Knowledge

Artin–Schreier theory

Source 📝

216: 146: 314: 242: 347: 169: 580:"Zyklische Körper und Algebren der Characteristik p vom Grad p. Struktur diskret bewerteter perfekter Körper mit vollkommenem Restklassenkörper der Charakteristik p" 584: 364:
is the splitting field of an Artin–Schreier polynomial. This can be proved using additive counterparts of the methods involved in
549: 507: 182: 499: 411: 245: 108: 317: 17: 410:
of abelian varieties must, for their function fields, give either an Artin–Schreier extension or a
287: 36: 422:
There is an analogue of Artin–Schreier theory which describes cyclic extensions in characteristic
384: 369: 221: 613: 323: 579: 154: 559: 517: 567: 525: 8: 87: 533: 545: 503: 480: 395: 373: 593: 563: 521: 472: 261: 555: 513: 253: 44: 597: 391:, representing one of the possible classes of extensions in a solvable chain. 607: 484: 460: 365: 56: 40: 32: 95: 435: 24: 575: 491: 476: 456: 439: 99: 68: 52: 502:, vol. 211 (Revised third ed.), New York: Springer-Verlag, 465:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
63:) introduced Artin–Schreier theory for extensions of prime degree 399: 463:(1927), "Eine Kennzeichnung der reell abgeschlossenen Körper", 532: 383:
Artin–Schreier extensions play a role in the theory of
326: 290: 224: 185: 157: 111: 75:) generalized it to extensions of prime power degree 341: 308: 236: 210: 163: 140: 417: 605: 585:Journal für die reine und angewandte Mathematik 542:Grundlehren der Mathematischen Wissenschaften 455: 211:{\displaystyle \alpha \neq \beta ^{p}-\beta } 60: 16:For the result about real-closed fields, see 536:; Schmidt, Alexander; Wingberg, Kay (2000), 544:, vol. 323, Berlin: Springer-Verlag, 471:, Springer Berlin / Heidelberg: 225–231, 137: 394:They also play a part in the theory of 606: 47:of degree equal to the characteristic 574: 490: 443: 352:Conversely, any Galois extension of 72: 13: 272:. This follows since for any root 141:{\displaystyle X^{p}-X-\alpha ,\,} 14: 625: 430:-power degree (not just degree 376:. These extensions are called 360:equal to the characteristic of 418:Artin–Schreier–Witt extensions 336: 330: 1: 500:Graduate Texts in Mathematics 449: 309:{\displaystyle 1\leq i\leq p} 412:purely inseparable extension 7: 538:Cohomology of Number Fields 320:—so the splitting field is 237:{\displaystyle \beta \in K} 10: 630: 35:, specifically a positive 15: 598:10.1515/crll.1937.176.126 378:Artin–Schreier extensions 342:{\displaystyle K(\beta )} 177:Artin–Schreier polynomial 316:, form all the roots—by 406:, an isogeny of degree 385:solvability by radicals 318:Fermat's little theorem 164:{\displaystyle \alpha } 343: 310: 238: 212: 165: 142: 18:Artin–Schreier theorem 344: 311: 244:, this polynomial is 239: 213: 166: 143: 29:Artin–Schreier theory 402:. In characteristic 387:, in characteristic 370:Hilbert's theorem 90 324: 288: 222: 183: 155: 109: 477:10.1007/BF02952522 339: 306: 234: 208: 161: 138: 90:of characteristic 551:978-3-540-66671-4 509:978-0-387-95385-4 396:abelian varieties 374:Galois cohomology 621: 600: 570: 534:Neukirch, Jürgen 528: 487: 438:, developed by 434:itself), using 348: 346: 345: 340: 315: 313: 312: 307: 262:cyclic extension 243: 241: 240: 235: 217: 