Knowledge

Smith–Volterra–Cantor set

Source 📝

577: 1165: 727: 954: 827:
th step of the algorithm, and end up with a Cantor-like set. The resulting set will have positive measure if and only if the sum of the sequence is less than the measure of the initial interval. For instance, suppose the middle intervals of length
75:. In an 1875 paper, Smith discussed a nowhere-dense set of positive measure on the real line, and Volterra introduced a similar example in 1881. The Cantor set as we know it today followed in 1883. The Smith–Volterra–Cantor set is 602: 959: 573:
Continuing indefinitely with this removal, the Smith–Volterra–Cantor set is then the set of points that are never removed. The image below shows the initial set and five iterations of this process.
569: 1359:
of the Smith–Volterra–Cantor set is an example of a bounded function that is not Riemann integrable on (0,1) and moreover, is not equal almost everywhere to a Riemann integrable function, see
949: 17: 1160:{\displaystyle {\begin{aligned}1-\sum _{n=0}^{\infty }2^{n}a^{n+1}&=1-a\sum _{n=0}^{\infty }(2a)^{n}\\&=1-a{\frac {1}{1-2a}}\\&={\frac {1-3a}{1-2a}}\end{aligned}}} 244: 410: 362: 1307: 314: 281: 587:, where the proportion removed from each interval remains constant. Thus, the Smith–Volterra–Cantor set has positive measure while the Cantor set has zero measure. 853: 805: 1253: 583:
Each subsequent iterate in the Smith–Volterra–Cantor set's construction removes proportionally less from the remaining intervals. This stands in contrast to the
1273: 1225: 1205: 1185: 905: 825: 762: 131: 885: 165: 1411:
Ponce Campuzano, Juan; Maldonado, Miguel (2015). "Vito Volterra's construction of a nonconstant function with a bounded, non Riemann integrable derivative".
764:
showing that the set of the remaining points has a positive measure of 1/2. This makes the Smith–Volterra–Cantor set an example of a closed set whose
595:
By construction, the Smith–Volterra–Cantor set contains no intervals and therefore has empty interior. It is also the intersection of a sequence of
415: 722:{\displaystyle \sum _{n=0}^{\infty }{\frac {2^{n}}{2^{2n+2}}}={\frac {1}{4}}+{\frac {1}{8}}+{\frac {1}{16}}+\cdots ={\frac {1}{2}}\,} 170: 1349: 910: 20:
After black intervals have been removed, the white points which remain are a nowhere dense set of measure 1/2.
1496: 1501: 1398: 1446:
Balcerzak, M.; Kharazishvili, A. (1999), "On uncountable unions and intersections of measurable sets",
1313: 1394: 1317: 367: 64: 1491: 319: 1338: 53: 1278: 167:(the same as removing 1/8 on either side of the middle point at 1/2) so the remaining set is 286: 251: 57: 1360: 1467: 831: 783: 8: 1230: 765: 1258: 1428: 1366: 1356: 1210: 1190: 1170: 890: 810: 732: 101: 858: 138: 95:, the Smith–Volterra–Cantor set is constructed by removing certain intervals from the 1486: 1432: 1455: 1420: 769: 1424: 1463: 599:, which means that it is closed. During the process, intervals of total length 1459: 1480: 96: 76: 68: 61: 49: 576: 1413:
BSHM Bulletin Journal of the British Society for the History of Mathematics
1401:". Proceedings of the London Mathematical Society. First series. 6: 140–153 1325: 1321: 72: 1345: 25: 596: 584: 92: 80: 1312:
Cartesian products of Smith–Volterra–Cantor sets can be used to find
45: 16: 1320:
to a two-dimensional set of this type, it is possible to find an
135:
The process begins by removing the middle 1/4 from the interval
248:
The following steps consist of removing subintervals of width
