Knowledge

Well-order

Source 📝

1642: 1629: 1063: 1053: 1023: 1013: 991: 981: 946: 924: 914: 879: 847: 837: 812: 780: 765: 745: 713: 703: 693: 673: 641: 621: 611: 601: 569: 549: 505: 485: 475: 438: 413: 403: 371: 346: 309: 279: 247: 185: 150: 2019:) of a finite set is equal to the order type. Counting in the everyday sense typically starts from one, so it assigns to each object the size of the initial segment with that object as last element. Note that these numbers are one more than the formal ordinal numbers according to the isomorphic order, because these are equal to the number of earlier objects (which corresponds to counting from zero). Thus for finite 2710:) imply the axiom of choice and hence a well order of the reals. Nonetheless, it is possible to show that the ZFC+GCH axioms alone are not sufficient to prove the existence of a definable (by a formula) well order of the reals. However it is consistent with ZFC that a definable well ordering of the reals exists—for example, it is consistent with ZFC that 3407:
Subsets that are unbounded by themselves but bounded in the whole set; they have no maximum, but a supremum outside the subset; if the subset is non-empty this supremum is a limit point of the subset and hence also of the whole set; if the subset is empty this supremum is the minimum of the whole
2154: 2363: 2613: 1373: 1302: 2522: 1617: 1231: 1502: 1458: 1414: 2015:, to find the ordinal number of a particular object, or to find the object with a particular ordinal number, corresponds to assigning ordinal numbers one by one to the objects. The size (number of elements, 3192: 3278: 1639:
indicates that the property is not guaranteed in general (it might, or might not, hold). For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by
1572: 1469: 1425: 1384: 1313: 1242: 1186: 3204:
within the set. Within the set of real numbers, either with the ordinary topology or the order topology, 0 is also a limit point of the set. It is also a limit point of the set of limit points.
3096: 2076: 3023: 2857: 2286: 2070:
Another well ordering of the natural numbers is given by defining that all even numbers are less than all odd numbers, and the usual ordering applies within the evens and the odds:
2533: 1175: 1561: 2690: 3389: 2892: 2930: 2743: 2418: 1308: 2011:
of the well-ordered set. The position of each element within the ordered set is also given by an ordinal number. In the case of a finite set, the basic operation of
1715: 1237: 1796: 1767: 1741: 1529: 1146: 1676: 3404:
by themselves); this can be an isolated point or a limit point of the whole set; in the latter case it may or may not be also a limit point of the subset.
3357:— this type does not occur in finite sets, and may or may not occur in an infinite set; the infinite sets without limit point are the sets of order type 3496:
Bonnet, Rémi; Finkel, Alain; Haddad, Serge; Rosa-Velardo, Fernando (2013). "Ordinal theory for expressiveness of well-structured transition systems".
2428: 1567: 1181: 3291:
of this set, 1 is a limit point of the set, despite being separated from the only limit point 0 under the ordinary topology of the real numbers.
1464: 1420: 1379: 4269: 50: 4252: 3108: 3210: 3782: 3618: 3586: 2859:
whose elements are nonempty and disjoint intervals. Each such interval contains at least one rational number, so there is an
3419:
in the whole set if and only if it is unbounded in the whole set or it has a maximum that is also maximum of the whole set.
4099: 2942:
is countable. On the other hand, a countably infinite subset of the reals may or may not be a well order with the standard
2149:{\displaystyle {\begin{matrix}0&2&4&6&8&\dots &1&3&5&7&9&\dots \end{matrix}}} 3040: 3317:
Every strictly decreasing sequence of elements of the set must terminate after only finitely many steps (assuming the
4235: 4094: 1943:. The distinction between strict and non-strict well orders is often ignored since they are easily interconvertible. 4089: 2707: 3725: 2027:-th element" of a well-ordered set requires context to know whether this counts from zero or one. In a notation " 2960: 2358:{\displaystyle {\begin{matrix}0&1&2&3&4&\dots &-1&-2&-3&\dots \end{matrix}}} 2067:
is a well ordering and has the additional property that every non-zero natural number has a unique predecessor.
1936:
well ordering, then < is a strict well ordering. A relation is a strict well ordering if and only if it is a
3807: 2793: 43: 4126: 4046: 2042:, but not conversely: well-ordered sets of a particular cardinality can have many different order types (see 1897:, has a unique successor (next element), namely the least element of the subset of all elements greater than 2608:{\displaystyle {\begin{matrix}0&-1&1&-2&2&-3&3&-4&4&\dots \end{matrix}}} 3911: 3840: 3720: 2172:. Every element has a successor (there is no largest element). Two elements lack a predecessor: 0 and 1. 3814: 3802: 3765: 3740: 3715: 3669: 3638: 1151: 4111: 3745: 3735: 3611: 2717:
An uncountable subset of the real numbers with the standard ordering ≤ cannot be a well order: Suppose
2934:
to the natural numbers (which could be chosen to avoid hitting zero). Thus there is an injection from
1535: 4084: 3750: 3431: 3401: 3318: 2645: 1966:, states that every set can be well ordered. If a set is well ordered (or even if it merely admits a 36: 4312: 4307: 4016: 3643: 3369: 2872: 1110: 934: 103: 2913: 2726: 2714:, and it follows from ZFC+V=L that a particular formula well orders the reals, or indeed any set. 1368:{\displaystyle {\begin{aligned}a\neq {}&b\Rightarrow \\aRb{\text{ or }}&bRa\end{aligned}}} 4264: 4247: 3540: 2390: 1982: 4176: 3792: 2703: 2634: 1297:{\displaystyle {\begin{aligned}aRb{\text{ and }}&bRa\\\Rightarrow a={}&b\end{aligned}}} 1080: 73: 4302: 4154: 3989: 3980: 3849: 3730: 3684: 3648: 3604: 3423: 3416: 3311: 2908:, which could be mapped to zero later). And it is well known that there is an injection from 1971: 1967: 1959: 1937: 1635:
indicates that the column's property is always true the row's term (at the very left), while
1090: 83: 1685: 4242: 4201: 4191: 4181: 3926: 3889: 3879: 3859: 3844: 3578: 3517: 1656: 867: 142: 1772: 8: 4169: 4080: 4026: 3985: 3975: 3864: 3797: 3760: 1799:
A term's definition may require additional properties that are not listed in this table.
1746: 1720: 1679: 1508: 1125: 1115: 526: 108: 25: 3572: 4281: 4208: 4061: 3970: 3960: 3901: 3819: 3755: 3467: 2860: 2047: 1940: 1661: 1105: 1085: 1075: 1001: 98: 78: 68: 4121: 4218: 4196: 4056: 4041: 4021: 3824: 3582: 3451: 3334: 1918: 1825: 4031: 3884: 3549: 3531: 3505: 3462: 2000: 1947: 1933: 1894: 800: 733: 1901:. There may be elements, besides the least element, that have no predecessor (see 4213: 3996: 3874: 3869: 3854: 3770: 3679: 3664: 3513: 3472: 3362: 2699: 2196: 2189: 2016: 1978: 1974:
can be used to prove that a given statement is true for all elements of the set.
