Knowledge

Andreev reflection

Source đź“ť

155:
question. In such a device, retroreflection of the hole from an Andreev reflection process, resulting from an incident electron at energies less than the superconducting gap at one lead, occurs in the second spatially separated normal lead with the same charge transfer as in a normal Andreev reflection process to a Cooper pair in the superconductor. For crossed Andreev reflection to occur, electrons of opposite spin must exist at each normal electrode (so as to form the pair in the superconductor). If the normal material is a ferromagnet this may be guaranteed by creating opposite spin polarization via the application of a magnetic field to normal electrodes of differing
20: 138:
of the tip. By applying a voltage to the tip, and measuring differential conductance between it and the sample, the spin polarization of the normal metal at that point (and magnetic field) may be determined. This is of use in such tasks as measurement of spin-polarized currents or characterizing spin
162:
Crossed Andreev reflection occurs in competition with elastic cotunneling, the quantum mechanical tunneling of electrons between the normal leads via an intermediate state in the superconductor. This process conserves electron spin. As such, a detectable potential at one electrode on the application
97:
in the superconductor with the retroreflection of a hole of opposite spin and velocity but equal momentum to the incident electron, as seen in the figure. The barrier transparency is assumed to be high, with no oxide or tunnel layer which reduces instances of normal electron-electron or hole-hole
154:
Crossed Andreev reflection, also known as non-local Andreev reflection, occurs when two spatially separated normal state material electrodes form two separate junctions with a superconductor, with the junction separation of the order of the BCS superconducting coherence length of the material in
163:
of current to the other may be masked by the competing elastic cotunneling process, making clear detection difficult. In addition, normal Andreev reflection may occur at either interface, in conjunction with other normal electron scattering processes from the normal/superconductor interface.
102:
electron, a second electron of opposite spin to the incident electron from the normal state forms the pair in the superconductor, and hence the retroreflected hole. Through time-reversal symmetry, the process with an incident electron will also work with an incident hole (and retroreflected
114:
or material where spin-polarization exists or may be induced by a magnetic field, the strength of the Andreev reflection (and hence conductance of the junction) is a function of the spin-polarization in the normal state.
80:
This effect is generally called Andreev reflection but it is also be referred to as Andreev–Saint-James reflection, as it was predicted independently by Saint-James and de Gennes and by Andreev in the early sixties.
365:
Blonder, G. E.; Tinkham, M.; Klapwijk, T. M. (1982). "Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion".
485:
R. J. Soulen Jr.; J. M. Byers; M. S. Osofsky; B. Nadgorny; T. Ambrose; S. F. Cheng; et al. (1998). "Measuring the Spin Polarization of a Metal with a Superconducting Point Contact".
119: 110:
it is fully spin-polarized), Andreev reflection will be inhibited due to inability to form a pair in the superconductor and impossibility of single-particle transmission. In a
236: 232: 932: 602: 665: 397:
Octavio, M; Tinkham, M.; Blonder, G. E.; Klapwijk, T. M. (1983). "Subharmonic energy-gap structure in superconducting constrictions".
89:
The process involves an electron incident on the interface from the normal state material at energies less than the superconducting
106:
The process is highly spin-dependent – if only one spin band is occupied by the conduction electrons in the normal-state material (
142:
In an Andreev process, the phase difference between the electron and hole is −Ď€/2 plus the phase of the superconducting
563: 335: 316: 1024: 762: 640: 872: 960: 681: 65:(S) and a normal state material (N). It is a charge-transfer process by which normal current in N is converted to 877: 595: 660: 630: 1001: 853: 797: 772: 428:
de Jong, M. J. M.; Beenakker, C. W. J. (1995). "Andreev Reflection in Ferromagnet-Superconductor Junctions".
903: 832: 170:, via the formation of a spatially separated entangled electron-hole (Andreev) pair, with applications in 1070: 1060: 848: 767: 139:
polarization of material layers or bulk samples, and the effects of magnetic fields on such properties.
1055: 955: 950: 635: 588: 908: 655: 73:
across the interface, avoiding the forbidden single-particle transmission within the superconducting
691: 195:
Guy Deutscher (March 2005). "Andreev–Saint-James reflections: A probe of cuprate superconductors".
