Knowledge

Admissible representation

Source 📝

197:-modules are isomorphic. Though for general admissible representations, this notion is different than the usual equivalence, it is an important result that the two notions of equivalence agree for unitary (admissible) representations. Additionally, there is a notion of unitarity of 237:
to the study of infinitesimal equivalence classes of admissible representations and the determination of which of these classes are infinitesimally unitary. The problem of parameterizing the infinitesimal equivalence classes of admissible representations was fully solved by
231: 195: 153: 315: 353:
and classified the admissible dual (i.e. the set of equivalence classes of irreducible admissible representations) in many cases.
445: 17: 493: 471: 111:
occurs in it with finite multiplicity. The prototypical example is that of an irreducible unitary representation of
512: 330: 200: 164: 157:
which is easier to deal with as it is an algebraic object. Two admissible representations are said to be
122: 104: 53: 233:-modules. This reduces the study of the equivalence classes of irreducible unitary representations of 243: 386: 259: 100: 50: 39: 455: 35: 8: 489: 467: 441: 421: 338: 433: 428:, Grundlehren der Mathematischen Wissenschaften , vol. 335, Berlin, New York: 342: 334: 239: 483: 451: 429: 43: 57: 506: 303: 85: 346: 271: 119: 437: 485:
Representation Theory of Semisimple Groups: An Overview Based on Examples
263: 314:-adic groups admit more algebraic description through the action of the 393:
whose inverse is also bounded and linear) such that the associated map
267: 46: 76:
be a maximal compact subgroup. A continuous representation (π, 
299: 466:. Annals of Mathematics Studies 129. Princeton University Press. 262:(such as a reductive algebraic group over a nonarchimedean 72:
be a connected reductive (real or complex) Lie group. Let
461: 464:
The admissible dual of GL(N) via compact open subgroups
63: 306:
open subgroup is finite dimensional then π is called
302:. If, in addition, the space of vectors fixed by any 203: 167: 125: 225: 189: 147: 341:in the 1970s. Progress was made more recently by 504: 420: 325:Deep studies of admissible representations of 249: 462:Bushnell, Colin J.; Philip C. Kutzko (1993). 329:-adic reductive groups were undertaken by 260:locally compact totally disconnected group 349:and Bushnell and Kutzko, who developed a 118:An admissible representation π induces a 426:The local Langlands conjecture for GL(2) 14: 505: 481: 64:Real or complex reductive Lie groups 226:{\displaystyle ({\mathfrak {g}},K)} 209: 190:{\displaystyle ({\mathfrak {g}},K)} 173: 148:{\displaystyle ({\mathfrak {g}},K)} 131: 24: 25: 524: 318:of locally constant functions on 310:. Admissible representations of 488:. Princeton University Press. 363: 220: 204: 184: 168: 142: 126: 13: 1: 414: 274:). A representation (π,  34:are a well-behaved class of 7: 250:Totally disconnected groups 54:totally disconnected groups 10: 529: 482:Knapp, Anthony W. (2001). 282:on a complex vector space 159:infinitesimally equivalent 107:unitary representation of 56:. They were introduced by 32:admissible representations 424:; Henniart, Guy (2006), 387:bounded linear operators 356: 244:Langlands classification 27:Class of representations 227: 191: 149: 513:Representation theory 438:10.1007/3-540-31511-X 294:fixing any vector of 228: 192: 150: 40:representation theory 18:Smooth representation 369:I.e. a homomorphism 201: 165: 161:if their associated 123: 290:if the subgroup of 266:or over the finite 95:if π restricted to 422:Bushnell, Colin J. 385:) is the group of 242:and is called the 223: 187: 145: 447:978-3-540-31486-8 16:(Redirected from 520: 499: 480:Chapter VIII of 477: 458: 408: 406: 380: 367: 240:Robert Langlands 232: 230: 229: 224: 213: 212: 196: 194: 193: 188: 177: 176: 154: 152: 151: 146: 135: 134: 30:In mathematics, 21: 528: 527: 523: 522: 521: 519: 518: 517: 503: 502: 496: 474: 448: 430:Springer-Verlag 417: 412: 411: 394: 370: 368: 364: 359: 351:theory of types 252: 208: 207: 202: 199: 198: 172: 171: 166: 163: 162: 130: 129: 124: 121: 120: 66: 51:locally compact 36:representations 28: 23: 22: 15: 12: 11: 5: 526: 516: 515: 501: 500: 494: 478: 472: 459: 446: 416: 413: 410: 409: 407:is continuous. 361: 360: 358: 355: 251: 248: 222: 219: 216: 211: 206: 186: 183: 180: 175: 170: 144: 141: 138: 133: 128: 65: 62: 58:Harish-Chandra 26: 9: 6: 4: 3: 2: 525: 514: 511: 510: 508: 497: 495:0-691-09089-0 491: 487: 486: 479: 475: 473:0-691-02114-7 469: 465: 460: 457: 453: 449: 443: 439: 435: 431: 427: 423: 419: 418: 405: 401: 397: 392: 388: 384: 378: 374: 366: 362: 354: 352: 348: 344: 340: 336: 332: 328: 323: 321: 317: 316:Hecke algebra 313: 309: 305: 301: 297: 293: 289: 285: 281: 277: 273: 269: 265: 261: 257: 247: 245: 241: 236: 217: 214: 181: 178: 160: 156: 139: 136: 116: 114: 110: 106: 102: 98: 94: 90: 87: 86:Hilbert space 84:on a complex 83: 79: 75: 71: 61: 59: 55: 52: 48: 45: 41: 37: 33: 19: 484: 463: 425: 403: 399: 395: 390: 382: 376: 372: 365: 350: 347:Gopal Prasad 326: 324: 319: 311: 307: 295: 291: 287: 283: 279: 275: 272:global field 255: 253: 234: 158: 117: 112: 108: 96: 92: 88: 81: 77: 73: 69: 67: 38:used in the 31: 29: 264:local field 105:irreducible 415:References 381:(where GL( 339:Zelevinsky 308:admissible 286:is called 93:admissible 91:is called 47:Lie groups 371:π : 335:Bernstein 331:Casselman 103:and each 44:reductive 507:Category 345:, Moy, 456:2234120 333:and by 304:compact 155:-module 101:unitary 492:  470:  454:  444:  288:smooth 268:adeles 375:→ GL( 357:Notes 278:) of 270:of a 258:be a 80:) of 490:ISBN 468:ISBN 442:ISBN 343:Howe 337:and 300:open 254:Let 68:Let 49:and 434:doi 389:on 298:is 99:is 42:of 509:: 452:MR 450:, 440:, 432:, 402:→ 398:× 322:. 246:. 115:. 60:. 498:. 476:. 436:: 404:V 400:V 396:G 391:V 383:V 379:) 377:V 373:G 327:p 320:G 312:p 296:V 292:G 284:V 280:G 276:V 256:G 235:G 221:) 218:K 215:, 210:g 205:( 185:) 182:K 179:, 174:g 169:( 143:) 140:K 137:, 132:g 127:( 113:G 109:K 97:K 89:V 82:G 78:V 74:K 70:G 20:)

Index

Smooth representation
representations
representation theory
reductive
Lie groups
locally compact
totally disconnected groups
Harish-Chandra
Hilbert space
unitary
irreducible
( g , K ) {\displaystyle ({\mathfrak {g}},K)} -module
Robert Langlands
Langlands classification
locally compact totally disconnected group
local field
adeles
global field
open
compact
Hecke algebra
Casselman
Bernstein
Zelevinsky
Howe
Gopal Prasad
bounded linear operators
Bushnell, Colin J.
Springer-Verlag
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.