1963: 661: 458: 29: 2517:{\displaystyle |x|<|y|\qquad {\text{or}}\qquad |x|=|y|{\text{ and }}x\leq y.} 4131: 4116: 4106: 3965: 3943: 3921: 3568: 3457: 3348: 3338: 3288: 3025:
has no least element and is therefore not a well order under standard ordering
2420: 2372: 2206: 2181: 2064: 2004: 1994: 1951: 1832: 1612:{\displaystyle {\begin{aligned}aRb\Rightarrow \\{\text{not }}bRa\end{aligned}}} 329: 1226:{\displaystyle {\begin{aligned}&aRb\\\Rightarrow {}&bRa\end{aligned}}} 4296: 4230: 4186: 4164: 4036: 3906: 3894: 3699: 3509: 2638: 2387:
Another relation for well ordering the integers is the following definition:
1862:. In some academic articles and textbooks these terms are instead written as 1851: 1100: 1095: 267: 93: 88: 3554: 3308:
The set is well ordered. That is, every nonempty subset has a least element.
4051: 3933: 3916: 3834: 3674: 3627: 3477: 4257: 3950: 3829: 3694: 3439: 3354: 3301: 3201: 2039: 1914: 1809: 391: 1981:
are well ordered by the usual less-than relation is commonly called the
1497:{\displaystyle {\begin{aligned}a\wedge b\\{\text{exists}}\end{aligned}}} 4225: 4159: 2619: 2160: 2008: 1955: 1453:{\displaystyle {\begin{aligned}a\vee b\\{\text{exists}}\end{aligned}}} 4276: 4149: 3955: 3435: 1840: 1409:{\displaystyle {\begin{aligned}\min S\\{\text{exists}}\end{aligned}}} 2035:
can also be an infinite ordinal, it will typically count from zero.
1889:
Every non-empty well-ordered set has a least element. Every element
4071: 3938: 3689: 2012: 206: 3344:
With respect to this topology there can be two kinds of elements:
2950:
The natural numbers are a well order under the standard ordering
2185: 1921:, namely the least element of the subset of all upper bounds of 3596: 3535: 1843: 3536:"Some Applications of the Notions of Forcing and Generic Sets" 3495: 3187:{\displaystyle \{-2^{-n}-2^{-m-n}\,|\,0\leq m,n<\omega \}} 2702:) one can show that there is a well order of the reals. Also 3351:— these are the minimum and the elements with a predecessor. 3273:{\displaystyle \{-2^{-n}\,|\,0\leq n<\omega \}\cup \{1\}} 2711: 2695: 3426:
if and only if it has order type less than or equal to ω
3574:
Real Analysis: Modern Techniques and Their Applications
2188:
is not a well ordering, since, for example, the set of
3324:
Every subordering is isomorphic to an initial segment.
2538: 2291: 2081: 3372: 3213: 3111: 3043: 2963: 2916: 2875: 2796: 2729: 2648: 2536: 2431: 2393: 2289: 2079: 2050:
set, the set of possible order types is uncountable.
1775: 1749: 1723: 1688: 1664: 1570: 1538: 1511: 1467: 1423: 1382: 1311: 1240: 1184: 1154: 1128: 3304:, then the following are equivalent to each other: 3400:Subsets with a maximum (that is, subsets that are 3383: 3272: 3186: 3091:{\displaystyle \{-2^{-n}\,|\,0\leq n<\omega \}} 3090: 3017: 2924: 2886: 2851: 2737: 2684: 2607: 2516: 2412: 2357: 2148: 2038:For an infinite set the order type determines the 1790: 1761: 1735: 1709: 1670: 1611: 1555: 1523: 1496: 1452: 1408: 1367: 1296: 1225: 1169: 1140: 4294: 2637:is not a well ordering, since, for example, the 2202:is an example of well ordering of the integers: 1387: 3577:. Pure and applied mathematics (2nd ed.). 2527:This well order can be visualized as follows: 2053: 3612: 3422:A well-ordered set as topological space is a 2694:does not contain a least element. From the 1652:in the "Antisymmetric" column, respectively. 44: 3411:Subsets that are unbounded in the whole set. 3267: 3261: 3255: 3214: 3181: 3112: 3085: 3044: 3012: 2964: 2846: 2803: 1858:together with the ordering is then called a 2192:integers does not contain a least element. 4270:Positive cone of a partially ordered group 3619: 3605: 3333:Every well-ordered set can be made into a 3295: 3018:{\displaystyle \{1/n\,|\,n=1,2,3,\dots \}} 1905:below for an example). A well-ordered set 51: 37: 3553: 3374: 3239: 3233: 3159: 3153: 3069: 3063: 2984: 2978: 2938:to the natural numbers, which means that 2918: 2877: 2852:{\displaystyle A=\{(x,s(x))\,|\,x\in X\}} 2836: 2830: 2731: 1893:of a well-ordered set, except a possible 4253:Positive cone of an ordered vector space 3530: 3567: 2904:(except possibly for a last element of 2209:one of the following conditions holds: 4295: 3434:), that is, if and only if the set is 2180:Unlike the standard ordering ≤ of the 3600: 2698:axioms of set theory (including the 2043: 1902: 1655:All definitions tacitly require the 1999:Every well-ordered set is uniquely 1946:Every well-ordered set is uniquely 1170:{\displaystyle S\neq \varnothing :} 13: 3780:Properties & Types ( 2058: 1988: 14: 4324: 4236:Positive cone of an ordered field 3328: 3314:works for the entire