1034: 893: 825: 742: 945: 918: 898: 820: 815: 243:(April 2001). "Correlated tunneling into a superconductor in a multiprobe hybrid structure". 352:
Andreev, A. F. (1964). "Thermal conductivity of the intermediate state of superconductors".
1019: 975: 543: 524:
Beenakker, C. W. J. (2000). "Why does a metal-superconductor junction have a resistance?".
494: 447: 406: 375: 264: 167: 135: 54: 8: 1065: 245: 547: 498: 451: 410: 379: 268: 1006: 757: 569: 533: 471: 437: 280: 254: 204: 782: 611: 559: 510: 463: 331: 312: 284: 175: 573: 475: 991: 965: 737: 712: 645: 551: 502: 484: 455: 414: 383: 272: 214: 1014: 747: 143: 36: 555: 506: 459: 276: 752: 696: 686: 650: 99: 62: 43: 28: 218: 1049: 418: 387: 240: 39: 787: 777: 732: 727: 467: 66: 514: 134:) is placed into contact with a normal material at temperatures below the 913: 722: 538: 442: 259: 231: 209: 171: 111: 94: 32: 625: 526:
Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics
156: 98:
scattering at the interface. Since the pair consists of an up and down
90: 74: 58: 19: 580: 940: 127: 24: 123: 27:(red) meeting the interface between a normal conductor (N) and a 42:(green) in the normal conductor. Vertical arrows indicate the 16:
Scattering process at the normal-metal-superconductor interface
996: 970: 396: 118:
The spin-dependence of Andreev reflection gives rise to the
1029: 166:
The process is of interest in the formation of solid-state
131: 122:
technique, whereby a narrow superconducting tip (often
364: 69:in S. Each Andreev reflection transfers a charge 1047: 427: 596: 194: 149: 603: 589: 537: 523: 441: 306: 258: 208: 18: 351: 325: 1048: 309:Superconductivity of Metals and Alloys 610: 584: 61:which occurs at interfaces between a 330:(Second ed.). New York: Dover. 53:, named after the Russian physicist 13: 295: 14: 1082: 328:Introduction to Superconductivity 120:Point contact Andreev reflection 93:. The incident electron forms a 46:band occupied by each particle. 225: 188: 1: 181: 311:. New York: W. A. Benjamin. 35:in the superconductor and a 7: 556:10.1007/978-94-011-4327-1_4 507:10.1126/science.282.5386.85 460:10.1103/PhysRevLett.74.1657 84: 10: 1087: 933:Technological applications 150:Crossed Andreev reflection 984: 931: 886: 862: 841: 805: 796: 705: 675:Characteristic parameters 674: 618: 307:de Gennes, P. G. (1966). 277:10.1209/epl/i2001-00303-0 219:10.1103/RevModPhys.77.109 692:London penetration depth 419:10.1103/PhysRevB.27.6739 388:10.1103/PhysRevB.25.4515 57:, is a type of particle 985:List of superconductors 863:By critical temperature 47: 631:Bean's critical state 22: 806:By magnetic response 168:quantum entanglement 136:critical temperature 55:Alexander F. Andreev 758:persistent currents 743:Little–Parks effect 548:1999cond.mat..9293B 499:1998Sci...282...85S 452:1995PhRvL..74.1657D 411:1983PhRvB..27.6739O 380:1982PhRvB..25.4515B 326:Tinkham, M (2004). 