1385:
Aliprantis and Burkinshaw (1981), Principles of Real Analysis
1337:
The Smith–Volterra–Cantor set is used in the construction of
1316:
in higher dimensions with nonzero measure. By applying the
316:
remaining intervals. So for the second step the intervals
1369: – List of concrete topologies and topological spaces 1410: 1445: 1328:
such that the points on the curve have positive area.
536: 511: 496: 471: 456: 431: 211: 186: 1281: 1261: 1233: 1213: 1193: 1173: 957: 927: 913: 893: 861: 834: 813: 786: 735: 605: 418: 370: 322: 289: 254: 173: 141: 104: 564:{\displaystyle \left\cup \left\cup \left\cup \left.} 60:. The Smith–Volterra–Cantor set is named after the 1301: 1267: 1247: 1219: 1199: 1179: 1159: 943: 899: 879: 847: 819: 799: 756: 721: 563: 404: 356: 308: 275: 238: 159: 125: 1350:Jordan measure#Extension to more complicated sets 1344:The Smith–Volterra–Cantor set is an example of a 1478: 951:Then, the resulting set has Lebesgue measure 1399:On the integration of discontinuous functions 944:{\displaystyle 0\leq a\leq {\dfrac {1}{3}}.} 718: 775: 44:is an example of a set of points on the 15: 807:from each remaining subinterval at the 1479: 1309:is impossible in this construction.) 1348:that is not Jordan measurable, see 91:Similar to the construction of the 13: 1047: 984: 622: 575: 14: 1513: 239:{\displaystyle \left\cup \left.} 283:from the middle of each of the 86: 1439: 1404: 1388: 1379: 1062: 1052: 874: 862: 748: 736: 399: 371: 351: 323: 154: 142: 117: 105: 52:(in particular it contains no 1: 1448:Georgian Mathematical Journal 1425:10.1080/17498430.2015.1010771 1373: 590: 405:{\displaystyle (25/32,27/32)} 7: 1331: 780:In general, one can remove 357:{\displaystyle (5/32,7/32)} 10: 1518: 1361:Riemann integral#Examples 1314:totally disconnected sets 30:Smith–Volterra–Cantor set 1302:{\displaystyle a>1/3} 81:middle-thirds Cantor set 77:topologically equivalent 1460:10.1023/A:1022102312024 907:th iteration, for some 309:{\displaystyle 2^{n-1}} 276:{\displaystyle 1/4^{n}} 1303: 1269: 1249: 1221: 1201: 1181: 1161: 1051: 988: 945: 901: 881: 849: 821: 801: 758: 723: 626: 580: 565: 412:are removed, leaving 406: 358: 310: 277: 240: 161: 127: 21: 1304: 1270: 1250: 1222: 1202: 1182: 1162: 1031: 968: 946: 902: 882: 850: 848:{\displaystyle a^{n}} 822: 802: 800:{\displaystyle r_{n}} 776:Other fat Cantor sets 759: 724: 606: 579: 566: 407: 359: 311: 278: 241: 162: 128: 19: 1497:Sets of real numbers 1341:(see external link). 1318:Denjoy–Riesz theorem 1279: 1259: 1231: 1211: 1191: 1171: 955: 911: 891: 859: 832: 811: 784: 733: 603: 416: 368: 320: 287: 252: 171: 139: 102: 56:), yet has positive 1339:Volterra's function 1248:{\displaystyle 1/3} 1502:Topological spaces 1367:List of topologies 1357:indicator function 1299: 1268:{\displaystyle 0.} 1265: 1245: 1217: 1197: 1177: 1157: 1155: 941: 936: 897: 877: 845: 817: 797: 754: 719: 581: 561: 545: 520: 505: 480: 465: 440: 402: 354: 306: 273: 236: 220: 195: 157: 123: 22: 1395:Smith, Henry J.S. 1220:{\displaystyle a} 1200:{\displaystyle 1} 1180:{\displaystyle 0} 1151: 1109: 935: 900:{\displaystyle n} 855:are removed from 820:{\displaystyle n} 757:{\displaystyle ,} 729:are removed from 716: 697: 684: 671: 658: 544: 519: 504: 479: 464: 439: 219: 194: 126:{\displaystyle .