ordered set. 3200:. The previous set is the set of 2184:, the standard ordering ≤ of the 1161: 4090:Ordered topological vector space 3626: 3396:For subsets we can distinguish: 2708:generalized continuum hypothesis 2046:, below, for an example). For a 1640: 1627: 1556:{\displaystyle {\text{not }}aRa} 1061: 1051: 1021: 1011: 989: 979: 944: 922: 912: 877: 845: 835: 810: 778: 763: 743: 711: 701: 691: 671: 639: 619: 609: 599: 567: 547: 503: 483: 473: 436: 411: 401: 369: 344: 307: 277: 245: 183: 148: 2685:{\displaystyle (0,1)\subseteq } 2633:The standard ordering ≤ of any 2467: 2461: 2280:can be visualized as follows: 2063:The standard ordering ≤ of the 16:Class of mathematical orderings 3524: 3489: 3235: 3155: 3065: 2980: 2832: 2827: 2824: 2818: 2806: 2679: 2667: 2661: 2649: 2493: 2485: 2477: 2469: 2457: 2449: 2441: 2433: 2159:This is a well-ordered set of 1648:in the "Symmetric" column and 1584: 1329: 1274: 1203: 1: 4047:Series-parallel partial order 3483: 3384:{\displaystyle \mathbb {N} .} 2887:{\displaystyle \mathbb {Q} .} 1962:, which is equivalent to the 1958:of the well-ordered set. The 1839:with the property that every 1649: 1636: 1046: 1041: 1036: 1031: 1006: 974: 969: 964: 959: 954: 939: 907: 902: 897: 892: 887: 872: 860: 855: 830: 825: 820: 805: 793: 788: 773: 758: 753: 738: 726: 721: 686: 681: 666: 654: 649: 634: 629: 594: 582: 577: 562: 557: 542: 537: 532: 518: 513: 498: 493: 468: 463: 451: 446: 431: 426: 421: 396: 384: 379: 364: 359: 354: 339: 334: 322: 317: 302: 297: 292: 287: 272: 260: 255: 240: 235: 230: 225: 220: 215: 198: 193: 178: 173: 168: 163: 158: 3726:Cantor's isomorphism theorem 2925:{\displaystyle \mathbb {Q} } 2738:{\displaystyle \mathbb {R} } 2054:Examples and counterexamples 7: 3766:Szpilrajn extension theorem 3741:Hausdorff maximal principle 3716:Boolean prime ideal theorem 3498:Information and Computation 3445: 2896:There is an injection from 2413:{\displaystyle x\leq _{z}y} 2175: 10: 4329: 4112:Topological vector lattice 2706:proved that ZF + GCH (the 1992: 1970:), the proof technique of 1909:contains for every subset 1854:in this ordering. The set 4142: 4070: 4009: 3779: 3708: 3657: 3634: 3337:by endowing it with the 3319:axiom of dependent choice 3033:Examples of well orders: 1977:The observation that the 3721:Cantor–Bernstein theorem 3510:10.1016/j.ic.2012.11.003 2628: 4265:Partially ordered group 4085:Specialization preorder 3555:10.4064/fm-56-3-325-345 3541:Fundamenta Mathematicae 3296:Equivalent formulations 2786:is the last element of 2257:are both negative, and 2238:are both positive, and 1985:(for natural numbers). 1983:well-ordering principle 3751:Kruskal's tree theorem 3746:Knaster–Tarski theorem 3736:Dushnik–Miller theorem 3385: 3274: 3188: 3092: 3019: 2926: 2888: 2853: 2739: 2686: 2609: 2518: 2414: 2359: 2150: 2044:§ Natural numbers 1903:§ Natural numbers 1792: 1763: 1737: 1711: 1710:{\displaystyle a,b,c,} 1672: 1613: 1557: 1525: 1498: 1454: 1410: 1369: 1298: 1227: 1171: 1142: 3424:first-countable space 3386: 3312:Transfinite induction 3275: 3189: 3093: 3020: 2927: 2889: 2854: 2740: 2687: 2610: 2519: 2415: 2371:is isomorphic to the 2360: 2151: 1972:transfinite induction 1968:well-founded relation 1960:well-ordering theorem 1793: 1764: 1738: 1712: 1673: 1614: 1558: 1526: 1499: 1455: 1411: 1370: 1299: 1228: 1172: 1143: 1122:Definitions, for all 4243:Ordered vector space 3438:or has the smallest 3370: 3211: 3109: 3041: 2961: 2914: 2873: 2794: 2770:be the successor of 2727: 2646: 2534: 2429: 2391: 2287: 2077: 1791:{\displaystyle aRc.} 1773: 1747: 1721: 1686: 1662: 1657:homogeneous relation 1568: 1536: 1509: 1465: 1421: 1380: 1309: 1238: 1182: 1152: 1126: 868:Strict partial order 143:Equivalence relation 4081:Alexandrov topology 4027:Lexicographic order 3986:Well-quasi-ordering 3581:. pp. 4–6, 9. 3207:The set of numbers 3105:The set of numbers 3037:The set of numbers 2031:-th element" where 1822:well-order relation 1762:{\displaystyle bRc} 1736:{\displaystyle aRb} 1524:{\displaystyle aRa} 1141:{\displaystyle a,b} 527:Well-quasi-ordering 4062:Transitive closure 4022:Converse/Transpose 3731:Dilworth's theorem 3569:Folland, Gerald B. 3468:Well partial order 3381: 3361:, for example the 3270: 3184: 3088: 3015: 2922: 2884: 2861:injective function 2849: 2735: 2682: 2605: 2603: 2514: 2410: 2355: 2353: 2146: 2144: 2048:countably infinite 2023:, the expression " 1941:strict total order 1788: 1759: 1733: 1707: 1668: 1609: 1607: 1553: 1521: 1494: 1492: 1450: 1448: 1406: 1404: 1365: 1363: 1294: 1292: 1223: 1221: 1167: 1138: 1002:Strict total order 4290: 4289: 4248:Partially ordered 4057:Symmetric