Knowledge

Riemannian manifold

Source 📝

13326: 16545: 366: 5135: 259: 13941: 38: 14519: 5126: 3522: 14587: 12477: 12468: 16162:, or even of parallel Ricci curvature. Hyperbolic space can be given a Lie group structure relative to which the metric is left-invariant. Any bi-invariant Riemannian metric on a Lie group has nonnegative sectional curvature, giving a variety of such metrics: a Lie group can be given a bi-invariant Riemannian metric if and only if it is the product of a 3450: 17852:(a metric that does not separate points), but it may not be a metric. In the finite-dimensional case, the proof that the Riemannian distance function separates points uses the existence of a pre-compact open set around any point. In the infinite case, open sets are no longer pre-compact, so the proof fails. 3109: 604:, a measuring stick that gives tangent vectors a concept of length and angle. This is an important deficiency because calculus teaches that to calculate the length of a curve, the length of vectors tangent to the curve must be defined. A Riemannian metric puts a measuring stick on every tangent space. 7896:
That is, the entire structure of a smooth Riemannian manifold can be encoded by a diffeomorphism to a certain embedded submanifold of some Euclidean space. Therefore, one could argue that nothing can be gained from the consideration of abstract smooth manifolds and their Riemannian metrics. However,
167:
proved that every Riemannian manifold arises as a submanifold of Euclidean space, and although some Riemannian manifolds are naturally exhibited or defined in that way, the idea of a Riemannian manifold emphasizes the intrinsic point of view, which defines geometric notions directly on the abstract
12554:
are curves with no intrinsic acceleration. Equivalently, geodesics are curves that locally take the shortest path between two points. They are the generalization of straight lines in Euclidean space to arbitrary Riemannian manifolds. An ant living in a Riemannian manifold walking straight ahead
1386: 18141:
However, a geodesically complete strong Riemannian manifold might not be metrically complete and it might have closed and bounded subsets that are not compact. Further, a strong Riemannian manifold for which all closed and bounded subsets are compact might not be geodesically complete.
8853:
must escape. By selecting this open set to be contained in a coordinate chart, one can reduce the claim to the well-known fact that, in Euclidean geometry, the shortest curve between two points is a line. In particular, as seen by the Euclidean geometry of a coordinate chart around
16437:. Every Riemannian symmetric space is homogeneous, and consequently is geodesically complete and has constant scalar curvature. However, Riemannian symmetric spaces also have a much stronger curvature property not possessed by most homogeneous Riemannian manifolds, namely that the 1164: 16377:. This reduces the study of the curvature of homogeneous Riemannian manifolds largely to algebraic problems. This reduction, together with the flexibility of the above construction, makes the class of homogeneous Riemannian manifolds very useful for constructing examples. 16511:, any Riemannian manifold which is simply-connected and irreducible is either a symmetric space or has Riemannian holonomy belonging to a list of only seven possibilities. Six of the seven exceptions to symmetric spaces in Berger's classification fall into the fields of 15884:, along with the Euclidean plane. Unlike the case of two-dimensional spherical space forms, in some cases two space form structures on the same manifold are not homothetic. The case of two-dimensional hyperbolic space forms is even more complicated, having to do with 18956: 15861:
The case of Euclidean and hyperbolic space forms can likewise be reduced to group theory, based on study of the isometry group of Euclidean space and hyperbolic space. For example, the class of two-dimensional Euclidean space forms includes Riemannian metrics on the
14667:
The Riemann curvature tensor measures precisely the extent to which parallel transporting vectors around a small rectangle is not the identity map. The Riemann curvature tensor is 0 at every point if and only if the manifold is locally isometric to Euclidean space.
4690: 3308: 15701: 8496: 6974: 16356:
is the trivial subgroup containing only the identity element. The calculations of the Levi-Civita connection and the curvature referenced there can be generalized to this context, where now the computations are formulated in terms of the inner product on
14811: 293:. Call a property of a surface an intrinsic property if it is preserved by local isometries and call it an extrinsic property if it is not. In this language, the Theorema Egregium says that the Gaussian curvature is an intrinsic property of surfaces. 16531:, each of which study Riemannian manifolds equipped with certain extra structures and symmetries. The seventh exception is the study of 'generic' Riemannian manifolds with no particular symmetry, as reflected by the maximal possible holonomy group. 5637: 6739:
This is a fundamental result. Although much of the basic theory of Riemannian metrics can be developed using only that a smooth manifold is a locally Euclidean topological space, for this result it is necessary to use that smooth manifolds are
10447:
is an additional structure on a Riemannian manifold that defines differentiation of one vector field with respect to another. Connections contain geometric data, and two Riemannian manifolds with different connections have different geometry.
