Knowledge

Artin conductor

Source đź“ť

317:. By a result of Artin, the local conductor is an integer. Heuristically, the Artin conductor measures how far the action of the higher ramification groups is from being trivial. In particular, if χ is unramified, then its Artin conductor is zero. Thus if 244: 541: 1194:
Algebraic number theory. Proceedings of an instructional conference organized by the London Mathematical Society (a NATO Advanced Study Institute) with the support of the International Mathematical Union
412: 696: 838: 580: 451: 306: 129: 105: 852:
is the character of the regular representation and 1 is the character of the trivial representation. The Swan character is the character of a representation of
137: 746:
showed that it can be realized over the corresponding ring of Witt vectors. It cannot in general be realized over the rationals or over the local field
475: 590:. Since the local Artin conductor is zero at unramified primes, the above product only need be taken over primes that ramify in 1117: 962: 342: 646: 1225: 1317: 909: 888: 1322: 781: 895: 1217: 607: 1312: 1137: 1063: 1296: 1273: 1174: 1125: 565: 436: 291: 114: 90: 1235: 1201: 1189: 1103: 1044: 8: 755:, suggesting that there is no easy way to construct the Artin representation explicitly. 56: 40: 25: 1244: 1210: 1162: 1091: 1048: 957:. Encyclopaedia of Mathematical Sciences. Vol. 49 (Second ed.). p. 329. 263: 1261: 1257: 1221: 1181: 1154: 1132: 1095: 1083: 1052: 968: 958: 865: 239:{\displaystyle f(\chi )=\sum _{i\geq 0}{\frac {g_{i}}{g_{0}}}(\chi (1)-\chi (G_{i}))} 1111: 1253: 1231: 1197: 1185: 1146: 1099: 1075: 1040: 1032: 902: 76: 60: 1292: 1269: 1170: 1121: 267: 1064:"Die gruppentheoretische Struktur der Diskriminanten algebraischer Zahlkörper." 873: 1306: 1265: 1158: 1087: 972: 1280: 1079: 725:) showed that the Artin representation can be realized over the local field 857: 37: 29: 1212:
Explicit Brauer Induction: With Applications to Algebra and Number Theory
721:
asked for a direct construction of the Artin representation. Serre (
33: 17: 1023:(1930), "Zur Theorie der L-Reihen mit allgemeinen Gruppencharakteren.", 1166: 1059: 1036: 1020: 44: 1116:, MĂ©moires de la SociĂ©tĂ© MathĂ©matique de France, vol. 25, Paris: 1242:
Swan, Richard G. (1963), "The Grothendieck ring of a finite group",
1150: 1025:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
1113:
Colloque de Théorie des Nombres (Univ. Bordeaux, Bordeaux, 1969)
1110:
Fontaine, Jean-Marc (1971), "Sur les représentations d'Artin",
536:{\displaystyle {\mathfrak {f}}(\chi )=\prod _{p}p^{f(\chi ,p)}} 901:
The Artin conductor appears in the functional equation of the
1216:, Cambridge Studies in Advanced Mathematics, vol. 40, 908:
The Artin and Swan representations are used to defined the
601: 1135:(1960), "Sur la rationalité des représentations d'Artin", 417:
in other words, the sum of the higher order terms with