closure 4042:Reflexive closure 3785: 3588:978-0-471-31716-6 3452:Tree (set theory) 3335:topological space 2704:Wacław Sierpiński 2500: 2465: 2224:is positive, and 1919:least upper bound 1804: 1803: 1671:{\displaystyle R} 1622: 1621: 1594: 1542: 1488: 1444: 1400: 1348: 1257: 935:Strict weak order 121:Total, Semiconnex 4320: 4032:Linear extension 3781: 3761:Mirsky's theorem 3621: 3614: 3607: 3598: 3597: 3592: 3560: 3559: 3557: 3528: 3522: 3521: 3493: 3463:Well-founded set 3454:, generalization 3392: 3390: 3388: 3387: 3382: 3377: 3360: 3286: 3279: 3277: 3276: 3271: 3238: 3232: 3231: 3199: 3193: 3191: 3190: 3185: 3158: 3152: 3151: 3130: 3129: 3101: 3097: 3095: 3094: 3089: 3068: 3062: 3061: 3028: 3024: 3022: 3021: 3016: 2983: 2974: 2953: 2945: 2941: 2937: 2933: 2931: 2929: 2928: 2923: 2921: 2907: 2903: 2899: 2895: 2893: 2891: 2890: 2885: 2880: 2866: 2858: 2856: 2855: 2850: 2835: 2789: 2785: 2781: 2777: 2773: 2769: 2758: 2754: 2750: 2747:well ordered by 2746: 2744: 2742: 2741: 2736: 2734: 2720: 2693: 2691: 2689: 2688: 2683: 2624: 2614: 2612: 2611: 2606: 2604: 2523: 2521: 2520: 2515: 2501: 2498: 2496: 2488: 2480: 2472: 2466: 2463: 2460: 2452: 2444: 2436: 2419: 2417: 2416: 2411: 2406: 2405: 2383: 2370: 2364: 2362: 2361: 2356: 2354: 2279: 2272: 2270: 2264: 2256: 2252: 2247: 2237: 2233: 2227: 2223: 2218: 2205: 2201: 2171: 2155: 2153: 2152: 2147: 2145: 2034: 2030: 2026: 2022: 2001:order isomorphic 1948:order isomorphic 1928: 1924: 1912: 1908: 1900: 1895:greatest element 1892: 1860:well-ordered set 1857: 1849: 1838: 1830: 1797: 1795: 1794: 1789: 1768: 1766: 1765: 1760: 1742: 1740: 1739: 1734: 1716: 1714: 1713: 1708: 1677: 1675: 1674: 1669: 1651: 1647: 1644: 1643: 1638: 1634: 1631: 1630: 1618: 1616: 1615: 1610: 1608: 1595: 1592: 1562: 1560: 1559: 1554: 1543: 1540: 1530: 1528: 1527: 1522: 1503: 1501: 1500: 1495: 1493: 1489: 1486: 1459: 1457: 1456: 1451: 1449: 1445: 1442: 1415: 1413: 1412: 1407: 1405: 1401: 1398: 1374: 1372: 1371: 1366: 1364: 1349: 1346: 1323: 1303: 1301: 1300: 1295: 1293: 1284: 1258: 1255: 1232: 1230: 1229: 1224: 1222: 1207: 1188: 1176: 1174: 1173: 1168: 1147: 1145: 1144: 1139: 1068: 1065: 1064: 1058: 1055: 1054: 1048: 1043: 1038: 1033: 1028: 1025: 1024: 1018: 1015: 1014: 1008: 996: 993: 992: 986: 983: 982: 976: 971: 966: 961: 956: 951: 948: 947: 941: 929: 926: 925: 919: 916: 915: 909: 904: 899: 894: 889: 884: 881: 880: 874: 862: 857: 852: 849: 848: 842: 839: 838: 832: 827: 822: 817: 814: 813: 807: 801:Meet-semilattice 795: 790: 785: 782: 781: 775: 770: 767: 766: 760: 755: 750: 747: 746: 740: 734:Join-semilattice 728: 723: 718: 715: 714: 708: 705: 704: 698: 695: 694: 688: 683: 678: 675: 674: 668: 656: 651: 646: 643: 642: 636: 631: 626: 623: 622: 616: 613: 612: 606: 603: 602: 596: 584: 579: 574: 571: 570: 564: 559: 554: 551: 550: 544: 539: 534: 529: 520: 515: 510: 507: 506: 500: 495: 490: 487: 486: 480: 477: 476: 470: 465: 453: 448: 443: 440: 439: 433: 428: 423: 418: 415: 414: 408: 405: 404: 398: 386: 381: 376: 373: 372: 366: 361: 356: 351: 348: 347: 341: 336: 324: 319: 314: 311: 310: 304: 299: 294: 289: 284: 281: 280: 274: 262: 257: 252: 249: 248: 242: 237: 232: 227: 222: 217: 212: 210: 200: 195: 190: 187: 186: 180: 175: 170: 165: 160: 155: 152: 151: 145: 63: 62: 53: 46: 39: 32: 30:binary relations 21: 20: 4328: 4327: 4323: 4322: 4321: 4319: 4318: 4317: 4313:Wellfoundedness 4308:Ordinal numbers 4293: 4292: 4291: 4286: 4282:Young's lattice 4138: 4066: 4005: 3855:Heyting algebra 3803:Boolean algebra 3775: 3756:Laver's theorem 3704: 3670:Boolean algebra 3665:Binary relation 3653: 3630: 3625: 3595: 3589: 3563: 3529: 3525: 3494: 3490: 3486: 3473:Prewellordering 3448: 3429: 3373: 3371: 3368: 3367: 3365: 3363:natural numbers 3358: 3349:isolated points 3331: 3302:totally ordered 3298: 3281: 3280:has order type 3234: 3224: 3220: 3212: 3209: 3208: 3195: 3194:has order type 3154: 3138: 3134: 3122: 3118: 3110: 3107: 3106: 3099: 3098:has order type 3064: 3054: 3050: 3042: 3039: 3038: 3026: 2979: 2970: 2962: 2959: 2958: 2951: 2946:. For example, 2943: 2939: 2935: 2917: 2915: 2912: 2911: 2909: 2905: 2901: 2897: 2876: 2874: 2871: 2870: 2868: 2864: 2831: 2795: 2792: 2791: 2787: 2783: 2779: 2775: 2771: 2760: 2756: 2752: 2748: 2730: 2728: 2725: 2724: 2722: 2721:is a subset of 2718: 2700:axiom of choice 2647: 2644: 2643: 2641: 2631: 2622: 2602: 2601: 2596: 2591: 2583: 2578: 2570: 2565: 2557: 2552: 2544: 2537: 2535: 2532: 2531: 2499: and  2497: 2492: 2484: 2476: 2468: 2462: 2456: 2448: 2440: 2432: 2430: 2427: 2426: 2401: 2397: 2392: 2389: 2388: 2375: 2368: 2352: 2351: 2346: 2338: 2330: 2322: 2317: 2312: 2307: 2302: 2297: 2290: 