269:2001EL.....54..255F 246:Europhysics Letters 1071:Mesoscopic physics 1061:Physical phenomena 718:Andreev reflection 713:Abrikosov vortices 51:Andreev reflection 48: 1056:Superconductivity 1043: 1042: 961:quantum computing 927: 926: 783:superdiamagnetism 612:Superconductivity 565:978-0-7923-6626-3 337:978-0-486-43503-9 318:978-0-7382-0101-6 176:quantum computing 1078: 992:bilayer graphene 966:Rutherford cable 878:room temperature 873:high temperature 803: 802: 763:proximity effect 738:Josephson effect 682:coherence length 605: 598: 591: 582: 581: 577: 541: 539:cond-mat/9909293 518: 479: 445: 443:cond-mat/9410014 436:(9): 1657–1660. 422: 391: 361: 341: 322: 289: 288: 262: 260:cond-mat/0011339 229: 223: 222: 212: 210:cond-mat/0409225 192: 1086: 1085: 1081: 1080: 1079: 1077: 1076: 1075: 1046: 1045: 1044: 1039: 1010: 980: 923: 882: 869:low temperature 858: 837: 792: 748:Meissner effect 701: 697:Silsbee current 670: 636:Ginzburg–Landau 614: 609: 566: 493:(5386): 85–88. 430:Phys. Rev. Lett 354:Sov. Phys. JETP 338: 319: 298: 296:Further reading 293: 292: 230: 226: 193: 189: 184: 152: 144:order parameter 87: 31:(S) produces a 17: 12: 11: 5: 1084: 1074: 1073: 1068: 1063: 1058: 1041: 1040: 1038: 1037: 1032: 1027: 1022: 1017: 1012: 1008: 1004: 999: 994: 988: 986: 982: 981: 979: 978: 973: 968: 963: 958: 953: 948: 946:electromagnets 943: 937: 935: 929: 928: 925: 924: 922: 921: 916: 911: 906: 901: 896: 890: 888: 887:By composition 884: 883: 881: 880: 875: 870: 866: 864: 860: 859: 857: 856: 854:unconventional 851: 845: 843: 842:By explanation 839: 838: 836: 835: 830: 829: 828: 823: 818: 809: 807: 800: 798:Classification 794: 793: 791: 790: 785: 780: 775: 770: 765: 760: 755: 750: 745: 740: 735: 730: 725: 720: 715: 709: 707: 703: 702: 700: 699: 694: 689: 687:critical field 684: 678: 676: 672: 671: 669: 668: 663: 658: 656:Mattis–Bardeen 653: 648: 643: 641:Kohn–Luttinger 638: 633: 628: 622: 620: 616: 615: 608: 607: 600: 593: 585: 579: 578: 564: 520: 519: 481: 480: 424: 423: 393: 392: 362: 348: 347: 343: 342: 336: 323: 317: 303: 302: 297: 294: 291: 290: 253:(2): 255–261. 237:Denis Feinberg 233:Guiseppe Falci 224: 186: 185: 183: 180: 151: 148: 86: 83: 63:superconductor 37:retroreflected 29:superconductor 15: 9: 6: 4: 3: 2: 1083: 1072: 1069: 1067: 1064: 1062: 1059: 1057: 1054: 1053: 1051: 1036: 1033: 1031: 1028: 1026: 1023: 1021: 1018: 1016: 1013: 1011: 1005: 1003: 1000: 998: 995: 993: 990: 989: 987: 983: 977: 974: 972: 969: 967: 964: 962: 959: 957: 954: 952: 949: 947: 944: 942: 939: 938: 936: 934: 930: 920: 917: 915: 912: 910: 907: 905: 904:heavy fermion 902: 900: 897: 895: 892: 891: 889: 885: 879: 876: 874: 871: 868: 867: 865: 861: 855: 852: 850: 847: 846: 844: 840: 834: 833:ferromagnetic 831: 827: 824: 822: 819: 817: 814: 813: 811: 810: 808: 804: 801: 799: 795: 789: 786: 784: 781: 779: 778:supercurrents 776: 774: 771: 769: 766: 764: 761: 759: 756: 754: 751: 749: 746: 744: 741: 739: 736: 734: 731: 729: 726: 724: 721: 719: 716: 714: 711: 710: 708: 704: 698: 695: 693: 690: 688: 685: 683: 680: 679: 677: 673: 667: 664: 662: 659: 657: 654: 652: 649: 647: 644: 642: 639: 637: 634: 632: 629: 627: 624: 623: 621: 