949: 1760: 1699:Development, Growth & Differentiation 1617: 1599: 1558: 1540: 1499: 1447: 1338: 1272: 1223: 1182: 1133: 1076: 961: 943: 900: 833: 749: 708: 581: 533: 484: 448: 2070: 273: 182: 109: 1777: 1687: 1206:Homem CC, Knoblich JA (December 2012). 518:"Asymmetric cell division: from A to Z" 2141: 1837: 1738: 1736: 871:10.1146/annurev.genet.37.110801.142443 516:Hawkins N, Garriga G (December 1998). 134:, events are already occurring in the 54: 1634: 1469: 1467: 1417: 1415: 1413: 1300: 1298: 1296: 1294: 1292: 1038: 1036: 1034: 1032: 1979:Cellular and Molecular Life Sciences 1733: 944:Guo M, Jan LY, Jan YN (July 1996). 13: 2111: 1645:. Vol. 402. pp. 255–65. 1464: 1410: 1289: 1029: 560:Gönczy P, Rose LS (October 2005). 387: 14: 2160: 1743:Ren X, Weisblat DA (April 2006). 284:Tubifex tubifex: The sludge worm 269:Mechanisms of asymmetric division 1711:10.1046/j.1440-169x.1998.00001.x 2119:Macieira-Coelho A, ed. (2007). 2064: 2015: 1966: 1917: 1831: 1575: 1516: 1355: 1248: 1199: 1150: 1093: 978: 937: 903:Current Opinion in Neurobiology 850: 801: 766: 725: 684: 633: 509: 306:Helobdella robusta: The leech 1: 1163:Molecular Biology of the Cell 963:10.1016/s0896-6273(00)80278-0 915:10.1016/s0959-4388(99)00052-5 751:10.1016/s1534-5807(02)00327-1 441: 352:In stem cells and progenitors 142:, termed AB and P1. When the 1651:10.1007/978-94-017-2887-4_15 1492:10.1016/j.celrep.2021.109146 1440:10.1016/j.devcel.2023.04.006 1274:10.1016/j.devcel.2017.06.012 7: 1762:10.1016/j.ydbio.2005.12.049 271:(See Figure, right panel): 10: 2165: 1331:10.1038/s41467-017-01391-w 1069:10.1016/j.isci.2019.02.002 421:asymmetric cell division. 360:. During development, the 237:(commonly synonymous with 1991:10.1007/s00018-013-1386-1 859:Annual Review of Genetics 835:10.1016/j.cub.2004.05.022 2121:Asymmetric Cell Division 2073:Nature Reviews. Genetics 418:gastrointestinal cancers 230:In spiralian development 21:asymmetric cell division 1942:10.1369/jhc.7a7320.2007 1903:10.1242/dev.126.16.3573 1175:10.1091/mbc.e11-02-0173 574:10.1895/wormbook.1.30.1 522:Genes & Development 374:Notch signaling pathway 196:Drosophila melanogaster 91:Drosophila melanogaster 710:10.1006/dbio.2000.9714 619:10.1242/dev.122.5.1467 535:10.1101/gad.12.23.3625 280: 191: 123: 85:Caenorhabditis elegans 23:produces two daughter 2149:Developmental biology 1749:Developmental Biology 1311:Nature Communications 787:10.1242/dev.127.2.355 697:Developmental Biology 378:transcription factors 340:In situ hybridization 277: 186: 118: 220:hydrostatic pressure 36:the original cell.) 1852:1998Natur.392..775J 1809:10.1038/nature01241 1801:2002Natur.420..682L 1601:10.7554/eLife.45815 1542:10.7554/eLife.66574 1434:(11): 993–1003.e3. 1388:10.1038/nature09376 1380:2010Natur.467..617M 1323:2017NatCo...8.1383R 1126:10.1038/nature09334 1118:2010Natur.467...91C 1061:2019iSci...13....9P 999:1997Natur.390..625I 826:2004CBio...14..851C 662:10.1038/nature02825 654:2004Natur.431...92C 477:10.1038/nature04956 469:2006Natur.441.1068M 463:(7097): 1068–1074. 