2288: 2285: 2284: 2277: 2266: 2265:| ≤ | 2260: 2258: 2254: 2250: 2239: 2235: 2231: 2225: 2221: 2213: 2203: 2199: 2197:binary relation 2182:natural numbers 2178: 2163: 2143: 2142: 2137: 2132: 2127: 2122: 2117: 2112: 2107: 2102: 2097: 2092: 2087: 2080: 2078: 2075: 2074: 2065:natural numbers 2061: 2059:Natural numbers 2056: 2032: 2028: 2024: 2020: 2017:cardinal number 1997: 1991: 1989:Ordinal numbers 1979:natural numbers 1964:axiom of choice 1926: 1922: 1910: 1906: 1898: 1890: 1855: 1847: 1836: 1828: 1806: 1805: 1798: 1774: 1771: 1770: 1748: 1745: 1744: 1722: 1719: 1718: 1687: 1684: 1683: 1663: 1660: 1659: 1653: 1645: 1641: 1632: 1628: 1606: 1605: 1591: 1588: 1587: 1571: 1569: 1566: 1565: 1539: 1537: 1534: 1533: 1510: 1507: 1506: 1491: 1490: 1485: 1482: 1481: 1468: 1466: 1463: 1462: 1447: 1446: 1441: 1438: 1437: 1424: 1422: 1419: 1418: 1403: 1402: 1397: 1394: 1393: 1383: 1381: 1378: 1377: 1362: 1361: 1350: 1345: 1333: 1332: 1324: 1322: 1312: 1310: 1307: 1306: 1291: 1290: 1285: 1283: 1271: 1270: 1259: 1256: and  1254: 1241: 1239: 1236: 1235: 1220: 1219: 1208: 1206: 1200: 1199: 1185: 1183: 1180: 1179: 1153: 1150: 1149: 1127: 1124: 1123: 1066: 1062: 1056: 1052: 1026: 1022: 1016: 1012: 994: 990: 984: 980: 949: 945: 927: 923: 917: 913: 882: 878: 850: 846: 840: 836: 815: 811: 783: 779: 768: 764: 748: 744: 716: 712: 706: 702: 696: 692: 676: 672: 644: 640: 624: 620: 614: 610: 604: 600: 572: 568: 552: 548: 525: 508: 504: 488: 484: 478: 474: 459:Prewellordering 441: 437: 416: 412: 406: 402: 374: 370: 349: 345: 312: 308: 282: 278: 250: 246: 208: 205: 188: 184: 153: 149: 141: 133: 57: 24: 17: 12: 11: 5: 4326: 4316: 4315: 4310: 4305: 4288: 4287: 4285: 4284: 4279: 4274: 4273: 4272: 4262: 4261: 4260: 4255: 4250: 4240: 4239: 4238: 4228: 4223: 4222: 4221: 4216: 4209:Order morphism 4206: 4205: 4204: 4194: 4189: 4184: 4179: 4174: 4173: 4172: 4162: 4157: 4152: 4146: 4144: 4140: 4139: 4137: 4136: 4135: 4134: 4129: 4127:Locally convex 4124: 4119: 4109: 4107:Order topology 4104: 4103: 4102: 4100:Order topology 4097: 4087: 4077: 4075: 4068: 4067: 4065: 4064: 4059: 4054: 4049: 4044: 4039: 4034: 4029: 4024: 4019: 4013: 4011: 4007: 4006: 4004: 4003: 3993: 3983: 3978: 3973: 3968: 3963: 3958: 3953: 3948: 3947: 3946: 3936: 3931: 3930: 3929: 3924: 3919: 3914: 3912:Chain-complete 3904: 3899: 3898: 3897: 3892: 3887: 3882: 3877: 3867: 3862: 3857: 3852: 3847: 3837: 3832: 3827: 3822: 3817: 3812: 3811: 3810: 3800: 3795: 3789: 3787: 3777: 3776: 3774: 3773: 3768: 3763: 3758: 3753: 3748: 3743: 3738: 3733: 3728: 3723: 3718: 3712: 3710: 3706: 3705: 3703: 3702: 3697: 3692: 3687: 3682: 3677: 3672: 3667: 3661: 3659: 3655: 3654: 3652: 3651: 3646: 3641: 3635: 3632: 3631: 3624: 3623: 3616: 3609: 3601: 3594: 3593: 3587: 3564: 3562: 3561: 3548:(3): 325–345. 3523: 3487: 3485: 3482: 3481: 3480: 3475: 3470: 3465: 3460: 3458:Ordinal number 3455: 3447: 3444: 3427: 3413: 3412: 3409: 3405: 3394: 3393: 3380: 3376: 3352: 3339:order topology 3330: 3329:Order topology 3327: 3326: 3325: 3322: 3315: 3309: 3297: 3294: 3293: 3292: 3289:order topology 3269: 3266: 3263: 3260: 3257: 3254: 3251: 3248: 3245: 3242: 3237: 3230: 3227: 3223: 3219: 3216: 3205: 3183: 3180: 3177: 3174: 3171: 3168: 3165: 3162: 3157: 3150: 3147: 3144: 3141: 3137: 3133: 3128: 3125: 3121: 3117: 3114: 3103: 3087: 3084: 3081: 3078: 3075: 3072: 3067: 3060: 3057: 3053: 3049: 3046: 3031: 3030: 3014: 3011: 3008: 3005: 3002: 2999: 2996: 2993: 2990: 2987: 2982: 2977: 2973: 2969: 2966: 2955: 2920: 2883: 2879: 2848: 2845: 2842: 2839: 2834: 2829: 2826: 2823: 2820: 2817: 2814: 2811: 2808: 2805: 2802: 2799: 2733: 2681: 2678: 2675: 2672: 2669: 2666: 2663: 2660: 2657: 2654: 2651: 2630: 2627: 2616: 2615: 2600: 2597: 2595: 2592: 2590: 2587: 2584: 2582: 2579: 2577: 2574: 2571: 2569: 2566: 2564: 2561: 2558: 2556: 2553: 2551: 2548: 2545: 2543: 2540: 2539: 2525: 2524: 2513: 2510: 2507: 2504: 2495: 2491: 2487: 2483: 2479: 2475: 2471: 2459: 2455: 2451: 2447: 2443: 2439: 2435: 2421:if and only if 2409: 2404: 2400: 2396: 2373:ordinal number 2366: 2365: 2350: 2347: 2345: 2342: 2339: 2337: 2334: 2331: 2329: 2326: 2323: 2321: 2318: 2316: 2313: 2311: 2308: 2306: 2303: 2301: 2298: 2296: 2293: 2292: 2276:This relation 2274: 2273: 2248: 2229: 2219: 2207:if and only if 2195:The following 2177: 2174: 2157: 2156: 2141: 2138: 2136: 2133: 2131: 2128: 2126: 2123: 2121: 2118: 2116: 2113: 2111: 2108: 2106: 2103: 2101: 2098: 2096: 2093: 2091: 2088: 2086: 2083: 2082: 2060: 2057: 2055: 2052: 2005:ordinal number 1995:Ordinal number 1993:Main article: 1990: 1987: 1952:ordinal number 1833:total ordering 1802: 1801: 1787: 1784: 1781: 1778: 1758: 1755: 1752: 1732: 