Knowledge

Absolute Galois group

Source đź“ť

28: 403: â‰  2, its absolute Galois group is generated by  + 3 elements and has an explicit description by generators and relations. This is a result of Uwe Jannsen and Kay Wingberg. Some results are known in the case 270: 881: 519: 531:
Every profinite group occurs as a Galois group of some Galois extension, however not every profinite group occurs as an absolute Galois group. For example, the
493: 207: 325:
The absolute Galois group of the field of rational functions with complex coefficients is free (as a profinite group). This result is due to
369: 970:(1995), "Étale Galois covers of affine smooth curves. The geometric case of a conjecture of Shafarevich. On Abhyankar's conjecture", 942: 771: 17: 535:
asserts that the only finite absolute Galois groups are either trivial or of order 2, that is only two isomorphism classes.
543: 330: 842: 1051: 539: 862: 972: 890: 838: 1029:
Harpaz, Yonatan; Wittenberg, Olivier (2023), "The Massey vanishing conjecture for number fields",
1067: 286: 498: 1001: 981: 952: 899: 850: 819: 762:, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 11 (3rd ed.), 751: 663: 441: 960: 781: 8: 150: 66: 985: 903: 1005: 915: 858: 547: 478: 436: 417:
Another case in which the absolute Galois group has been determined is for the largest
112: 926: 449:(maps on surfaces), enabling us to "see" the Galois theory of algebraic number fields. 1009: 938: 919: 767: 551: 532: 457: 196: 135: 97: 89: 472: 177:
is a cyclic group of two elements (complex conjugation and the identity map), since
989: 956: 907: 805: 777: 384: 997: 948: 846: 815: 763: 747: 432: 116: 1016:
Mináč, Ján; Tân, Nguyên Duy (2016), "Triple Massey products and Galois Theory",
826: 361: 1061: 810: 388: 326: 278: 265:{\displaystyle {\hat {\mathbf {Z} }}=\varprojlim \mathbf {Z} /n\mathbf {Z} .} 127: 27: 446: 418: 373: 189: 158: 73: 36: 32: 967: 365: 174: 52: 993: 911: 170:
The absolute Galois group of an algebraically closed field is trivial.
1047: 835:
Recent developments in the inverse Galois problem (Seattle, WA, 1993)
829:(1995), "Fundamental groups and embedding problems in characteristic 431:
No direct description is known for the absolute Galois group of the
788:
Haran, Dan; Jarden, Moshe (2000), "The absolute Galois group of
738:
Douady, Adrien (1964), "DĂ©termination d'un groupe de Galois",
109: 1046:, Cambridge studies in advanced mathematics, vol. 117, 439:
that the absolute Galois group has a faithful action on the
96:. Alternatively it is the group of all automorphisms of the 925: 685: 650: 638: 865: 501: 481: 210: 475:and NguyĂŞn Duy Tân's conjecture about vanishing of 39:of order 2 generated by complex conjugation, since 875: 740:Comptes Rendus de l'AcadĂ©mie des Sciences de Paris 513: 487: 264: 542:can be realized as an absolute Galois group of a 1059: 1028: 856: 627: 344:a variable. Then the absolute Galois group of 356:) is free of rank equal to the cardinality of 935:Grundlehren der Mathematischen Wissenschaften 289:Fr is a canonical (topological) generator of 929:; Schmidt, Alexander; Wingberg, Kay (2000), 108:. The absolute Galois group is well-defined 837:, Contemporary Mathematics, vol. 186, 787: 757: 616: 421:subfield of the field of algebraic numbers. 937:, vol. 323, Berlin: Springer-Verlag, 464:asserts that the absolute Galois group of 859:"Die Struktur der absoluten Galoisgruppe 809: 758:Fried, Michael D.; Jarden, Moshe (2008), 1041: 1018:Journal of European Mathematical Society 1015: 825: 594: 571: 26: 525: 14: 1060: 737: 706:Harpaz & Wittenberg (2023) pp.1,41 700: 691: 583: 718: 686:Neukirch, Schmidt & Wingberg 2000 651:Neukirch, Schmidt & Wingberg 2000 639:Neukirch, Schmidt & Wingberg 2000 340:be an algebraically closed field and 1044:Galois Groups and Fundamental Groups 857:Jannsen, Uwe; Wingberg, Kay (1982), 724:Fried & Jarden (2008) pp.208,545 709: 471:An interesting problem is to settle 966: 868: 605: 24: 25: 1079: 697:Mináč & Tân (2016) pp.255,284 544:pseudo algebraically closed field 173:The absolute Galois group of the 31:The absolute Galois group of the 435:. In this case, it follows from 255: 242: 215: 876:{\displaystyle {\mathfrak {p}}} 679: 368:, and was also proved later by 188:The absolute Galois group of a 798:Pacific Journal of Mathematics 715:Fried & Jarden (2008) p.12 656: 644: 632: 621: 610: 599: 588: 577: 565: 460:of the rational numbers. Then 219: 195:is isomorphic to the group of 13: 1: 843:American Mathematical Society 558: 316:is the number of elements in 181:is the separable closure of 43:is the separable closure of 7: 931:Cohomology of Number Fields 628:Jannsen & Wingberg 1982 425: 407:= 2, but the structure for 331:Riemann's existence theorem 164: 10: 1084: 1052:Cambridge University Press 731: 540:projective profinite group 468:is a free profinite group. 1031:Duke Mathematical Journal 1042:Szamuely, Tamás (2009), 973:Inventiones Mathematicae 891:Inventiones Mathematicae 839:Providence, Rhode Island 811:10.2140/pjm.2000.196.445 546:. This result is due to 462:Shafarevich's conjecture 376:using algebraic methods. 360:. This result is due to 617:Haran & Jarden 2000 514:{\displaystyle n\geq 3} 329:and has its origins in 277:(For the notation, see 877: 533:Artin–Schreier theorem 515: 495:- Massey products for 489: 287:Frobenius automorphism 266: 145:. This holds e.g. for 48: 883:-adischer Zahlkörper" 878: 516: 490: 267: 57:absolute Galois group 30: 18:Absolute galois group 863: 845:, pp. 353–369, 526:Some general results 499: 479: 336:More generally, let 208: 986:1995InMat.120..555P 904:1982InMat..70...71J 185:and  = 2. 151:characteristic zero 47:and  = 2. 994:10.1007/bf01241142 912:10.1007/bf01393199 873: 548:Alexander Lubotzky 511: 485: 296:. (Recall that Fr( 262: 236: 197:profinite integers 134:is the same as an 113:inner automorphism 49: 944:978-3-540-66671-4 773:978-3-540-77269-9 552:Lou van den Dries 488:{\displaystyle n} 458:abelian extension 442:dessins d'enfants 229: 222: 136:algebraic closure 98:algebraic closure 90:separable closure 16:(Redirected from 1075: 1054: 1038: 1025: 1012: 963: 927:Neukirch, JĂĽrgen 922: 887: 882: 880: 879: 874: 872: 871: 853: 822: 813: 784: 760:Field arithmetic 754: 725: 722: 716: 713: 707: 704: 698: 695: 689: 683: 677: 676: 674: 673: 668: 660: 654: 648: 642: 641:, theorem 7.5.10 636: 630: 625: 619: 614: 608: 603: 597: 592: 586: 581: 575: 569: 520: 518: 517: 512: 494: 492: 491: 486: 433:rational numbers 385:finite extension 271: 269: 268: 263: 258: 250: 245: 237: 224: 223: 218: 213: 21: 1083: 1082: 1078: 1077: 1076: 1074: 1073: 1072: 1058: 1057: 945: 885: 867: 866: 864: 861: 860: 827:Harbater, David 774: 764:Springer-Verlag 734: 729: 728: 723: 719: 714: 710: 705: 701: 696: 692: 684: 680: 671: 669: 666: 662: 661: 657: 649: 645: 637: 633: 626: 622: 615: 611: 604: 600: 593: 589: 582: 578: 570: 566: 561: 528: 500: 497: 496: 480: 477: 476: 456:be the maximal 437:Belyi's theorem 428: 413: 398: 294: 254: 246: 241: 228: 214: 212: 211: 209: 206: 205: 167: 117:profinite group 63: 23: 22: 15: 12: 11: 5: 1081: 1071: 1070: 1056: 1055: 1039: 1026: 1013: 980:(3): 555–578, 964: 943: 923: 870: 854: 823: 804:(2): 445–459, 785: 772: 755: 733: 730: 727: 726: 717: 708: 699: 690: 678: 655: 643: 631: 620: 609: 598: 587: 576: 563: 562: 560: 557: 556: 555: 536: 527: 524: 523: 522: 510: 507: 504: 484: 469: 450: 427: 424: 423: 422: 415: 411: 394: 389:p-adic numbers 377: 362:David Harbater 334: 322: 321: 292: 275: 274: 273: 272: 261: 257: 253: 249: 244: 240: 235: 232: 227: 221: 217: 200: 199: 186: 171: 166: 163: 61: 9: 6: 4: 3: 2: 1080: 1069: 1068:Galois theory 1066: 1065: 1063: 1053: 1049: 1045: 1040: 1036: 1032: 1027: 1023: 1019: 1014: 1011: 1007: 