392:In normal stem and 382:chondroitin sulfate 88:, and the fruit fly 55:Intrinsic asymmetry 1428:Developmental Cell 1261:Developmental Cell 1225:10.1242/dev.080515 738:Developmental Cell 344:immunofluorescence 309:Helobdella robusta 281: 192: 179:neural development 124: 2130:978-3-540-69160-0 2028:Journal of Cancer 1846:(6678): 775–778. 1795:(6916): 682–686. 1660:978-90-481-5340-4 1374:(7315): 617–621. 1267:(2): 143–155.e5. 1218:(23): 4297–4310. 1169:(22): 4220–4226. 993:(6660): 625–629. 528:(23): 3625–3638. 335:Ilyanasa obsoleta 116: 2156: 2134: 2105: 2104: 2068: 2062: 2061: 2051: 2040:10.7150/jca.6896 2019: 2013: 2012: 2002: 1970: 1964: 1963: 1953: 1921: 1915: 1914: 1886: 1880: 1879: 1835: 1829: 1828: 1784: 1775: 1774: 1764: 1740: 1731: 1730: 1694: 1685: 1684: 1678: 1674: 1672: 1664: 1638: 1632: 1631: 1621: 1603: 1579: 1573: 1572: 1562: 1544: 1520: 1514: 1513: 1503: 1471: 1462: 1461: 1451: 1419: 1408: 1407: 1359: 1353: 1352: 1342: 1302: 1287: 1286: 1276: 1252: 1246: 1245: 1227: 1203: 1197: 1196: 1186: 1154: 1148: 1147: 1137: 1097: 1091: 1090: 1080: 1040: 1027: 1026: 982: 976: 975: 965: 941: 935: 934: 898: 883: 882: 854: 848: 847: 837: 805: 799: 798: 770: 764: 763: 753: 729: 723: 722: 712: 688: 682: 681: 637: 631: 630: 602: 596: 595: 585: 557: 548: 547: 537: 513: 507: 506: 488: 452: 216:Rho-kinase (Rok) 117: 2164: 2163: 2159: 2158: 2157: 2155: 2154: 2153: 2139: 2138: 2137: 2131: 2114: 2112:Further reading 2109: 2108: 2085:10.1038/nrg2103 2069: 2065: 2020: 2016: 1971: 1967: 1922: 1918: 1897:(16): 3573–84. 1887: 1883: 1836: 1832: 1785: 1778: 1741: 1734: 1695: 1688: 1676: 1675: 1666: 1665: 1661: 1639: 1635: 1580: 1576: 1521: 1517: 1472: 1465: 1420: 1411: 1360: 1356: 1303: 1290: 1253: 1249: 1204: 1200: 1155: 1151: 1112:(7311): 91–94. 1098: 1094: 1041: 1030: 983: 979: 942: 938: 899: 886: 855: 851: 820:(10): 851–862. 814:Current Biology 806: 802: 771: 767: 730: 726: 689: 685: 648:(7004): 92–96. 638: 634: 603: 599: 558: 551: 514: 510: 453: 449: 444: 402:differentiation 390: 388:Role in disease 354: 287:Tubifex tubifex 263:spiral cleavage 232: 181: 146:fertilizes the 110: 108: 65:mitotic spindle 57: 17: 12: 11: 5: 2162: 2152: 2151: 2136: 2135: 2129: 2115: 2113: 2110: 2107: 2106: 2079:(6): 462–472. 2063: 2034:(6): 447–457. 2014: 1985:(4): 575–597. 1965: 1936:(2): 125–138. 1916: 1881: 1830: 1776: 1755:(1): 103–115. 1732: 1705:(3): 257–266. 1686: 1677:|journal= 1659: 1633: 1574: 1515: 1463: 1409: 1354: 1288: 1247: 1198: 1149: 1092: 1028: 977: 936: 884: 849: 800: 781:(2): 355–366. 765: 744:(5): 673–684. 724: 683: 632: 613:(5): 1467–74. 