784: 649: 568: 562:) is the local Artin conductor of the restriction of 478: 439: 345: 294: 140: 117: 93: 1209: 832: 690: 574: 535: 445: 406: 300: 238: 123: 99: 407:{\displaystyle f(\chi )-(\chi (1)-\chi (G_{0})),} 1304: 952: 691:{\displaystyle a_{G}=\sum _{\chi }f(\chi )\chi } 616:is a finite Galois extension of the local field 1068:Journal fĂĽr die Reine und Angewandte Mathematik 325:, then the Artin conductors of all χ are zero. 898:is expressed in terms of the Artin conductor. 1196:, London: Academic Press, pp. 128–161, 582:to the decomposition group of some prime of 1184:(1967), "VI. Local class field theory", in 953:Manin, Yu. I.; Panchishkin, A. A. (2007). 608:Galois module § Artin representations 424: 66: 1109: 993: 991: 936: 934: 891:for the discriminant of a global field. 743: 738:not equal to the residue characteristic 713:is the complex linear representation of 602:Artin representation and Artin character 948: 946: 1305: 1283:(1946), "L'avenir des mathĂ©matiques", 1207: 758: 1180: 1131: 1058: 1019: 988: 931: 922: 722: 546:where the product is over the primes 52: 48: 1279: 1241: 1000: 979: 955:Introduction to Modern Number Theory 943: 861: 833:{\displaystyle sw_{G}=a_{G}-r_{G}+1} 718: 55:) as an expression appearing in the 887:The Artin conductor appears in the 879:with character the Swan character. 481: 13: 14: 1334: 864:) showed that there is a unique 465:of global fields is an ideal of 882: 28:associated to a character of a 1118:SociĂ©tĂ© MathĂ©matique de France 910:conductor of an elliptic curve 889:conductor-discriminant formula 682: 676: 528: 516: 492: 486: 398: 395: 382: 373: 367: 361: 355: 349: 233: 230: 217: 208: 202: 196: 150: 144: 111:, then the Artin conductor of 1: 1013: 1258:10.1016/0040-9383(63)90025-9 7: 896:Serre modularity conjecture 10: 1339: 1218:Cambridge University Press 605: 288:) is the average value of 894:The optimal level in the 620:, with Galois group  1285:Bol. Soc. Mat. SĂŁo Paulo 915: 1080:10.1515/crll.1931.164.1 425:Global Artin conductors 1208:Snaith, V. P. (1994), 834: 717:with this character. 692: 576: 537: 457:of a finite extension 447: 431:global Artin conductor 408: 302: 240: 125: 101: 67:Local Artin conductors 1318:Representation theory 1138:Annals of Mathematics 835: 693: 606:Further information: 577: 575:{\displaystyle \chi } 538: 448: 446:{\displaystyle \chi } 409: 303: 301:{\displaystyle \chi } 241: 126: 124:{\displaystyle \chi } 102: 100:{\displaystyle \chi } 1323:Zeta and L-functions 912:or abelian variety. 782: 703:Artin representation 647: 566: 476: 453:of the Galois group 437: 433:of a representation 343: 336:of the character is 292: 138: 115: 91: 83:, with Galois group 1006:Snaith (1994) p.248 985:Snaith (1994) p.249 759:Swan representation 321:is unramified over 79:of the local field 57:functional equation 1182:Serre, Jean-Pierre 1133:Serre, Jean-Pierre 1120:, pp. 71–81, 1037:10.1007/BF02941010 997:Serre (1967) p.160 940:Serre (1967) p.159 928:Serre (1967) p.158 868:representation of 830: 688: 672: 572: 533: 507: 443: 404: 298: 264:ramification group 236: 171: 121: 107:is a character of 97: 1141:, Second Series, 964:978-3-540-20364-3 663: 640:is the character 498: 194: 156: 1330: 1299: 1276: 1238: 1215: 1204: 1177: 1128: 1106: 1055: 1007: 1004: 998: 995: 986: 983: 977: 976: 950: 941: 938: 929: 926: 903:Artin L-function 839: 837: 836: 831: 823: 822: 810: 809: 797: 796: 734:, for any prime 697: 695: 694: 689: 671: 659: 658: 581: 579: 578: 573: 542: 540: 539: 534: 532: 531: 506: 485: 484: 469:, defined