215: 214: 209: 201: 200: 170: 168: 167: 162: 147: 145: 144: 139: 121: 120: 629: 628: 624: 623: 622: 620: 619: 618: 604: 603: 552: 510: 452: 420: 325: 322: 321: 289: 286: 285: 254:splitting field 223: 220: 219: 196: 192: 184: 181: 180: 175:, is called an 156: 153: 152: 116: 112: 110: 107: 106: 31:is a branch of 21: 12: 11: 5: 627: 617: 616: 602: 601: 572: 550: 530: 508: 488: 461:Schreier, Otto 451: 448: 419: 416: 338: 335: 332: 329: 305: 302: 299: 296: 293: 276:, the numbers 233: 230: 227: 207: 204: 199: 195: 191: 188: 160: 149: 148: 136: 133: 130: 127: 124: 119: 115: 37:characteristic 9: 6: 4: 3: 2: 626: 615: 614:Galois theory 612: 611: 609: 599: 595: 591: 588:(in German), 587: 586: 581: 577: 573: 569: 565: 561: 557: 553: 547: 543: 539: 535: 531: 527: 523: 519: 515: 511: 505: 501: 497: 493: 489: 486: 482: 478: 474: 470: 466: 462: 458: 454: 453: 447: 445: 441: 437: 433: 429: 425: 415: 413: 409: 405: 401: 397: 392: 390: 386: 381: 379: 375: 372:and additive 371: 367: 366:Kummer theory 363: 359: 355: 350: 333: 327: 319: 303: 300: 297: 294: 291: 283: 279: 275: 271: 267: 263: 259: 255: 251: 247: 231: 228: 225: 205: 202: 197: 193: 189: 186: 178: 174: 158: 134: 131: 128: 125: 122: 117: 113: 105: 104: 103: 101: 97: 93: 89: 85: 80: 78: 74: 70: 66: 62: 58: 55: and 54: 50: 46: 43:, for Galois 42: 41:Kummer theory 38: 34: 33:Galois theory 30: 26: 19: 589: 583: 571:Section VI.1 541: 537: 529:Section VI.6 495: 468: 464: 436:Witt vectors 431: 427: 423: 421: 407: 403: 393: 388: 382: 377: 361: 357: 353: 351: 281: 277: 273: 269: 265: 257: 249: 176: 172: 150: 102:of the form 96:prime number 91: 83: 81: 76: 64: 48: 39:analogue of 28: 22: 592:: 126–140, 576:Witt, Ernst 492:Lang, Serge 457:Artin, Emil 246:irreducible 25:mathematics 568:0948.11001 526:0984.00001 450:References 398:and their 368:, such as 356:of degree 268:of degree 252:, and its 100:polynomial 45:extensions 485:0025-5858 400:isogenies 334:β 301:≤ 295:≤ 229:∈ 226:β 206:β 203:− 194:β 190:≠ 187:α 159:α 132:α 129:− 123:− 608:Category 578:(1936), 494:(2002), 218:for all 57:Schreier 560:1737196 518:1878556 496:Algebra 442: ( 179:. When 71: ( 59: ( 566:  558:  548:  524:  516:  506:  483:  284:, for 98:, any 67:, and 260:is a 256:over 88:field 86:is a 53:Artin 546:ISBN 504:ISBN 481:ISSN 444:1936 440:Witt 151:for 94:, a 73:1936 69:Witt 61:1927 594:doi 590:176 564:Zbl 522:Zbl 473:doi 446:). 426:of 380:. 264:of 248:in 171:in 82:If 51:. 23:In 610:: 582:, 562:, 556:MR 554:, 540:, 520:, 514:MR 512:, 498:, 479:, 467:, 459:; 414:. 349:. 280:+ 79:. 27:, 596:: 475:: 469:5 432:p 428:p 424:p 408:p 404:p 389:p 362:K 358:p 354:K 337:) 331:( 328:K 304:p 298:i 292:1 282:i 278:β 274:β 270:p 266:K 258:K 250:K 232:K 198:p 173:K 135:, 126:X 118:p 114:X 92:p 84:K 77:p 65:p 49:p 20:.

Index

Artin–Schreier theorem
mathematics
Galois theory
characteristic
Kummer theory
extensions
Artin
Schreier
1927
Witt
1936
field
prime number
polynomial
irreducible
splitting field
cyclic extension
Fermat's little theorem
Kummer theory
Hilbert's theorem 90
Galois cohomology
solvability by radicals
abelian varieties
isogenies
purely inseparable extension
Witt vectors
Witt
1936
Artin, Emil
Schreier, Otto

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.