} 1509: 1472: 1470: 1443: 1437: 1436: 1408: 1402: 1392: 1386: 1383: 1308: 1306: 1305: 1300: 1295: 1274: 1272: 1271: 1266: 1254: 1252: 1251: 1246: 1241: 1226: 1224: 1223: 1218: 1206: 1204: 1203: 1198: 1186: 1184: 1183: 1178: 1167:which goes from 1166: 1164: 1163: 1158: 1156: 1152: 1150: 1136: 1122: 1114: 1110: 1108: 1091: 1074: 1070: 1069: 1050: 1045: 1014: 1013: 998: 997: 987: 982: 950: 948: 947: 942: 937: 928: 906: 904: 903: 898: 886: 884: 883: 880:{\displaystyle } 878: 854: 852: 851: 846: 844: 843: 826: 824: 823: 818: 806: 804: 803: 798: 796: 795: 770:Lebesgue measure 763: 761: 760: 755: 728: 726: 725: 720: 717: 709: 698: 690: 685: 677: 672: 664: 659: 657: 656: 638: 637: 628: 625: 620: 570: 568: 567: 562: 557: 553: 546: 537: 526: 522: 521: 512: 506: 497: 486: 482: 481: 472: 466: 457: 446: 442: 441: 432: 411: 409: 408: 403: 395: 381: 363: 361: 360: 355: 347: 333: 315: 313: 312: 307: 305: 304: 282: 280: 279: 274: 272: 271: 262: 245: 243: 242: 237: 232: 228: 221: 212: 201: 197: 196: 187: 166: 164: 163: 160:{\displaystyle } 158: 132: 130: 129: 124: 1517: 1516: 1512: 1511: 1510: 1508: 1507: 1506: 1477: 1476: 1475: 1444: 1440: 1409: 1405: 1393: 1389: 1384: 1380: 1376: 1334: 1291: 1280: 1277: 1276: 1260: 1257: 1256: 1237: 1232: 1229: 1228: 1212: 1209: 1208: 1192: 1189: 1188: 1172: 1169: 1168: 1154: 1153: 1137: 1123: 1121: 1112: 1111: 1095: 1090: 1072: 1071: 1065: 1061: 1046: 1035: 1015: 1003: 999: 993: 989: 983: 972: 958: 956: 953: 952: 926: 912: 909: 908: 892: 889: 888: 860: 857: 856: 839: 835: 833: 830: 829: 812: 809: 808: 791: 787: 785: 782: 781: 778: 734: 731: 730: 708: 689: 676: 663: 643: 639: 633: 629: 627: 621: 610: 604: 601: 600: 593: 535: 534: 530: 510: 495: 494: 490: 470: 455: 454: 450: 430: 423: 419: 417: 414: 413: 391: 377: 369: 366: 365: 343: 329: 321: 318: 317: 294: 290: 288: 285: 284: 267: 263: 258: 253: 250: 249: 210: 209: 205: 185: 178: 174: 172: 169: 168: 140: 137: 136: 103: 100: 99: 89: 12: 11: 5: 1515: 1505: 1504: 1499: 1494: 1492:Measure theory 1489: 1474: 1473: 1454:(3): 201–212, 1438: 1419:(2): 143–152. 1403: 1387: 1377: 1375: 1372: 1371: 1370: 1364: 1353: 1342: 1333: 1330: 1298: 1294: 1290: 1287: 1284: 1264: 1244: 1240: 1236: 1216: 1196: 1176: 1149: 1146: 1143: 1140: 1135: 1132: 1129: 1126: 1120: 1117: 1115: 1113: 1107: 1104: 1101: 1098: 1094: 1089: 1086: 1083: 1080: 1077: 1075: 1073: 1068: 1064: 1060: 1057: 1054: 1049: 1044: 1041: 1038: 1034: 1030: 1027: 1024: 1021: 1018: 1016: 1012: 1009: 1006: 1002: 996: 992: 986: 981: 978: 975: 971: 967: 964: 961: 960: 940: 934: 931: 925: 922: 919: 916: 896: 876: 873: 870: 867: 864: 842: 838: 816: 794: 790: 777: 774: 753: 750: 747: 744: 741: 738: 715: 712: 707: 704: 701: 696: 693: 688: 683: 680: 675: 670: 667: 662: 655: 652: 649: 646: 642: 636: 632: 624: 619: 616: 613: 609: 592: 589: 560: 556: 552: 549: 543: 540: 533: 529: 525: 518: 515: 509: 503: 500: 493: 489: 485: 478: 475: 469: 463: 460: 453: 449: 445: 438: 435: 429: 426: 422: 401: 398: 394: 390: 387: 384: 380: 376: 373: 353: 350: 346: 342: 339: 336: 332: 328: 325: 303: 300: 297: 293: 270: 266: 261: 257: 235: 231: 227: 224: 218: 215: 208: 204: 200: 193: 190: 184: 181: 177: 156: 153: 150: 147: 144: 122: 119: 116: 113: 110: 107: 88: 85: 62:mathematicians 42:fat Cantor set 9: 6: 4: 3: 2: 1514: 1503: 1500: 1498: 1495: 1493: 1490: 1488: 1485: 1484: 1482: 1469: 1465: 1461: 1457: 1453: 1449: 1442: 1434: 1430: 1426: 1422: 1418: 1414: 1407: 1400: 1396: 1391: 1382: 1378: 1368: 1365: 1362: 1358: 1354: 1351: 1347: 1343: 1340: 1336: 1335: 1329: 1327: 1323: 1319: 1315: 1310: 1296: 1292: 1288: 1285: 1282: 1262: 1242: 1238: 1234: 1214: 1194: 1174: 1147: 1144: 1141: 1138: 1133: 1130: 1127: 1124: 1118: 1116: 1105: 