to be 452: 450: 449: 444: 413: 411: 410: 405: 394: 393: 307: 305: 304: 299: 245: 243: 242: 237: 229: 228: 195: 193: 192: 183: 182: 173: 170: 130: 128: 127: 122: 106: 104: 103: 98: 77:Galois extension 61:Artin L-function 43:, introduced by 1338: 1337: 1333: 1332: 1331: 1329: 1328: 1327: 1303: 1302: 1252:(1–2): 85–110, 1228: 1186:Cassels, J.W.S. 1151:10.2307/1970142 1016: 1011: 1010: 1005: 1001: 996: 989: 984: 980: 965: 951: 944: 939: 932: 927: 923: 918: 885: 851: 818: 814: 805: 801: 792: 788: 783: 780: 779: 774: 761: 754: 744:Fontaine (1971) 733: 712: 667: 654: 650: 648: 645: 644: 635: 626:Artin character 610: 604: 567: 564: 563: 512: 508: 502: 480: 479: 477: 474: 473: 438: 435: 434: 427: 389: 385: 344: 341: 340: 316: 293: 290: 289: 287: 278: 268:lower numbering 257: 224: 220: 188: 184: 178: 174: 172: 160: 139: 136: 135: 116: 113: 112: 92: 89: 88: 69: 24:is a number or 22:Artin conductor 12: 11: 5: 1336: 1326: 1325: 1320: 1315: 1301: 1300: 1277: 1239: 1226: 1205: 1178: 1145:(2): 405–420, 1129: 1107: 1056: 1015: 1012: 1009: 1008: 999: 987: 978: 963: 942: 930: 920: 919: 917: 914: 884: 881: 877:-adic integers 847: 841: 840: 829: 826: 821: 817: 813: 808: 804: 800: 795: 791: 787: 770: 765:Swan character 760: 757: 750: 729: 708: 699: 698: 687: 684: 681: 678: 675: 670: 666: 662: 657: 653: 631: 603: 600: 571: 544: 543: 530: 527: 524: 521: 518: 515: 511: 505: 501: 497: 494: 491: 488: 483: 442: 426: 423: 415: 414: 403: 400: 397: 392: 388: 384: 381: 378: 375: 372: 369: 366: 363: 360: 357: 354: 351: 348: 334:Swan conductor 330:wild invariant 312: 297: 283: 274: 253: 247: 246: 235: 232: 227: 223: 219: 216: 213: 210: 207: 204: 201: 198: 191: 187: 181: 177: 169: 166: 163: 159: 155: 152: 149: 146: 143: 131:is the number 120: 96: 68: 65: 45:Emil Artin 9: 6: 4: 3: 2: 1335: 1324: 1321: 1319: 1316: 1314: 1313:Number theory 1311: 1310: 1308: 1298: 1294: 1290: 1286: 1282: 1278: 1275: 1271: 1267: 1263: 1259: 1255: 1251: 1247: 1246: 1240: 1237: 1233: 1229: 1227:0-521-46015-8 1223: 1219: 1214: 1213: 1206: 1203: 1199: 1195: 1191: 1187: 1183: 1179: 1176: 1172: 1168: 1164: 1160: 1156: 1152: 1148: 1144: 1140: 1139: 1134: 1130: 1127: 1123: 1119: 1115: 1114: 1108: 1105: 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1074:(164): 1–11, 1073: 1070:(in German), 1069: 1065: 1061: 1057: 1054: 1050: 1046: 1042: 1038: 1034: 1030: 1027:(in German), 1026: 1022: 1018: 1017: 1003: 994: 992: 982: 974: 970: 966: 960: 956: 949: 947: 937: 935: 925: 921: 913: 911: 906: 904: 899: 897: 892: 890: 880: 878: 876: 871: 867: 863: 859: 855: 850: 846: 827: 824: 819: 815: 811: 806: 802: 798: 793: 789: 785: 778: 777: 776: 773: 769: 766: 756: 753: 749: 745: 741: 737: 732: 728: 724: 720: 716: 711: 707: 704: 685: 679: 673: 668: 664: 660: 655: 651: 643: 642: 641: 639: 634: 630: 627: 623: 619: 615: 612:Suppose that 609: 599: 597: 593: 589: 585: 569: 561: 557: 553: 549: 525: 522: 519: 513: 509: 503: 499: 495: 489: 472: 471: 470: 468: 464: 460: 456: 440: 432: 422: 420: 401: 390: 386: 379: 376: 370: 364: 358: 352: 346: 339: 338: 337: 335: 331: 326: 324: 320: 315: 311: 295: 286: 282: 277: 273: 269: 265: 261: 256: 252: 225: 221: 214: 211: 205: 199: 189: 185: 179: 175: 167: 164: 161: 157: 153: 147: 141: 134: 133: 132: 