Knowledge

Roll-off

Source 📝

908: 916: 125: 137: 1057: 152:
will have a roll-off of 20 dB/decade. This is approximately equal (to within normal engineering required accuracy) to 6 dB/octave and is the more usual description given for this roll-off. This can be shown to be so by considering the voltage
374: 726: 1133:
machines. Here the filters mostly make do with a basic 6 dB/8ve roll-off, however, some instruments provide a switchable 35 Hz filter at the high frequency end with a faster roll-off to help filter out noise generated by muscle activity.
91:
point of the frequency curve. Roll-off enables the cut-off performance of such a filter network to be reduced to a single number. Note that roll-off can occur with decreasing frequency as well as increasing frequency, depending on the
600: 897: 514: 1076:
construction is used to realise the filter. In a ladder filter each section of the filter has an effect on its immediate neighbours and a lesser effect on more remote sections so the response is not a simple
1044: 239: 1129:: here the need is not so much for a high roll-off but that the roll-offs of the high frequency and low-frequency sections are symmetrical and complementary. An interesting need for high roll-off arises in 439: 810: 981: 1105:
the roll-off near the cut-off frequency is much faster and elsewhere the response is anything but monotonic. Nevertheless, all filter classes eventually converge to a roll-off of 6
68:
of the network, but can, in principle, be applied to any relevant function of frequency, and any technology, not just electronics. It is usual to measure roll-off as a function of
264: 611: 1109: dB/8ve theoretically at some arbitrarily high frequency, but in many applications this will occur in a frequency band of no interest to the application and 529: 116:; the same principles may be applied to high-pass filters by interchanging phrases such as "above cut-off frequency" and "below cut-off frequency". 821: 87:
The concept of roll-off stems from the fact that in many networks roll-off tends towards a constant gradient at frequencies well away from the
112:
will roll-off with decreasing frequency. For brevity, this article describes only low-pass filters. This is to be taken in the spirit of
450: 992: 167: 1072:
The calculation of transfer function becomes somewhat more complicated when the sections are not all identical, or when the popular
385: 145: 737: 49: 1311: 1285: 1270: 1255: 1204: 1174: 1122: 1121:
Filters with a high roll-off were first developed to prevent crosstalk between adjacent channels on telephone
941: 935:
identical first-order sections in cascade, the voltage transfer function of the complete network is given by;
369:{\displaystyle |A|^{2}={\frac {1}{1+\left({\omega \over \omega _{c}}\right)^{2}}}={\frac {1}{1+\omega ^{2}}}} 1306: 721:{\displaystyle \Delta L=20\log \left({\omega _{2} \over \omega _{1}}\right)\ \mathrm {dB/interval_{2,1}} } 924: 1301: 93: 53: 244: 1065: 1061: 17: 1110: 1060:
LC low-pass ladder circuit. Each element (that is L or C) adds an order to the filter and a
923:
A higher order network can be constructed by cascading first-order sections together. If a
27:
Steepness of a transfer function with frequency, particularly in electrical network analysis
81: 8: 31: 1086: 1082: 77: 595:{\displaystyle L\approx 10\log \left(\omega ^{2}\right)=20\log \omega \ \mathrm {dB} } 1281: 1266: 1251: 1200: 1170: 154: 88: 69: 41: 30:
This article is about roll-off in electrical network analysis. For the dumpster, see