10847: 15771:
says that any simply-connected spherical space form is homothetic to the sphere, any simply-connected Euclidean space form is homothetic to Euclidean space, and any simply-connected hyperbolic space form is homothetic to hyperbolic space.
6259: 9667: 15917:. Using the group structure, any inner product on the tangent space at the identity (or any other particular tangent space) can be transported to all other tangent spaces to define a Riemannian metric. Formally, given an inner product 10589: 5151:, cannot be isometrically embedded in 3-dimensional Euclidean space (right), because it is necessary to bend and stretch the sheet in doing so. Thus the intrinsic geometry of a flat torus is different from that of an embedded torus. 2957: 4440: 15850:. There are many more odd-dimensional spherical space forms, although there are known algorithms for their classification. The list of three-dimensional spherical space forms is infinite but explicitly known, and includes the 14932: 7222: 6158: 1251: 8280: 11159: 7295: 4191: 10234: 7619: 7079: 12122: 16157:
phenomena, in which a simply-connected Riemannian manifold can have small volume without having large curvature. They also give an example of a Riemannian metric which has constant scalar curvature but which is not
11304:
is a torsion-free connection that preserves the metric. Once a Riemannian metric is fixed, there exists a unique Levi-Civita connection. Note that the definition of preserving the metric uses the regularity of
6850: 17747: 16064: 12445: 3206: 9970:
If one works with Riemannian metrics that are merely continuous but possibly not smooth, the length of an admissible curve and the Riemannian distance function are defined exactly the same, and, as before,
151:
are used to pull geometric data out of the Riemannian metric. For example, integration leads to the Riemannian distance function, whereas differentiation is used to define curvature and parallel transport.
15149: 5439: 10419:
This is not the case without the completeness assumption; for counterexamples one could consider any open bounded subset of a Euclidean space with the standard Riemannian metric. It is also not true that
6441: 1061: 15493: 7547: 1029: 8076: 1717: 16833: 739: 14457: 13628: 7901:
and hyperbolic space, of which any representation as a submanifold of Euclidean space will fail to represent their remarkable symmetries and properties as clearly as their abstract presentations do.
7404: 2398: 13952:
is a way of moving vectors from one tangent space to another along a curve in the setting of a general Riemannian manifold. Given a fixed connection, there is a unique way to do parallel transport.
14364: 17556: 17045: 9717: 6345: 796: 13380: 18749: 10920: 9766: 9343: 8014: 7023: 4777: 4563: 3445:{\displaystyle (g_{ij}^{\text{can}})={\begin{pmatrix}1&0&\cdots &0\\0&1&\cdots &0\\\vdots &\vdots &\ddots &\vdots \\0&0&\cdots &1\end{pmatrix}}.} 12239: 3501: 2134:
An isometry is a function between Riemannian manifolds which preserves all of the structure of Riemannian manifolds. If two Riemannian manifolds have an isometry between them, they are called
1973: 3263: 10370: 9933: 9500: 17815: 17500: 17191: 16740: 11918: 11766: 8374: 861: 12316: 6701: 9176: 2064: 11256: 15562: 10660: 9459: 9049: 8382: 1629: 18062: 17622: 17438: 17296: 15755:
if the curvature is negative. In any dimension, the sphere with its standard Riemannian metric, Euclidean space, and hyperbolic space are Riemannian space forms of constant curvature
14578: 11570: 6895: 1793: 1461: 11499: 7798: 7471: 6890: 15888:. In three dimensions, the Euclidean space forms are known, while the geometry of hyperbolic space forms in three and higher dimensions remains an area of active research known as 4882: 12759: 16488:
also carry natural Riemannian metrics making them into symmetric spaces. Among the Lie groups with left-invariant Riemannian metrics, those which are bi-invariant are symmetric.
15172: 14720: 14636: 14503: 10706: 6615: 6546: 5110: 2887: 13543: 13169: 13090: 12995: 12698: 11656: 10482: 7435: 4812: 4481: 3607: 16639: 6061: 5795: 5446: 2919: 13657: 13572: 13274: 12512: 11724: 9099: 7871: 7354: 6492: 6011: 5317: 4964: 4911: 4725: 8836: 2828: 12900: 7325: 2949: 2472: 15285: 14095: 13216: 12640: 12057: 11375: 9387: 8181: 7955: 14165: 14130: 13755: 13478: 13129: 13050: 12955: 12347: 11947: 11838: 10954: 9421: 9241: 7105: 6463: 5021: 3883: 3293: 2278: 14201: 12868: 7646: 7498: 2601: 17229: 9267: 8967: 8137: 5824: 5346: 3818: 13843: 10413: 10323: 10280: 10128: 10055: 10008: 9811: 8758: 8693: 8654: 8587: 8540: 5248: 4233: 2510: 1487: 19221: 15305: 14051: 11445: 10711: 9119: 5053: 3915: 3675: 2238: 17131: 17078: 16866: 15037: 14689: 14291: 14251: 14014: 13993: 13733: 13695: 13456: 13418: 13236: 12799: 12718: 12662: 12576: 12144: 11993: 11858: 11809: 11610: 11590: 11397: 11182: 11038: 11013:
Two Riemannian manifolds with different connections have different geometry. Thankfully, there is a natural connection associated to a Riemannian manifold called the
9542: 9522: 8788: 16949: 16766: 14231: 12832: 9202: 8993: 8938: 7757: 6163: 4050: 3980: 3950: 3736: 2713: 2540: 2427: 2124: 1882: 1828: 1223: 1197: 598: 525: 451: 421: 18136: 18109: 18030: 18003: 17971: 17921: 17842: 17406: 17264: 16919: 15003: 13948:
In Euclidean space, all tangent spaces are canonically identified with each other via translation, so it is easy to move vectors from one tangent space to another.