1102: 1099: 1096: 1092: 1087: 1084: 1081: 1078: 1076: 1066: 1058: 1055: 1042: 1039: 1036: 1032: 1028: 1025: 1022: 1019: 1017: 1010: 1007: 1004: 1000: 994: 990: 979: 976: 973: 969: 965: 962: 938: 932: 929: 923: 920: 917: 914: 894: 871: 868: 865: 840: 836: 814: 792: 788: 773: 771: 768:has positive 767: 751: 745: 742: 739: 713: 710: 705: 702: 699: 694: 691: 686: 681: 678: 673: 668: 665: 660: 653: 650: 647: 644: 640: 634: 630: 617: 614: 611: 607: 598: 588: 586: 578: 574: 571: 558: 554: 550: 547: 541: 538: 531: 527: 523: 516: 513: 507: 501: 498: 491: 487: 483: 476: 473: 467: 461: 458: 451: 447: 443: 436: 433: 427: 424: 420: 396: 392: 388: 385: 382: 378: 374: 348: 344: 340: 337: 334: 330: 326: 301: 298: 295: 291: 268: 264: 259: 255: 246: 233: 229: 225: 222: 216: 213: 206: 202: 198: 191: 188: 182: 179: 175: 151: 148: 145: 133: 120: 114: 111: 108: 98: 97:unit interval 94: 84: 82: 78: 74: 70: 69:Vito Volterra 66: 63: 59: 55: 51: 50:nowhere dense 47: 43: 39: 35: 31: 27: 18: 1451: 1447: 1441: 1416: 1412: 1406: 1390: 1381: 1326:Jordan curve 1322:Osgood curve 1311: 779: 594: 582: 572: 247: 134: 90: 87:Construction 73:Georg Cantor 41: 38:ε-Cantor set 37: 33: 29: 23: 1346:compact set 597:closed sets 65:Henry Smith 26:mathematics 1481:Categories 1374:References 1227:goes from 591:Properties 585:Cantor set 93:Cantor set 1397:(1874). " 1142:− 1128:− 1100:− 1085:− 1048:∞ 1033:∑ 1026:− 985:∞ 970:∑ 966:− 924:≤ 918:≤ 887:for each 703:⋯ 623:∞ 608:∑ 528:∪ 488:∪ 448:∪ 299:− 203:∪ 54:intervals 46:real line 1487:Fractals 1433:34546093 1332:See also 766:boundary 48:that is 1468:1679442 79:to the 58:measure 1466:  1431:  28:, the 1429:S2CID 40:, or 1355:The 1324:, a 1286:> 364:and 71:and 1456:doi 1421:doi 1255:to 1207:as 1187:to 36:), 34:SVC 24:In 1483:: 1464:MR 1462:, 1450:, 1427:. 1417:30 1415:. 1263:0. 772:. 695:16 542:32 539:27 517:32 514:25 462:32 437:32 397:32 389:27 383:32 375:25 349:32 335:32 83:. 67:, 1471:. 1458:: 1452:6 1435:. 1423:: 1363:. 1352:. 1297:3 1293:/ 1289:1 1283:a 1275:( 1243:3 1239:/ 1235:1 1215:a 1195:1 1175:0 1148:a 1145:2 1139:1 1134:a 1131:3 1125:1 1119:= 1106:a 1103:2 1097:1 1093:1 1088:a 1082:1 1079:= 1067:n 1063:) 1059:a 1056:2 1053:( 1043:0 1040:= 1037:n 1029:a 1023:1 1020:= 1011:1 1008:+ 1005:n 1001:a 995:n 991:2 980:0 977:= 974:n 963:1 939:. 933:3 930:1 921:a 915:0 895:n 875:] 872:1 869:, 866:0 863:[ 841:n 837:a 815:n 793:n 789:r 752:, 749:] 746:1 743:, 740:0 737:[ 714:2 711:1 706:= 700:+ 692:1 687:+ 682:8 679:1 674:+ 669:4 666:1 661:= 654:2 651:+ 648:n 645:2 641:2 635:n 631:2 618:0 615:= 612:n 559:. 555:] 551:1 548:, 532:[ 524:] 508:, 502:8 499:5 492:[ 484:] 477:8 474:3 468:, 459:7 452:[ 444:] 434:5 428:, 425:0 421:[ 400:) 393:/ 386:, 379:/ 372:( 352:) 345:/ 341:7 338:, 331:/ 327:5 324:( 302:1 296:n 292:2 269:n 265:4 260:/ 256:1 234:. 230:] 226:1 223:, 217:8 214:5 207:[ 199:] 192:8 189:3 183:, 180:0 176:[ 155:] 152:1 149:, 146:0 143:[ 121:. 118:] 115:1 112:, 109:0 106:[ 32:(

Index


mathematics
real line
nowhere dense
intervals
measure
mathematicians
Henry Smith
Vito Volterra
Georg Cantor
topologically equivalent
middle-thirds Cantor set
Cantor set
unit interval

Cantor set
closed sets
boundary
Lebesgue measure
totally disconnected sets
Denjoy–Riesz theorem
Osgood curve
Jordan curve
Volterra's function
compact set
Jordan measure#Extension to more complicated sets
indicator function
Riemann integral#Examples
List of topologies
Smith, Henry J.S.

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.