597: 549: 508: 446: 445: 443: 440: 389: 386: 353: 350: 349: 348: 330: 304: 239:lophotrochozoa 231: 228: 180: 173: 107: 100: 56: 53: 29:cell divisions 15: 9: 6: 4: 3: 2: 2161: 2150: 2147: 2146: 2144: 2132: 2126: 2122: 2117: 2116: 2102: 2098: 2094: 2090: 2086: 2082: 2078: 2074: 2067: 2059: 2055: 2050: 2045: 2041: 2037: 2033: 2029: 2025: 2018: 2010: 2006: 2001: 1996: 1992: 1988: 1984: 1980: 1976: 1969: 1961: 1957: 1952: 1947: 1943: 1939: 1935: 1931: 1927: 1920: 1912: 1908: 1904: 1900: 1896: 1892: 1885: 1877: 1873: 1869: 1865: 1861: 1860:10.1038/33854 1857: 1853: 1849: 1845: 1841: 1834: 1826: 1822: 1818: 1814: 1810: 1806: 1802: 1798: 1794: 1790: 1783: 1781: 1772: 1768: 1763: 1758: 1754: 1750: 1746: 1739: 1737: 1728: 1724: 1720: 1716: 1712: 1708: 1704: 1700: 1693: 1691: 1682: 1670: 1662: 1656: 1652: 1648: 1644: 1637: 1629: 1625: 1620: 1615: 1611: 1607: 1602: 1597: 1593: 1589: 1585: 1578: 1570: 1566: 1561: 1556: 1552: 1548: 1543: 1538: 1534: 1530: 1526: 1519: 1511: 1507: 1502: 1497: 1493: 1489: 1486:(7): 109146. 1485: 1481: 1477: 1470: 1468: 1459: 1455: 1450: 1445: 1441: 1437: 1433: 1429: 1425: 1418: 1416: 1414: 1405: 1401: 1397: 1393: 1389: 1385: 1381: 1377: 1373: 1369: 1365: 1358: 1350: 1346: 1341: 1336: 1332: 1328: 1324: 1320: 1316: 1312: 1308: 1301: 1299: 1297: 1295: 1293: 1284: 1280: 1275: 1270: 1266: 1262: 1258: 1251: 1243: 1239: 1235: 1231: 1226: 1221: 1217: 1213: 1209: 1202: 1194: 1190: 1185: 1180: 1176: 1172: 1168: 1164: 1160: 1153: 1145: 1141: 1136: 1131: 1127: 1123: 1119: 1115: 1111: 1107: 1103: 1096: 1088: 1084: 1079: 1074: 1070: 1066: 1062: 1058: 1054: 1050: 1046: 1039: 1037: 1035: 1033: 1024: 1020: 1016: 1012: 1008: 1007:10.1038/37641 1004: 1000: 996: 992: 988: 981: 973: 969: 964: 959: 955: 951: 947: 940: 932: 928: 924: 920: 916: 912: 908: 904: 897: 895: 893: 891: 889: 880: 876: 872: 868: 864: 860: 853: 845: 841: 836: 831: 827: 823: 819: 815: 811: 804: 796: 792: 788: 784: 780: 776: 769: 761: 757: 752: 747: 743: 739: 735: 728: 720: 716: 711: 706: 702: 698: 694: 687: 679: 675: 671: 667: 663: 659: 655: 651: 647: 643: 636: 628: 624: 620: 616: 612: 608: 601: 593: 589: 584: 579: 575: 571: 567: 563: 556: 554: 545: 541: 536: 531: 527: 523: 519: 512: 504: 500: 496: 492: 487: 486:2027.42/62868 482: 478: 474: 470: 466: 462: 458: 451: 447: 439: 436: 432: 427: 422: 419: 415: 411: 407: 403: 399: 395: 385: 383: 379: 375: 369: 367: 363: 359: 345: 341: 337: 336: 331: 327: 323: 319: 315: 311: 310: 305: 302: 298: 294: 289: 288: 283: 282: 276: 272: 270: 266: 264: 260: 259:deuterostomia 256: 252: 248: 247:annelid worms 244: 240: 236: 227: 223: 221: 217: 213: 207: 203: 199: 197: 189: 185: 178: 172: 168: 166: 161: 157: 153: 149: 145: 141: 137: 133: 132:fertilization 129: 122: 105: 99: 97: 93: 92: 87: 86: 82: 78: 74: 73:animal models 70: 66: 62: 52: 50: 49: 43: 37: 34: 30: 26: 22: 2120: 2076: 2072: 2066: 2031: 2027: 2017: 1982: 1978: 1968: 1933: 1929: 1919: 1894: 1890: 1884: 1843: 1839: 1833: 1792: 1788: 1752: 1748: 1702: 1698: 1642: 1636: 1591: 1587: 1577: 1532: 1528: 1518: 1483: 1480:Cell Reports 1479: 1431: 1427: 1371: 1367: 1357: 1314: 1310: 1264: 1260: 1250: 1215: 1211: 1201: 1166: 1162: 1152: 1109: 1105: 1095: 1052: 1048: 990: 986: 980: 956:(1): 27–41. 