Knowledge

Alpha glucan

Source 📝

59:
is common in many bacteria, which use GlgB and GlgE or the GlgE pathway exclusively for the biosynthesis of α-glucan. The GlgE pathway is especially prominent in actinomycetes, such as mycobacteria and streptomycetes. However, α-glucans in mycobacteria have a slight variation in the length of linear chains, which point to the fact that the branching enzyme in mycobacteria makes shorter branches compared to glycogen synthesis. For organisms that can utilize both classic glycogen synthesis and the GlgE pathway, only GlgB enzyme is present, which indicates that the GlgB enzyme is shared between both pathways.
430: 17: 115: 72:α-amylase, β-amylase, and glucoamylase. An α-glucan coating boasts protection from digestive environments, such as the small intestine, efficient encapsulation, and preservation rates. This design promotes the growth of the development of α-glucan-based bio-materials and many implications for its usage in food and pharmaceutical industries. 71:
was able to improve some of the physiochemical properties in comparison to raw normal starch, especially in loading efficiency of bioactive molecules. Alpha-glucan was used in conjunction with modified starch molecules that contained porous starch granules via hydrolysis with amylotic enzymes such as
58:
Alpha-glucan is also commonly found in bacteria, yeasts, plants, and insects. Whereas the main pathway of α-glucan synthesis is via glycosidic bonds of glucose monomers, α-glucan can be comparably synthesized via the maltosyl transferase GlgE and branching enzyme GlgB. This alternative pathway
54:
enzyme. This enzyme causes a reaction that transfers a glucosyl portion between orthophosphate and α-I,4-glucan. The position of the cofactors to the active sites on the enzyme are critical to the overall reaction rate thus, any alteration to the cofactor site leads to the disruption of the glucan
66:
and other bacteria are able to use in α-glucan to catalyze glucose units to form α-1,4-glucan and liberating fructose in the process. To regulate carbohydrate metabolism, more resistant starch was necessary. An α-glucan coated starch molecule produced from
332:
Jung, Yi-Seul; Hong, Moon-Gi; Park, Se-Hee; Lee, Byung-Hoo; Yoo, Sang-Ho (2019-11-11). "Biocatalytic Fabrication of α-Glucan-Coated Porous Starch Granules by Amylolytic and Glucan-Synthesizing Enzymes as a Target-Specific Delivery Carrier".
280:
Jung, Yi-Seul; Hong, Moon-Gi; Park, Se-Hee; Lee, Byung-Hoo; Yoo, Sang-Ho (2019-11-11). "Biocatalytic Fabrication of α-Glucan-Coated Porous Starch Granules by Amylolytic and Glucan-Synthesizing Enzymes as a Target-Specific Delivery Carrier".
228:
Jung, Yi-Seul; Hong, Moon-Gi; Park, Se-Hee; Lee, Byung-Hoo; Yoo, Sang-Ho (2019-11-11). "Biocatalytic Fabrication of α-Glucan-Coated Porous Starch Granules by Amylolytic and Glucan-Synthesizing Enzymes as a Target-Specific Delivery Carrier".
176:
Jung, Yi-Seul; Hong, Moon-Gi; Park, Se-Hee; Lee, Byung-Hoo; Yoo, Sang-Ho (2019-11-11). "Biocatalytic Fabrication of α-Glucan-Coated Porous Starch Granules by Amylolytic and Glucan-Synthesizing Enzymes as a Target-Specific Delivery Carrier".
140:
Shimomura, Shoji; Fukui, Toshio (1980). "A comparative study on .alpha.-glucan phosphorylases from plant and animal: interrelationship between the polysaccharide and pyridoxal phosphate binding sites by affinity electrophoresis".
471: 62:
Other uses for α-glucan have been developed based on its availability in bacteria. The accumulation of glycogen
495: 464: 384:
Ai Y, Nelson B, Birt DF, Jane JL (2013). "In vitro and in vivo digestion of octenyl succinic starch".
490: 47: 457: 8: 416: 366: 314: 262: 210: 445: 401: 370: 358: 350: 318: 306: 298: 266: 254: 246: 214: 202: 194: 158: 393: 342: 290: 238: 186: 150: 119: 43: 397: 441: 346: 294: 242: 190: 35: 484: 429: 354: 302: 250: 198: 51: 20:
Diagram showing orientation and location of different alpha-glucan linkages.
437: 405: 362: 310: 258: 206: 162: 107: 154: 93: 87: 39: 16: 103: 81: 30: 99: 114: 418:
Page that explains alpha-glucan linkages in starch.
118:Examples of alpha-glucan molecules with different 482: 383: 46:of the alpha form. α-Glucans use cofactors in a 331: 279: 227: 175: 139: 465: 75: 377: 472: 458: 113: 15: 483: 424: 50:site in order to activate a glucan 13: 14: 507: 428: 325: 273: 221: 169: 133: 106:) and α-1,6-glucan (including 1: 398:10.1016/j.carbpol.2013.07.057 126: 444:. You can help Knowledge by 7: 10: 512: 423: 347:10.1021/acs.biomac.9b00978 295:10.1021/acs.biomac.9b00978 243:10.1021/acs.biomac.9b00978 191:10.1021/acs.biomac.9b00978 96:, α-1,4- and α-1,6-glucan 90:, α-1,4- and α-1,6-glucan 76:Examples of alpha glucans 123: 69:Neisseria polysacchera 64:Neisseria polysacchera 21: 386:Carbohydrate Polymers 117: 19: 155:10.1021/bi00552a001 496:Biochemistry stubs 124: 102:, α-1,4- (such as 22: 453: 452: 341:(11): 4143–4149. 335:Biomacromolecules 289:(11): 4143–4149. 283:Biomacromolecules 237:(11): 4143–4149. 231:Biomacromolecules 185:(11): 4143–4149. 179:Biomacromolecules 149:(11): 2287–2294. 503: 474: 467: 460: 432: 425: 410: 409: 392:(2): 1266–1271. 381: 375: 374: 329: 323: 322: 277: 271: 270: 225: 219: 218: 173: 167: 166: 137: 120:glycosidic bonds 44:glycosidic bonds 511: 510: 506: 505: 504: 502: 501: 500: 491:Polysaccharides 481: 480: 479: 478: 421: 414: 413: 382: 378: 330: 326: 278: 274: 226: 222: 174: 170: 138: 134: 129: 78: 36:polysaccharides 12: 11: 5: 509: 499: 498: 493: 477: 476: 469: 462: 454: 451: 450: 433: 412: 411: 376: 324: 272: 220: 168: 131: 130: 128: 125: 112: 111: 97: 91: 85: 84:, α-1,6-glucan 77: 74: 55:binding site. 9: 6: 4: 3: 2: 508: 497: 494: 492: 489: 488: 486: 475: 470: 468: 463: 461: 456: 455: 449: 447: 443: 440:article is a 439: 434: 431: 427: 426: 422: 419: 417: 407: 403: 399: 395: 391: 387: 380: 372: 368: 364: 360: 356: 352: 348: 344: 340: 336: 328: 320: 316: 312: 308: 304: 300: 296: 292: 288: 284: 276: 268: 264: 260: 256: 252: 248: 244: 240: 236: 232: 224: 216: 212: 208: 204: 200: 196: 192: 188: 184: 180: 172: 164: 160: 156: 152: 148: 144: 136: 132: 121: 116: 109: 105: 101: 98: 95: 92: 89: 86: 83: 80: 79: 73: 70: 65: 60: 56: 53: 52:phosphorylase 49: 45: 41: 38:of D-glucose 37: 33: 32: 26: 18: 446:expanding it 438:biochemistry 435: 420: 415: 389: 385: 379: 338: 334: 327: 286: 282: 275: 234: 230: 223: 182: 178: 171: 146: 143:Biochemistry 142: 135: 68: 63: 61: 57: 42:linked with 28: 24: 23: 108:amylopectin 485:Categories 127:References 371:203440717 355:1526-4602 319:203440717 303:1526-4602 267:203440717 251:1526-4602 215:203440717 199:1526-4602 25:α-Glucans 406:24053802 363:31556605 311:31556605 259:31556605 207:31556605 94:pullulan 88:glycogen 48:cofactor 40:monomers 163:7387974 104:amylose 82:dextran 34:) are 31:glucans 404:  369:  361:  353:  317:  309:  301:  265:  257:  249:  213:  205:  197:  161:  100:starch 29:alpha- 436:This 367:S2CID 315:S2CID 263:S2CID 211:S2CID 442:stub 402:PMID 359:PMID 351:ISSN 307:PMID 299:ISSN 255:PMID 247:ISSN 203:PMID 195:ISSN 159:PMID 394:doi 343:doi 291:doi 239:doi 187:doi 151:doi 487:: 400:. 390:98 388:. 365:. 357:. 349:. 339:20 337:. 313:. 305:. 297:. 287:20 285:. 261:. 253:. 245:. 235:20 233:. 209:. 201:. 193:. 183:20 181:. 157:. 147:19 145:. 473:e 466:t 459:v 448:. 408:. 396:: 373:. 345:: 321:. 293:: 269:. 241:: 217:. 189:: 165:. 153:: 122:. 110:) 27:(

Index


glucans
polysaccharides
monomers
glycosidic bonds
cofactor
phosphorylase
dextran
glycogen
pullulan
starch
amylose
amylopectin

glycosidic bonds
doi
10.1021/bi00552a001
PMID
7387974
doi
10.1021/acs.biomac.9b00978
ISSN
1526-4602
PMID
31556605
S2CID
203440717
doi
10.1021/acs.biomac.9b00978
ISSN

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.