1098: 113: 109: 101: 1126: 1102: 1073: 919:
Roll-off graph of higher-order low-pass filters showing various rates of roll-off
907: 140:
Roll-off of a first-order low-pass filter at 6 dB/octave (20 dB/decade)
129: 97: 1081:
even when all the sections are identical. For some filter classes, such as the
931:
is used) there is no interaction between the stages. In that circumstance, for
80:(dB/decade), where a decade is a tenfold increase in frequency, or decibels per 1050: 65: 1295: 928: 915: 892:{\displaystyle \Delta L=20\log 2\approx 20\times 0.3=6\ \mathrm {dB/8ve} } 124: 149: 1143: 1090: 136: 45: 1056: 1053:
by repeatedly applying the same filtering algorithm to the signal.
509:{\displaystyle L=10\log \left({1+\omega ^{2}}\right)\ \mathrm {dB} } 1250:, pages 23–25, Society for Industrial and Applied Mathematics 1998 1167:
Advanced AC circuits and electronics: principles & applications
105: 61: 57: 1039:{\displaystyle \Delta L_{\text{T}}=n\,\Delta L=6n{\text{ dB/8ve}}} 234:{\displaystyle A={\frac {V_{o}}{V_{i}}}={\frac {1}{1+i\omega RC}}} 73: 434:{\displaystyle 10\log \left({\frac {1}{1+\omega ^{2}}}\right)} 84:(dB/8ve), where an octave is a twofold increase in frequency. 1248:
Classical control using H methods: an introduction to design
1125:
systems. Roll-off is also significant on audio loudspeaker
805:{\displaystyle \Delta L=20\log 10=20\ \mathrm {dB/decade} } 1278:
Fundamentals of EEG Technology: Basic concepts and methods
72:
frequency; consequently, the units of roll-off are either
1130: 1280:, pages 101–102, Lippincott Williams & Wilkins 1983 1276:
Fay S. Tyner, John Russell Knott, W. Brem Mayer (ed.),
1113:
may well start to dominate long before this happens.
995: 944: 824: 740: 614: 532: 453: 388: 267: 170: 1216:Lundheim, L, "On Shannon and "Shannon's Formula", 1038: 975: 891: 804: 720: 594: 508: 433: 368: 258: = 1 and forming the power ratio gives, 233: 911:Multiple order RC filter buffered between stages. 1293: 1199:, pages 129–130, McGraw-Hill Professional 2007 100:will roll-off with increasing frequency, but a 96:of the filter being considered: for instance a 986:consequently, the total roll-off is given by, 927:is placed between each section (or some other 1263:Event-related potentials: a methods handbook 1197:Electronic filter simulation & design 1097: dB/8ve, but in others, such as the 1015: 52:, and most especially in connection with 1055: 1049:A similar effect can be achieved in the 976:{\displaystyle A_{\mathrm {T} }=A^{n}\ } 914: 906: 902: 135: 123: 1265:, pages 89–92, 107–109, MIT Press 2004 1169:, pages 150-152, Cengage Learning 2003 1161: 1159: 119: 64:. It is most typically applied to the 14: 1294: 1195:Giovanni Bianchi, Roberto Sorrentino, 1089:increasing with frequency and quickly 1156: 1246:J. William Helton, Orlando Merino, 24: 1016: 996: 951: 885: 882: 871: 868: 825: 798: 795: 792: 789: 786: 783: 775: 772: 741: 702: 698: 695: 692: 689: 686: 683: 680: 672: 669: 615: 588: 585: 502: 499: 25: 1323: 1116: 1227: 1210: 1189: 1180: 1085:, the insertion loss is still 278: 269: 13: 1: 1240: 1093:converges to a roll-off of 6 56:in the transition between a 7: 1137: 925:unity gain buffer amplifier 50:electrical network analysis 10: 1328: 519:At frequencies well above 379:In decibels this becomes, 29: 1312:Filter frequency response 1224:, no. 1, 2002, pp. 24–25. 1233:Mayer et al, pp 104–105. 