1729: 1726: 1706: 1703: 1700: 1697: 1694: 1691: 1667: 1624: 1623: 1620: 1619: 1604: 1601: 1598: 1590: 1589: 1586: 1583: 1580: 1577: 1574: 1573: 1563: 1552: 1549: 1546: 1531: 1520: 1517: 1514: 1504: 1484: 1483: 1480: 1477: 1474: 1471: 1470: 1460: 1440: 1439: 1436: 1433: 1430: 1427: 1426: 1416: 1396: 1395: 1392: 1389: 1386: 1385: 1375: 1360: 1357: 1354: 1351: 1347: or  1344: 1341: 1338: 1335: 1334: 1331: 1328: 1325: 1321: 1318: 1315: 1314: 1304: 1289: 1286: 1282: 1279: 1276: 1273: 1272: 1269: 1266: 1263: 1260: 1253: 1250: 1247: 1244: 1243: 1233: 1218: 1215: 1212: 1209: 1205: 1202: 1201: 1198: 1195: 1192: 1189: 1187: 1177: 1166: 1163: 1160: 1157: 1137: 1134: 1131: 1119: 1118: 1113: 1108: 1103: 1098: 1093: 1088: 1083: 1078: 1073: 1070: 1069: 1059: 1049: 1044: 1039: 1034: 1029: 1019: 1009: 1004: 998: 997: 987: 977: 972: 967: 962: 957: 952: 942: 937: 931: 930: 920: 910: 905: 900: 895: 890: 885: 875: 870: 864: 863: 858: 853: 843: 833: 828: 823: 818: 808: 803: 797: 796: 791: 786: 776: 771: 761: 756: 751: 741: 736: 730: 729: 724: 719: 709: 699: 689: 684: 679: 669: 664: 658: 657: 652: 647: 637: 632: 627: 617: 607: 597: 592: 586: 585: 580: 575: 565: 560: 555: 545: 540: 535: 530: 522: 521: 516: 511: 501: 496: 491: 481: 471: 466: 461: 455: 454: 449: 444: 434: 429: 424: 419: 409: 399: 394: 388: 387: 382: 377: 367: 362: 357: 352: 342: 337: 332: 330:Total preorder 326: 325: 320: 315: 305: 300: 295: 290: 285: 275: 270: 264: 263: 258: 253: 243: 238: 233: 228: 223: 218: 213: 202: 201: 196: 191: 181: 176: 171: 166: 161: 156: 146: 138: 137: 135: 130: 128: 126: 124: 122: 119: 117: 115: 112: 111: 106: 101: 96: 91: 86: 81: 76: 71: 66: 59: 58: 56: 55: 48: 41: 33: 19: 18: 15: 9: 6: 4: 3: 2: 4325: 4314: 4311: 4309: 4306: 4304: 4301: 4300: 4298: 4283: 4280: 4278: 4275: 4271: 4268: 4267: 4266: 4263: 4259: 4256: 4254: 4251: 4249: 4246: 4245: 4244: 4241: 4237: 4234: 4233: 4232: 4231:Ordered field 4229: 4227: 4224: 4220: 4217: 4215: 4212: 4211: 4210: 4207: 4203: 4200: 4199: 4198: 4195: 4193: 4190: 4188: 4187:Hasse diagram 4185: 4183: 4180: 4178: 4175: 4171: 4168: 4167: 4166: 4165:Comparability 4163: 4161: 4158: 4156: 4153: 4151: 4148: 4147: 4145: 4141: 4133: 4130: 4128: 4125: 4123: 4120: 4118: 4115: 4114: 4113: 4110: 4108: 4105: 4101: 4098: 4096: 4093: 4092: 4091: 4088: 4086: 4082: 4079: 4078: 4076: 4073: 4069: 4063: 4060: 4058: 4055: 4053: 4050: 4048: 4045: 4043: 4040: 4038: 4037:Product order 4035: 4033: 4030: 4028: 4025: 4023: 4020: 4018: 4015: 4014: 4012: 4010:Constructions 4008: 4002: 3998: 3994: 3991: 3987: 3984: 3982: 3979: 3977: 3974: 3972: 3969: 3967: 3964: 3962: 3959: 3957: 3954: 3952: 3949: 3945: 3942: 3941: 3940: 3937: 3935: 3932: 3928: 3925: 3923: 3920: 3918: 3915: 3913: 3910: 3909: 3908: 3907:Partial order 3905: 3903: 3900: 3896: 3895:Join and meet 3893: 3891: 3888: 3886: 3883: 3881: 3878: 3876: 3873: 3872: 3871: 3868: 3866: 3863: 3861: 3858: 3856: 3853: 3851: 3848: 3846: 3842: 3838: 3836: 3833: 3831: 3828: 3826: 3823: 3821: 3818: 3816: 3813: 3809: 3806: 3805: 3804: 3801: 3799: 3796: 3794: 3793:Antisymmetric 3791: 3790: 3788: 3784: 3778: 3772: 3769: 3767: 3764: 3762: 3759: 3757: 3754: 3752: 3749: 3747: 3744: 3742: 3739: 3737: 3734: 3732: 3729: 3727: 3724: 3722: 3719: 3717: 3714: 3713: 3711: 3707: 3701: 3700:Weak ordering 3698: 3696: 3693: 3691: 3688: 3686: 3685:Partial order 3683: 3681: 3678: 3676: 3673: 3671: 3668: 3666: 3663: 3662: 3660: 3656: 3650: 3647: 3645: 3642: 3640: 3637: 3636: 3633: 3629: 3622: 3617: 3615: 3610: 3608: 3603: 3602: 3599: 3590: 3584: 3580: 3576: 3575: 3570: 3566: 3565: 3556: 3551: 3547: 3543: 3542: 3537: 3533: 3527: 3519: 3515: 3511: 3507: 3503: 3499: 3492: 3488: 3479: 3476: 3474: 3471: 3469: 3466: 3464: 3461: 3459: 3456: 3453: 3450: 3449: 3443: 3441: 3437: 3433: 3425: 3420: 3418: 3410: 3406: 3403: 3399: 3398: 3397: 3378: 3364: 3356: 3353: 3350: 3347: 3346: 3345: 3342: 3340: 3336: 3323: 3320: 3316: 3313: 3310: 3307: 3306: 3305: 3303: 3290: 3284: 3264: 3258: 3252: 3249: 3246: 3243: 3240: 3228: 3225: 3221: 3217: 3206: 3203: 3198: 3178: 3175: 3172: 3169: 3166: 3163: 3160: 3148: 3145: 3142: 3139: 3135: 3131: 3126: 3123: 3119: 3115: 3104: 3082: 3079: 3076: 3073: 3070: 3058: 3055: 3051: 3047: 3036: 3035: 3034: 3009: 3006: 3003: 3000: 2997: 2994: 2991: 2988: 2985: 2975: 2971: 2967: 2956: 2949: 2948: 2947: 2881: 2862: 2843: 2840: 2837: 2821: 2815: 2812: 2809: 2800: 2797: 2767: 2763: 2715: 2713: 2709: 2705: 2701: 2697: 2676: 2673: 2670: 2664: 2658: 2655: 2652: 2640: 2639:open interval 2636: 2635:real interval 2626: 2621: 2618:This has the 2598: 2593: 2588: 2585: 2580: 2575: 2572: 2567: 2562: 2559: 2554: 2549: 2546: 2541: 