1003: 999: 995: 991: 987: 983: 979: 975: 974: 969: 965: 962: 958: 954: 950: 946: 940: 936: 932: 928: 924: 921: 917: 913: 909: 905: 901: 897: 893: 892: 884: 855: 852: 848: 844: 840: 836: 832: 828: 824: 821: 817: 812: 807: 803: 799: 795: 791: 786: 783: 779: 775: 769: 765: 761: 756: 753: 749: 746:: 5305–5308, 745: 741: 736: 735: 721: 712: 703: 694: 687: 682: 665: 659: 652: 647: 640: 635: 629: 624: 618: 613: 607: 602: 596: 595:Harbater 1995 591: 585: 580: 573: 572:Szamuely 2009 568: 564: 553: 549: 545: 541: 537: 534: 530: 529: 508: 505: 502: 482: 474: 470: 467: 463: 459: 455: 451: 448: 444: 443: 438: 434: 430: 429: 420: 416: 414:is not known. 410: 406: 402: 397: 393: 390: 386: 382: 378: 375: 371: 367: 363: 359: 355: 351: 348: =  347: 343: 339: 335: 332: 328: 327:Adrien Douady 324: 323: 319: 315: 311: 307: 303: 299: 295: 288: 284: 283: 282: 280: 279:Inverse limit 259: 251: 247: 238: 233: 230: 225: 204: 203: 202: 201: 198: 194: 191: 187: 184: 180: 176: 172: 169: 168: 162: 160: 156: 152: 148: 144: 140: 137: 133: 129: 128:perfect field 125: 120: 118: 114: 111: 107: 103: 99: 95: 91: 87: 83: 79: 75: 71: 68: 64: 58: 54: 46: 42: 38: 34: 29: 19: 1043: 1034: 1030: 1024:(1): 255–284 1021: 1017: 977: 971: 968:Pop, Florian 934: 930: 895: 889: 834: 830: 801: 797: 793: 789: 759: 743: 739: 720: 711: 702: 693: 681: 670:. Retrieved 658: 646: 634: 623: 612: 601: 590: 579: 567: 465: 461: 453: 447:Grothendieck 440: 419:totally real 408: 404: 400: 395: 391: 380: 374:Moshe Jarden 357: 353: 349: 345: 341: 337: 317: 313: 309: 305: 301: 297: 290: 276: 192: 190:finite field 182: 178: 175:real numbers 159:finite field 154: 146: 142: 138: 131: 123: 121: 105: 101: 93: 85: 81: 77: 74:Galois group 69: 59: 56: 50: 44: 40: 37:cyclic group 33:real numbers 584:Douady 1964 366:Florian Pop 53:mathematics 961:0948.11001 782:1145.12001 672:2019-09-04 559:References 115:. It is a 1048:Cambridge 1037:(1): 1–41 1010:128157587 920:119378923 898:: 71–78, 688:, p. 449. 506:≥ 473:Ján Mináč 370:Dan Haran 239:⁡ 234:← 220:^ 104:that fix 1062:Category 653:, §VII.5 606:Pop 1995 574:, p. 14. 426:Problems 312:, where 304:for all 165:Examples 84:, where 1002:1334484 982:Bibcode 953:1737196 900:Bibcode 851:1352282 820:1800587 752:0162796 732:Sources 387:of the 72:is the 1008:  1000:  959:  951:  941:  918:  849:  818:  780:  770:  750:  538:Every 399:. For 122:(When 55:, the 1006:S2CID 916:S2CID 886:(PDF) 667:(PDF) 664:"qtr" 383:be a 153:, or 126:is a 110:up to 88:is a 80:over 67:field 65:of a 35:is a 939:ISBN 796:)", 768:ISBN 550:and 452:Let 379:Let 372:and 364:and 300:) = 285:The 1035:172 990:doi 978:120 957:Zbl 908:doi 833:", 806:doi 802:196 778:Zbl 744:258 445:of 308:in 281:.) 231:lim 161:.) 149:of 141:of 100:of 92:of 76:of 51:In 1064:: 1050:: 1033:, 1022:19 1020:, 1004:, 998:MR 996:, 988:, 976:, 955:, 949:MR 947:, 933:, 914:, 906:, 896:70 894:, 888:, 847:MR 841:: 816:MR 814:, 800:, 776:, 766:, 748:MR 742:, 320:.) 157:a 130:, 119:. 992:: 984:: 910:: 902:: 869:p 831:p 808:: 794:x 792:( 790:C 675:. 554:. 521:. 509:3 503:n 483:n 466:K 454:K 412:2 409:Q 405:p 401:p 396:p 392:Q 381:K 358:C 354:x 352:( 350:C 346:K 342:x 338:C 333:. 318:K 314:q 310:K 306:x 302:x 298:x 293:K 291:G 260:. 256:Z 252:n 248:/ 243:Z 226:= 216:Z 193:K 183:R 179:C 155:K 147:K 143:K 139:K 132:K 124:K 106:K 102:K 94:K 86:K 82:K 78:K 70:K 62:K 60:G 45:R 41:C 20:)

Index

Absolute galois group

real numbers
cyclic group
mathematics
field
Galois group
separable closure
algebraic closure
up to
inner automorphism
profinite group
perfect field
algebraic closure
characteristic zero
finite field
real numbers
finite field
profinite integers
Inverse limit
Frobenius automorphism
Adrien Douady
Riemann's existence theorem
David Harbater
Florian Pop
Dan Haran
Moshe Jarden
finite extension
p-adic numbers
totally real

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