1149: 523:=1, this simplifies to, 444:or expressed as a loss, 1066:driving point impedance 1069: 1040: 977: 920: 912: 893: 806: 731:For a decade this is; 722: 605:Roll-off is given by, 596: 510: 435: 370: 235: 141: 133: 128:First-order RC filter 40:is the steepness of a 1059: 1041: 978: 918: 910: 903:Higher order networks 894: 807: 723: 597: 511: 436: 371: 236: 161:, of the RC network: 139: 127: 993: 942: 822: 738: 612: 530: 451: 386: 265: 168: 120:First-order roll-off 1307:Tone, EQ and filter 815:and for an octave, 32:Roll-off (dumpster) 1165:J. Michael Jacob, 1083:Butterworth filter 1070: 1036: 973: 921: 913: 889: 802: 718: 592: 506: 431: 366: 231: 148:network such as a 142: 134: 48:, particularly in 1302:Electronic design 1127:crossover filters 1111:parasitic effects 1034: 1006: 972: 866: 770: 667: 659: 583: 497: 425: 364: 336: 323: 245:Frequency scaling 229: 199: 155:transfer function 114:prototype filters 42:transfer function 16:(Redirected from 1319: 1234: 1231: 1225: 1214: 1208: 1193: 1187: 1186:Todd, pp 107–108 1184: 1178: 1163: 1045: 1043: 1042: 1037: 1035: 1032: 1008: 1007: 1004: 982: 980: 979: 974: 970: 969: 968: 956: 955: 954: 898: 896: 895: 890: 888: 878: 864: 811: 809: 808: 803: 801: 782: 768: 727: 725: 724: 719: 717: 716: 715: 679: 665: 664: 660: 658: 657: 648: 647: 638: 601: 599: 598: 593: 591: 581: 565: 561: 560: 515: 513: 512: 507: 505: 495: 494: 490: 489: 488: 440: 438: 437: 432: 430: 426: 424: 423: 422: 403: 375: 373: 372: 367: 365: 363: 362: 361: 342: 337: 335: 334: 333: 328: 324: 322: 321: 309: 292: 287: 286: 281: 272: 240: 238: 237: 232: 230: 228: 205: 200: 198: 197: 188: 187: 178: 110:band-pass filter 102:high-pass filter 21: 1327: 1326: 1322: 1321: 1320: 1318: 1317: 1316: 1292: 1291: 1261:Todd C. Handy, 1243: 1238: 1237: 1232: 1228: 1215: 1211: 1194: 1190: 1185: 1181: 1164: 1157: 1152: 1140: 1119: 1103:elliptic filter 1074:ladder topology 1031: 1003: 999: 994: 991: 990: 964: 960: 950: 949: 945: 943: 940: 939: 929:active topology 905: 874: 867: 823: 820: 819: 778: 771: 739: 736: 735: 705: 701: 675: 668: 653: 649: 643: 639: 637: 633: 613: 610: 609: 584: 556: 552: 548: 531: 528: 527: 498: 484: 480: 473: 469: 452: 449: 448: 418: 414: 407: 402: 398: 387: 384: 383: 357: 353: 346: 341: 329: 317: 313: 308: 304: 303: 296: 291: 282: 277: 276: 268: 266: 263: 262: 254: = 1/ 253: 209: 204: 193: 189: 183: 179: 177: 169: 166: 165: 130:low-pass filter 122: 98:low-pass filter 54:filter circuits 35: 28: 23: 22: 15: 12: 11: 5: 1325: 1315: 1314: 1309: 1304: 1290: 1289: 1274: 1259: 1242: 1239: 1236: 1235: 1226: 1209: 1188: 1179: 1154: 1153: 1151: 1148: 1147: 1146: 1139: 1136: 1118: 1115: 1091:asymptotically 1051:digital domain 1047: 1046: 1030: 1027: 1024: 1021: 1018: 1014: 1011: 1002: 998: 984: 983: 967: 963: 959: 953: 948: 904: 901: 900: 899: 887: 884: 881: 877: 873: 870: 863: 860: 857: 854: 851: 848: 845: 842: 839: 836: 833: 830: 827: 813: 812: 800: 797: 794: 791: 788: 785: 781: 777: 774: 767: 764: 761: 758: 755: 752: 749: 746: 743: 729: 728: 714: 711: 708: 704: 700: 697: 694: 691: 688: 685: 682: 678: 674: 671: 663: 656: 652: 646: 642: 636: 632: 629: 626: 623: 620: 617: 603: 602: 590: 587: 580: 577: 574: 571: 568: 564: 559: 555: 551: 547: 544: 541: 538: 535: 517: 516: 504: 501: 493: 487: 483: 479: 476: 472: 468: 465: 462: 459: 456: 442: 441: 429: 421: 417: 413: 410: 406: 401: 397: 394: 391: 377: 376: 360: 356: 352: 349: 345: 340: 332: 327: 320: 316: 312: 307: 302: 299: 295: 290: 285: 280: 275: 271: 251: 242: 241: 227: 224: 221: 218: 215: 212: 208: 203: 196: 192: 186: 182: 176: 173: 121: 118: 66:insertion loss 26: 9: 6: 4: 3: 2: 1324: 1313: 1310: 1308: 1305: 1303: 1300: 1299: 1297: 1287: 1286:0-89004-385-X 1283: 1279: 1275: 1272: 1271:0-262-08333-7 1268: 