2530: 2529: 2528: 2511: 2508: 2505: 2502: 2489: 2481: 2473: 2453: 2445: 2437: 2425: 2424: 2423: 2422: 2407: 2402: 2398: 2394: 2385: 2382: 2378: 2374: 2348: 2343: 2340: 2335: 2332: 2327: 2324: 2319: 2314: 2309: 2304: 2299: 2294: 2283: 2282: 2281: 2269: 2263: 2249: 2246: 2242: 2230: 2220: 2216: 2212: 2211: 2210: 2208: 2198: 2193: 2191: 2187: 2183: 2173: 2170: 2166: 2162: 2139: 2134: 2129: 2124: 2119: 2114: 2109: 2104: 2099: 2094: 2089: 2084: 2073: 2072: 2071: 2068: 2066: 2051: 2049: 2045: 2041: 2036: 2018: 2014: 2010: 2007:, called the 2006: 2002: 1996: 1986: 1984: 1980: 1975: 1973: 1969: 1965: 1961: 1957: 1954:, called the 1953: 1949: 1944: 1942: 1939: 1935: 1930: 1920: 1916: 1904: 1896: 1887: 1885: 1884:well ordering 1881: 1877: 1873: 1869: 1865: 1861: 1853: 1852:least element 1845: 1842: 1834: 1827: 1823: 1819: 1818:well-ordering 1815: 1811: 1800: 1785: 1782: 1779: 1776: 1756: 1753: 1750: 1730: 1727: 1724: 1704: 1701: 1698: 1695: 1692: 1689: 1681: 1665: 1658: 1626: 1625: 1602: 1599: 1596: 1581: 1578: 1575: 1564: 1550: 1547: 1544: 1532: 1518: 1515: 1512: 1505: 1478: 1475: 1472: 1461: 1434: 1431: 1428: 1417: 1390: 1376: 1358: 1355: 1352: 1342: 1339: 1336: 1326: 1319: 1316: 1305: 1287: 1280: 1277: 1267: 1264: 1261: 1251: 1248: 1245: 1234: 1216: 1213: 1210: 1196: 1193: 1190: 1178: 1164: 1158: 1155: 1135: 1132: 1129: 1121: 1120: 1117: 1114: 1112: 1109: 1107: 1104: 1102: 1099: 1097: 1094: 1092: 1089: 1087: 1084: 1082: 1081:Antisymmetric 1079: 1077: 1074: 1072: 1071: 1060: 1050: 1045: 1040: 1035: 1030: 1020: 1010: 1005: 1003: 1000: 999: 988: 978: 973: 968: 963: 958: 953: 943: 938: 936: 933: 932: 921: 911: 906: 901: 896: 891: 886: 876: 871: 869: 866: 865: 859: 854: 844: 834: 829: 824: 819: 809: 804: 802: 799: 798: 792: 787: 777: 772: 762: 757: 752: 742: 737: 735: 732: 731: 725: 720: 710: 700: 690: 685: 680: 670: 665: 663: 660: 659: 653: 648: 638: 633: 628: 618: 608: 598: 593: 591: 590:Well-ordering 588: 587: 581: 576: 566: 561: 556: 546: 541: 536: 531: 528: 524: 523: 517: 512: 502: 497: 492: 482: 472: 467: 462: 460: 457: 456: 450: 445: 435: 430: 425: 420: 410: 400: 395: 393: 390: 389: 383: 378: 368: 363: 358: 353: 343: 338: 333: 331: 328: 327: 321: 316: 306: 301: 296: 291: 286: 276: 271: 269: 268:Partial order 266: 265: 259: 254: 244: 239: 234: 229: 224: 219: 214: 211: 204: 203: 197: 192: 182: 177: 172: 167: 162: 157: 147: 144: 140: 139: 136: 131: 129: 127: 125: 123: 120: 118: 116: 114: 113: 110: 107: 105: 102: 100: 97: 95: 92: 90: 87: 85: 82: 80: 77: 75: 74:Antisymmetric 72: 70: 67: 65: 64: 61: 60: 54: 49: 47: 42: 40: 35: 34: 31: 27: 23: 22: 4303:Order theory 4074:& Orders 4052:Star product 4000: 3981:Well-founded 3934:Prefix order 3890:Distributive 3880:Complemented 3850:Foundational 3815:Completeness 3771:Zorn's lemma 3675:Cyclic order 3658:Key concepts 3628:Order theory 3573: 3545: 3539: 3532:Feferman, S. 3526: 3501: 3497: 3491: 3478:Directed set 3442:order type. 3421: 3415:A subset is 3414: 3395: 3355:limit points 3343: 3332: 3300:If a set is 3299: 3282: 3202:limit points 3196: 3032: 2778:ordering on 2765: 2761: 2716: 2632: 2617: 2526: 2386: 2380: 2376: 2367: 2275: 2267: 2261: 2244: 2240: 2214: 2194: 2179: 2168: 2164: 2158: 2069: 2062: 2037: 2003:to a unique 1998: 1976: 1950:to a unique 1945: 1938:well-founded 1931: 1888: 1883: 1880:well ordered 1879: 1875: 1872:wellordering 1871: 1867: 1863: 1859: 1821: 1817: 1813: 1807: 1654: 1091:Well-founded 589: 209:(Quasiorder) 84:Well-founded 4258:Riesz space 4219:Isomorphism 4095:Normal cone 4017:Composition 3951:Semilattice 3860:Homogeneous 3845:Equivalence 3695:Total order 3440:uncountable 3287:. With the 2751:. For each 2228:is negative 2040:cardinality 1915:upper bound 1868:wellordered 1810:mathematics 1111:Irreflexive 392:Total order 104:Irreflexive 4297:Categories 4226:Order type 4160:Cofinality 4001:Well-order 3976:Transitive 3865:Idempotent 3798:Asymmetric 3484:References 2620:order type 2161:order type 2009:order type 1956:order type 1934:non-strict 1932:If ≤ is a 1876:well order 1814:well-order 1682:: for all 1680:transitive 1116:Asymmetric 109:Asymmetric 26:Transitive 4277:Upper set 4214:Embedding 4150:Antichain 3971:Tolerance 3961:Symmetric 3956:Semiorder 3902:Reflexive 3820:Connected 3436:countable 3432:omega-one 3259:∪ 3253:ω 3244:≤ 3226:− 3218:− 3179:ω 3164:≤ 3146:− 3140:− 3132:− 3124:− 3116:− 3083:ω 3074:≤ 3056:− 3048:− 3010:… 2841:∈ 2665:⊆ 2599:… 2586:− 2573:− 2560:− 2547:− 2506:≤ 2399:≤ 2349:… 2341:− 2333:− 2325:− 2320:… 2140:… 2110:… 1864:wellorder 1841:non-empty 1593:not  1585:⇒ 1541:not  1476:∧ 1432:∨ 1330:⇒ 1320:≠ 1275:⇒ 1204:⇒ 1162:∅ 1159:≠ 1106:Reflexive 1101:Has meets 1096:Has joins 1086:Connected 1076:Symmetric 207:Preorder 134:reflexive 99:Reflexive 94:Has meets 89:Has joins 79:Connected 69:Symmetric 4072:Topology 3939:Preorder 3922:Eulerian 3885:Complete 3835:Directed 3825:Covering 3690:Preorder 3649:Category 3644:Glossary 3571:(1999). 