953: 949: 939: 909:(1): 38–44. 906: 902: 862: 858: 852: 817: 813: 803: 778: 774: 768: 741: 737: 727: 703:(1): 55–70. 700: 696: 686: 645: 641: 635: 610: 606: 600: 565: 525: 521: 511: 460: 456: 450: 423: 391: 370: 366:self-renewal 355: 333: 317: 313: 307: 300: 292: 285: 268: 267: 233: 224: 208: 204: 200: 195: 193: 176: 169: 165:PAR proteins 150:, the sperm 127: 125: 120: 103: 89: 83: 69:cell biology 58: 47: 38: 20: 18: 1891:Development 1317:(1): 1383. 1212:Development 865:: 221–249. 775:Development 607:Development 297:centrosomes 212:cell cortex 160:cytoplasmic 156:centrosomes 140:blastomeres 106:development 1594:: e45815. 1535:: e66574. 442:References 435:phenotypes 431:Drosophila 398:cell-cycle 394:progenitor 358:cell types 322:nocodazole 314:C. elegans 293:C. elegans 251:entoprocta 249:, and the 177:Drosophila 152:pronucleus 144:sperm cell 128:C. elegans 121:C. elegans 104:C. elegans 63:, and the 33:stem cells 1679:ignored ( 1669:cite book 1610:2050-084X 1551:2050-084X 255:ecdysozoa 61:polarized 48:intrinsic 42:signaling 2143:Category 2101:22558696 2093:17510666 2058:23901343 2009:23771628 1960:17938280 1911:10409503 1817:12478296 1771:16458880 1727:23026919 1628:31066675 1569:34779402 1510:34010656 1458:37116487 1449:10247545 1396:20852613 1349:29123099 1283:28712722 1242:14960710 1234:23132240 1193:21937716 1144:20811457 1087:30785031 1055:: 9–19. 1049:iScience 923:10679433 879:14616061 844:15186741 795:10603352 760:12431374 719:10885746 670:15343338 592:18050411 568:: 1–20. 566:WormBook 495:16810241 426:mutation 424:Another 243:mollusks 235:Spiralia 148:egg cell 96:spiralia 81:nematode 2049:3726705 2000:3901929 1951:2324172 1876:4392481 1868:9572136 1848:Bibcode 1825:4383189 1797:Bibcode 1719:9639353 1619:6524966 1560:8641948 1501:8174105 1404:4378520 1376:Bibcode 1340:5680339 1319:Bibcode 1184:3216648 1135:4028831 1114:Bibcode 1078:6383127 1057:Bibcode 1023:4423032 1015:9403694 995:Bibcode 972:8755476 822:Bibcode 678:4422297 650:Bibcode 627:8625834 583:4780927 544:9851969 465:Bibcode 318:tubifex 301:tubifex 2127:  2099:  2091:  2056:  2046:  2007:  1997:  1958:  1948:  1909:  1874:  1866:  1840:Nature 1823:  1815:  1789:Nature 1769:  1725:  1717:  1657:  1626:  1616:  1608:  1567:  1557:  1549:  1508:  1498:  1456:  1446:  1402:  1394:  1368:Nature 1347:  1337:  1281:  1240:  1232:  1191:  1181:  1142:  1132:  1106:Nature 1085:  1075:  1021:  1013:  987:Nature 970:  950:Neuron 931:187054 929:  921:  877:  842:  793:  758:  717:  676:  668:  642:Nature 625:  590:  580:  542:  503:715049 501:  493:  457:Nature 362:zygote 136:zygote 79:, the 75:: the 2097:S2CID 1872:S2CID 1821:S2CID 1723:S2CID 1588:eLife 1529:eLife 1400:S2CID 1238:S2CID 1019:S2CID 927:S2CID 674:S2CID 499:S2CID 414:Notch 406:Bmi-1 326:taxol 77:mouse 25:cells 2125:ISBN 2089:PMID 2054:PMID 2005:PMID 1956:PMID 1907:PMID 1864:PMID 1813:PMID 1767:PMID 1715:PMID 1681:help 