1264: 1260: 1257: 1256:0-89871-424-9 1253: 1249: 1245: 1244: 1230: 1223: 1219: 1213: 1206: 1205:0-07-149467-7 1202: 1198: 1192: 1183: 1176: 1175:0-7668-2330-X 1172: 1168: 1162: 1160: 1155: 1145: 1142: 1141: 1135: 1132: 1128: 1124: 1114: 1112: 1108: 1104: 1100: 1096: 1092: 1088: 1087:monotonically 1084: 1080: 1075: 1067: 1063: 1058: 1054: 1052: 1028: 1025: 1022: 1019: 1012: 1009: 1000: 989: 988: 987: 965: 961: 957: 946: 938: 937: 936: 934: 930: 926: 917: 909: 879: 875: 861: 858: 855: 852: 849: 846: 843: 840: 837: 834: 831: 828: 818: 817: 816: 779: 765: 762: 759: 756: 753: 750: 747: 744: 734: 733: 732: 712: 709: 706: 676: 661: 654: 650: 644: 640: 634: 630: 627: 624: 621: 618: 608: 607: 606: 578: 575: 572: 569: 566: 562: 557: 553: 549: 545: 542: 539: 536: 533: 526: 525: 524: 522: 491: 485: 481: 477: 474: 470: 466: 463: 460: 457: 454: 447: 446: 445: 427: 419: 415: 411: 408: 404: 399: 395: 392: 389: 382: 381: 380: 358: 354: 350: 347: 343: 338: 330: 325: 318: 314: 310: 305: 300: 297: 293: 288: 283: 273: 261: 260: 259: 257: 250: 246: 225: 222: 219: 216: 213: 210: 206: 201: 194: 190: 184: 180: 174: 171: 164: 163: 162: 160: 156: 151: 147: 138: 131: 126: 117: 115: 111: 107: 104:or the lower 103: 99: 95: 90: 85: 83: 79: 75: 71: 67: 63: 59: 55: 51: 47: 43: 39: 33: 19: 1277: 1262: 1247: 1229: 1221: 1218:Telektronikk 1217: 1212: 1196: 1191: 1182: 1166: 1120: 1117:Applications 1106: 1094: 1078: 1071: 1048: 1033: dB/8ve 985: 932: 922: 814: 730: 604: 520: 518: 443: 378: 255: 248: 243: 158: 143: 86: 37: 36: 146:first-order 70:logarithmic 1296:Categories 1241:References 150:RC circuit 1144:Bode plot 1099:Chebyshev 1017:Δ 997:Δ 853:× 847:≈ 841:⁡ 826:Δ 757:⁡ 742:Δ 651:ω 641:ω 631:⁡ 616:Δ 579:ω 576:⁡ 554:ω 546:⁡ 537:≈ 482:ω 467:⁡ 416:ω 396:⁡ 355:ω 315:ω 311:ω 220:ω 144:A simple 46:frequency 1138:See also 247:this to 132:circuit. 106:stopband 94:bandform 74:decibels 62:stopband 58:passband 38:Roll-off 1222:vol. 98 1064:to the 89:cut-off 18:Rolloff 1284:  1269:  1254:  1203:  1173:  971:  865:  769:  666:  582:  496:  82:octave 78:decade 60:and a 1150:Notes 108:of a 44:with 1282:ISBN 1267:ISBN 1252:ISBN 1201:ISBN 1171:ISBN 1062:pole 76:per 1131:EEG 1123:FDM 1101:or 856:0.3 838:log 754:log 628:log 573:log 543:log 464:log 393:log 1298:: 1220:, 1158:^ 850:20 835:20 766:20 760:10 751:20 625:20 570:20 540:10 461:10 390:10 256:RC 157:, 1288:. 1273:. 1258:. 1207:. 1177:. 1107:n 1095:n 1079:A 1068:. 1029:n 1026:6 1023:= 1020:L 1013:n 1010:= 1005:T 1001:L 966:n 962:A 958:= 952:T 947:A 933:n 886:e 883:v 880:8 876:/ 872:B 869:d 862:6 859:= 844:2 832:= 829:L 799:e 796:d 793:a 790:c 787:e 784:d 780:/ 776:B 773:d 763:= 748:= 745:L 713:1 710:, 707:2 703:l 699:a 696:v 693:r 690:e 687:t 684:n 681:i 677:/ 673:B 670:d 662:) 655:1 645:2 635:( 622:= 619:L 589:B 586:d 567:= 563:) 558:2 550:( 534:L 521:ω 503:B 500:d 492:) 486:2 478:+ 475:1 471:( 458:= 455:L 428:) 420:2 412:+ 409:1 405:1 400:( 359:2 351:+ 348:1 344:1 339:= 331:2 326:) 319:c 306:( 301:+ 298:1 294:1 289:= 284:2 279:| 274:A 270:| 252:c 249:ω 226:C 223:R 217:i 214:+ 211:1 207:1 202:= 195:i 191:V 185:o 181:V 175:= 172:A 159:A 34:. 20:)

Index

Rolloff
Roll-off (dumpster)
transfer function
frequency
electrical network analysis
filter circuits
passband
stopband
insertion loss
logarithmic
decibels
decade
octave
cut-off
bandform
low-pass filter
high-pass filter
stopband
band-pass filter
prototype filters

low-pass filter

first-order
RC circuit
transfer function
Frequency scaling


unity gain buffer amplifier

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.