3534:(1964). 3504:: 1–22. 3446:See also 2957:The set 2782:(unless 2190:negative 2186:integers 2176:Integers 2013:counting 1913:with an 1650:✗ 1637:✗ 1047:✗ 1042:✗ 1037:✗ 1032:✗ 1007:✗ 975:✗ 970:✗ 965:✗ 960:✗ 955:✗ 940:✗ 908:✗ 903:✗ 898:✗ 893:✗ 888:✗ 873:✗ 861:✗ 856:✗ 831:✗ 826:✗ 821:✗ 806:✗ 794:✗ 789:✗ 774:✗ 759:✗ 754:✗ 739:✗ 727:✗ 722:✗ 687:✗ 682:✗ 667:✗ 655:✗ 650:✗ 635:✗ 630:✗ 595:✗ 583:✗ 578:✗ 563:✗ 558:✗ 543:✗ 538:✗ 533:✗ 519:✗ 514:✗ 499:✗ 494:✗ 469:✗ 464:✗ 452:✗ 447:✗ 432:✗ 427:✗ 422:✗ 397:✗ 385:✗ 380:✗ 365:✗ 360:✗ 355:✗ 340:✗ 335:✗ 323:✗ 318:✗ 303:✗ 298:✗ 293:✗ 288:✗ 273:✗ 261:✗ 256:✗ 241:✗ 236:✗ 231:✗ 226:✗ 221:✗ 216:✗ 199:✗ 194:✗ 179:✗ 174:✗ 169:✗ 164:✗ 159:✗ 4177:Duality 4155:Cofinal 4143:Related 4122:Fréchet 3999:)  3875:Bounded 3870:Lattice 3843:)  3841:Partial 3709:Results 3680:Lattice 3518:3016456 3417:cofinal 3402:bounded 3391:⁠ 3366:⁠ 2932:⁠ 2910:⁠ 2894:⁠ 2869:⁠ 2790:). Let 2745:⁠ 2723:⁠ 2692:⁠ 2642:⁠ 1824:) on a 662:Lattice 4202:Subnet 4182:Filter 4132:Normed 4117:Banach 4083:& 3990:Better 3927:Strict 3917:Graded 3808:topics 3639:Topics 3585:  3516:  2759:, let 2271:| 2259:| 1882:, and 1870:, and 1850:has a 1844:subset 1487:exists 1443:exists 1399:exists 28:  4192:Ideal 4170:Graph 3966:Total 3944:Total 3830:Dense 3579:Wiley 2863:from 2629:Reals 2204:x R y 1831:is a 1769:then 132:Anti- 3783:list 3583:ISBN 3408:set. 3250:< 3176:< 3080:< 2446:< 2253:and 2234:and 1816:(or 1812:, a 1743:and 1148:and 4197:Net 3997:Pre 3550:doi 3506:doi 3502:224 3285:+ 1 2900:to 2867:to 2774:in 2755:in 2712:V=L 2696:ZFC 2217:= 0 1925:in 1874:or 1846:of 1835:on 1826:set 1820:or 1808:In 1717:if 1678:be 1388:min 4299:: 3546:56 3544:. 3538:. 3514:MR 3512:. 3500:. 3341:. 3321:). 2625:. 2464:or 2384:. 2379:+ 2243:≤ 2167:+ 1929:. 1917:a 1886:. 1878:, 1866:, 3995:( 3992:) 3988:( 3839:( 3786:) 3620:e 3613:t 3606:v 3591:. 3558:. 3552:: 3520:. 3508:: 3430:( 3428:1 3379:. 3375:N 3359:ω 3283:ω 3268:} 3265:1 3262:{ 3256:} 3247:n 3241:0 3236:| 3229:n 3222:2 3215:{ 3197:ω 3182:} 3173:n 3170:, 3167:m 3161:0 3156:| 3149:n 3143:m 3136:2 3127:n 3120:2 3113:{ 3102:. 3100:ω 3086:} 3077:n 3071:0 3066:| 3059:n 3052:2 3045:{ 3029:. 3027:≤ 3013:} 3007:, 3004:3 3001:, 2998:2 2995:, 2992:1 2989:= 2986:n 2981:| 2976:n 2972:/ 2968:1 2965:{ 2954:. 2952:≤ 2944:≤ 2940:X 2936:X 2919:Q 2906:X 2902:A 2898:X 2882:. 2878:Q 2865:A 2847:} 2844:X 2838:x 2833:| 2828:) 2825:) 2822:x 2819:( 2816:s 2813:, 2810:x 2807:( 2804:{ 2801:= 2798:A 2788:X 2784:x 2780:X 2776:≤ 2772:x 2768:) 2766:x 2764:( 2762:s 2757:X 2753:x 2749:≤ 2732:R 2719:X 2680:] 2677:1 2674:, 2671:0 2668:[ 2662:) 2659:1 2656:, 2653:0 2650:( 2623:ω 2594:4 2589:4 2581:3 2576:3 2568:2 2563:2 2555:1 2550:1 2542:0 2512:. 2509:y 2503:x 2494:| 2490:y 2486:| 2482:= 2478:| 2474:x 2470:| 2458:| 2454:y 2450:| 2442:| 2438:x 2434:| 2408:y 2403:z 2395:x 2381:ω 2377:ω 2369:R 2344:3 2336:2 2328:1 2315:4 2310:3 2305:2 2300:1 2295:0 2278:R 2268:y 2262:x 2255:y 2251:x 2245:y 2241:x 2236:y 2232:x 2226:y 2222:x 2215:x 2200:R 2169:ω 2165:ω 2135:9 2130:7 2125:5 2120:3 2115:1 2105:8 2100:6 2095:4 2090:2 2085:0 2033:β 2029:β 2025:n 2021:n 1927:S 1923:T 1911:T 1907:S 1899:s 1891:s 1856:S 1848:S 1837:S 1829:S 1786:. 1783:c 1780:R 1777:a 1757:c 1754:R 1751:b 1731:b 1728:R 1725:a 1705:, 1702:c 1699:, 1696:b 1693:, 1690:a 1666:R 1646:Y 1633:Y 1603:a 1600:R 1597:b 1582:b 1579:R 1576:a 1551:a 1548:R 1545:a 1519:a 1516:R 1513:a 1479:b 1473:a 1435:b 1429:a 1391:S 1359:a 1356:R 1353:b 1343:b 1340:R 1337:a 1327:b 1317:a 1288:b 1281:= 1278:a 1268:a 1265:R 1262:b 1252:b 1249:R 1246:a 1217:a 1214:R 1211:b 1197:b 1194:R 1191:a 1165:: 1156:S 1136:b 1133:, 1130:a 1067:Y 1057:Y 1027:Y 1017:Y 995:Y 985:Y 950:Y 928:Y 918:Y 883:Y 851:Y 841:Y 816:Y 784:Y 769:Y 749:Y 717:Y 707:Y 697:Y 677:Y 645:Y 625:Y 615:Y 605:Y 573:Y 553:Y 509:Y 489:Y 479:Y 442:Y 417:Y 407:Y 375:Y 350:Y 313:Y 283:Y 251:Y 189:Y 154:Y 52:e 45:t 38:v

Index

Transitive
binary relations
v
t
e
Symmetric
Antisymmetric
Connected
Well-founded
Has joins
Has meets
Reflexive
Irreflexive
Asymmetric
Equivalence relation
Preorder (Quasiorder)
Partial order
Total preorder
Total order
Prewellordering
Well-quasi-ordering
Well-ordering
Lattice
Join-semilattice
Meet-semilattice
Strict partial order
Strict weak order
Strict total order
Symmetric
Antisymmetric

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.