1655:ISBN 1624:PMID 1606:ISSN 1565:PMID 1547:ISSN 1506:PMID 1454:PMID 1392:PMID 1345:PMID 1279:PMID 1230:PMID 1189:PMID 1140:PMID 1083:PMID 1011:PMID 968:PMID 919:PMID 875:PMID 840:PMID 791:PMID 756:PMID 715:PMID 666:PMID 623:PMID 588:PMID 540:PMID 491:PMID 412:and 376:and 342:and 324:and 316:and 257:and 188:Numb 154:and 2081:doi 2044:PMC 2036:doi 1995:PMC 1987:doi 1946:PMC 1938:doi 1899:doi 1895:126 1856:doi 1844:392 1805:doi 1793:420 1757:doi 1753:292 1707:doi 1647:doi 1614:PMC 1596:doi 1555:PMC 1537:doi 1496:PMC 1488:doi 1444:PMC 1436:doi 1384:doi 1372:467 1335:PMC 1327:doi 1269:doi 1220:doi 1216:139 1179:PMC 1171:doi 1130:PMC 1122:doi 1110:467 1073:PMC 1065:doi 1003:doi 991:390 958:doi 911:doi 867:doi 830:doi 783:doi 779:127 746:doi 705:doi 701:222 658:doi 646:431 615:doi 611:122 578:PMC 570:doi 530:doi 481:hdl 473:doi 461:441 410:Wnt 338:. 194:In 175:In 126:In 102:In 19:An 2145:: 2095:. 2087:. 2075:. 2052:. 2042:. 2030:. 2026:. 2003:. 1993:. 1983:71 1981:. 1977:. 1954:. 1944:. 1934:56 1932:. 1928:. 1905:. 1893:. 1870:. 1862:. 1854:. 1842:. 1819:. 1811:. 1803:. 1791:. 1779:^ 1765:. 1751:. 1747:. 1735:^ 1721:. 1713:. 1703:40 1701:. 1689:^ 1673:: 1671:}} 1667:{{ 1653:. 1622:. 1612:. 1604:. 1590:. 1586:. 1563:. 1553:. 1545:. 1533:10 1531:. 1527:. 1504:. 1494:. 1484:35 1482:. 1478:. 1466:^ 1452:. 1442:. 1432:58 1430:. 1426:. 1412:^ 1398:. 1390:. 1382:. 1370:. 1366:. 1343:. 1333:. 1325:. 1313:. 1309:. 1291:^ 1277:. 1265:42 1263:. 1259:. 1236:. 1228:. 1214:. 1210:. 1187:. 1177:. 1167:22 1165:. 1161:. 1138:. 1128:. 1120:. 1108:. 1104:. 1081:. 1071:. 1063:. 1053:13 1051:. 1047:. 1031:^ 1017:. 1009:. 1001:. 989:. 966:. 954:17 952:. 948:. 925:. 917:. 907:10 905:. 887:^ 873:. 863:37 861:. 838:. 828:. 818:14 816:. 812:. 789:. 777:. 754:. 740:. 736:. 713:. 699:. 695:. 672:. 664:. 656:. 644:. 621:. 609:. 586:. 576:. 564:. 552:^ 538:. 526:12 524:. 520:. 497:. 489:. 479:. 471:. 459:. 408:, 265:. 245:, 98:. 2133:. 2103:. 2083:: 2077:8 2060:. 2038:: 2032:4 2011:. 1989:: 1962:. 1940:: 1913:. 1901:: 1878:. 1858:: 1850:: 1827:. 1807:: 1799:: 1773:. 1759:: 1729:. 1709:: 1683:) 1663:. 1649:: 1630:. 1598:: 1592:8 1571:. 1539:: 1512:. 1490:: 1460:. 1438:: 1406:. 1386:: 1378:: 1351:. 1329:: 1321:: 1315:8 1285:. 1271:: 1244:. 1222:: 1195:. 1173:: 1146:. 1124:: 1116:: 1089:. 1067:: 1059:: 1025:. 1005:: 997:: 974:. 960:: 933:. 913:: 881:. 869:: 846:. 832:: 824:: 797:. 785:: 762:. 748:: 742:3 721:. 707:: 680:. 660:: 652:: 629:. 617:: 594:. 572:: 546:. 532:: 505:. 483:: 475:: 467::

Index

cells
cell divisions
stem cells
signaling
intrinsic
polarized
mitotic spindle
cell biology
animal models
mouse
nematode
Caenorhabditis elegans
Drosophila melanogaster
spiralia
fertilization
zygote
blastomeres
sperm cell
egg cell
pronucleus
centrosomes
cytoplasmic
PAR proteins

Numb
cell cortex
Rho-kinase (Rok)
hydrostatic pressure
Spiralia
lophotrochozoa

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.