118: 110: 94: 86: 82: 78: 74: 71:Suppose that 64: 62: 58: 54: 50: 46: 42: 39: 35: 31: 27: 23: 19: 1288: 1284: 1249: 1243: 1211: 1193: 1190:Fröhlich, A. 1142: 1136: 1112: 1071: 1067: 1028: 1024: 1002: 981: 954: 924: 907: 900: 893: 886: 883:Applications 874: 869: 853: 848: 844: 842: 775:is given by 771: 767: 764: 762: 751: 747: 739: 735: 730: 726: 714: 709: 705: 702: 700: 637: 632: 628: 625: 621: 617: 613: 611: 595: 591: 587: 583: 559: 555: 551: 547: 545: 466: 462: 458: 454: 430: 428: 418: 416: 333: 329: 327: 322: 318: 313: 309: 284: 280: 275: 271: 270:), of order 259: 254: 250: 248: 108: 84: 80: 75:is a finite 72: 70: 30:Galois group 21: 15: 1281:Weil, AndrĂ© 1060:Artin, Emil 1031:: 292–306, 1021:Artin, Emil 719:Weil (1946) 586:lying over 18:mathematics 1307:Categories 1236:0991.20005 1202:0153.07403 1104:0001.00801 1045:56.0173.02 1014:References 866:projective 1291:: 55–68, 1266:0040-9383 1159:0003-486X 1096:117731518 1088:0075-4102 1053:120987633 973:0938-0396 872:over the 812:− 686:χ 680:χ 669:χ 665:∑ 570:χ 520:χ 500:∏ 490:χ 441:χ 380:χ 377:− 365:χ 359:− 353:χ 296:χ 215:χ 212:− 200:χ 165:≥ 158:∑ 148:χ 119:χ 95:χ 1245:Topology 1192:(eds.), 1062:(1931), 701:and the 421:> 0. 279:, and χ( 1297:0020961 1274:0153722 1175:0171775 1167:1970142 1126:0374106 860: ( 258:is the 47: ( 1295:  1272:  1264:  1234:  1224:  1200:  1173:  1165:  1157:  1124:  1102:  1094:  1086:  1051:  1043:  971:  961:  843:where 624:. The 554:, and 249:where 59:of an 38:global 20:, the 1163:JSTOR 1092:S2CID 1049:S2CID 916:Notes 87:. If 41:field 34:local 32:of a 26:ideal 1262:ISSN 1222:ISBN 1155:ISSN 1084:ISSN 1072:1931 969:ISSN 959:ISBN 862:1963 858:Swan 763:The 723:1960 429:The 328:The 266:(in 262:-th 53:1931 49:1930 1254:doi 1232:Zbl 1198:Zbl 1147:doi 1100:Zbl 1076:doi 1041:JFM 1033:doi 636:of 558:(χ, 550:of 332:or 308:on 36:or 16:In 1309:: 1293:MR 1287:, 1270:MR 1268:, 1260:, 1248:, 1230:, 1220:, 1188:; 1171:MR 1169:, 1161:, 1153:, 1143:72 1122:MR 1098:, 1090:, 1082:, 1066:, 1047:, 1039:, 990:^ 967:. 945:^ 933:^ 905:. 856:. 768:sw 742:. 598:. 63:. 51:, 1289:1 1256:: 1250:2 1149:: 1078:: 1035:: 1029:8 975:. 875:l 870:G 854:G 849:g 845:r 828:1 825:+ 820:G 816:r 807:G 803:a 799:= 794:G 790:w 786:s 772:G 752:p 748:Q 740:p 736:l 731:l 727:Q 715:G 710:G 706:A 683:) 677:( 674:f 661:= 656:G 652:a 638:G 633:G 629:a 622:G 618:K 614:L 596:K 594:/ 592:L 588:p 584:L 560:p 556:f 552:K 548:p 529:) 526:p 523:, 517:( 514:f 510:p 504:p 496:= 493:) 487:( 482:f 467:K 463:K 461:/ 459:L 455:G 419:i 402:, 399:) 396:) 391:0 387:G 383:( 374:) 371:1 368:( 362:( 356:) 350:( 347:f 323:K 319:L 314:i 310:G 285:i 281:G 276:i 272:g 260:i 255:i 251:G 234:) 231:) 226:i 222:G 218:( 209:) 206:1 203:( 197:( 190:0 186:g 180:i 176:g 168:0 162:i 154:= 151:) 145:( 142:f 109:G 85:G 81:K 73:L

Index

mathematics
ideal
Galois group
local
global
field
Emil Artin
1930
1931
functional equation
Artin L-function
Galois extension
ramification group
lower numbering
Galois module § Artin representations
Weil (1946)
1960
Fontaine (1971)
Swan
1963
projective
l-adic integers
conductor-discriminant formula
Serre modularity conjecture
Artin L-function
conductor of an elliptic curve



Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