617: 613: 606: 601: 599: 594: 592: 587: 586: 583: 575: 571: 567: 561: 557: 553: 549: 545: 540: 535: 531: 527: 522: 521: 516: 512: 508: 504: 500: 496: 492: 488: 483: 482: 477: 473: 469: 465: 461: 457: 453: 449: 444: 439: 435: 431: 426: 425: 420: 416: 412: 408: 404: 400: 395: 394: 389: 385: 381: 377: 373: 369: 363: 359: 355: 350: 349: 345: 344: 339: 333: 329: 324: 320: 314: 310: 305: 304: 300: 299: 286: 282: 278: 274: 270: 266: 261: 256: 252: 248: 247: 242: 241:Frank Hekking 238: 234: 228: 220: 216: 211: 206: 202: 198: 197:Rev. Mod.Phys 191: 187: 179: 177: 173: 169: 164: 160: 158: 147: 145: 140: 137: 133: 129: 125: 121: 116: 113: 109: 104: 101: 96: 92: 82: 78: 76: 72: 68: 64: 60: 56: 52: 45: 41: 38: 34: 30: 26: 21: 914:oxypnictides 849:conventional 788:superstripes 733:flux pumping 728:flux pinning 723:Cooper pairs 717: 529: 525: 490: 486: 433: 429: 405:(11): 6739. 402: 399:Phys. Rev. B 398: 371: 368:Phys. Rev. B 367: 357: 353: 327: 308: 250: 244: 227: 200: 196: 190: 165: 161: 153: 141: 117: 107: 105: 88: 79: 70: 67:supercurrent 50: 49: 773:SU(2) color 753:Homes's law 374:(7): 4515. 172:spintronics 112:ferromagnet 103:electron). 95:Cooper pair 33:Cooper pair 1066:Scattering 1050:Categories 909:iron-based 768:reentrance 203:(1): 109. 182:References 157:coercivity 91:energy gap 75:energy gap 59:scattering 706:Phenomena 532:: 51–60. 285:250799565 941:cryotron 899:cuprates 894:covalent 651:Matthias 619:Theories 574:14111103 476:10784697 468:10059084 128:antimony 85:Overview 25:electron 1035:more... 919:organic 544:Bibcode 515:9756482 495:Bibcode 487:Science 448:Bibcode 407:Bibcode 376:Bibcode 360:: 1228. 265:Bibcode 124:niobium 812:Types 646:London 572:  562:  513:  474:  466:  346:Papers 334:  315:  283:  1025:TBCCO 997:BSCCO 976:wires 971:SQUID 570:S2CID 534:arXiv 472:S2CID 438:arXiv 301:Books 281:S2CID 255:arXiv 205:arXiv 1030:YBCO 1020:NbTi 1015:NbSn 1002:LBCO 560:ISBN 511:PMID 464:PMID 332:ISBN 313:ISBN 174:and 132:lead 108:i.e. 100:spin 44:spin 40:hole 1007:MgB 956:NMR 951:MRI 826:1.5 666:WHH 661:RVB 626:BCS 552:doi 530:559 503:doi 491:282 456:doi 415:doi 384:doi 273:doi 215:doi 130:or 23:An 1052:: 821:II 568:. 558:. 550:. 542:. 528:. 509:. 501:. 489:. 470:. 462:. 454:. 446:. 434:74 432:. 413:. 403:27 401:. 382:. 372:25 370:. 358:19 356:. 279:. 271:. 263:. 251:54 249:. 239:; 235:; 213:. 201:77 199:. 178:. 159:. 146:. 126:, 77:. 71:2e 1009:2 816:I 604:e 597:t 590:v 576:. 554:: 546:: 536:: 517:. 505:: 497:: 478:. 458:: 450:: 440:: 421:. 417:: 409:: 390:. 386:: 378:: 340:. 321:. 287:. 275:: 267:: 257:: 221:. 217:: 207::

Index


electron
superconductor
Cooper pair
retroreflected
hole
spin
Alexander F. Andreev
scattering
superconductor
supercurrent
energy gap
energy gap
Cooper pair
spin
ferromagnet
Point contact Andreev reflection
niobium
antimony
lead
critical temperature
order parameter
coercivity
quantum entanglement
spintronics
quantum computing
arXiv
cond-mat/0409225
doi
10.1103/RevModPhys.77.109

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