13874: 13800: 13304: 12539: 11537: 9965: 9866: 8903: 8316: 6399: 6372: 5982: 5930: 5903: 5851: 5725: 5673: 5219: 5187: 4847: 4553: 4508: 3854: 3643: 3572: 2661: 2203: 2171: 1534: 1417: 937: 17351: 7648:. Because the atlas is locally finite, at every point the sum contains only finitely many nonzero terms, so the sum converges. It is straightforward to check that 15212: 3104:{\displaystyle g^{\text{can}}\left(\sum _{i}a_{i}{\frac {\partial }{\partial x^{i}}},\sum _{j}b_{j}{\frac {\partial }{\partial x^{j}}}\right)=\sum _{i}a_{i}b_{i}} 17378: 17331: 7894: 6724: 6569: 4280: 2094: 18163: 17944: 17894: 17874: 17459: 17098: 16989: 16969: 16892: 16691: 15846:. For instance, this can be used to show directly that every even-dimensional spherical space form is homothetic to the standard metric on either the sphere or 15332: 15240: 15057: 14709: 14311: 14271: 13973: 13923: 13901: 13502: 13015: 12920: 12779: 12596: 12367: 12013: 11969: 11789: 11323: 10996: 10976: 10612: 10506: 10075: 9935:
is non-differentiable, and it can be remarkably difficult to even determine the location or nature of these points, even in seemingly simple cases such as when
9886: 9831: 9577: 9069: 9013: 8713: 8607: 7842: 7818: 7718: 7698: 7666: 7567: 7148: 7128: 6785: 6635: 6285: 5950: 5871: 5745: 5693: 5288: 5268: 4992: 4935: 4307: 4257: 4020: 4000: 3776: 3756: 3703: 3544: 2787: 2761: 2741: 2682: 2629: 2560: 2001: 1917: 1848: 1745: 1561: 1507: 1243: 1053: 901: 881: 668: 648: 628: 565: 545: 495: 475: 391: 96: 14967: 11291: 10517: 8108: 9585: 13310:. Since the Earth is approximately a sphere, this means that the shortest path a plane can fly between two locations on Earth is a segment of a great circle. 4315: 16665:
Riemannian metrics are defined in a way similar to the finite-dimensional case. However, there is a distinction between two types of Riemannian metrics:
14819: 1381:{\displaystyle g_{ij}|_{p}:=g_{p}\left(\left.{\frac {\partial }{\partial x^{i}}}\right|_{p},\left.{\frac {\partial }{\partial x^{j}}}\right|_{p}\right)} 7156: 16491:
Based on their algebraic formulation as special kinds of homogeneous spaces, Cartan achieved an explicit classification of symmetric spaces which are
6068: 16449:. Riemannian manifolds with this curvature property, which could loosely be phrased as "constant Riemann curvature tensor" (not to be confused with 11050: 13276:
are exactly the straight lines. This agrees the fact from Euclidean geometry that the shortest path between two points is a straight line segment.
7233: 4058: 20460: 14505:. This second metric has a singularity at the origin, so it does not extend past the puncture, but the first metric extends to the entire plane. 10136: 7572: 7032: 155:
Any smooth surface in three-dimensional Euclidean space is a Riemannian manifold with a Riemannian metric coming from the way it sits inside the
12062: 19651: 16574: 8189: 1899:
in which one wants to consider non-smooth Riemannian metrics. See for instance (Gromov 1999) and (Shi and Tam 2002). However, in this article,
20515: 5147:
naturally carries a Euclidean metric, obtained by identifying opposite sides of a square (left). The resulting Riemannian manifold, called a
20455: 15842:. Up to homothety, every spherical space form arises in this way; this largely reduces the study of spherical space forms to problems in 11592:
is a vector space under pointwise vector addition and scalar multiplication. One can also pointwise multiply a smooth vector field along
6790: 20678: 20528: 19742: 17629: 16352:
The above example of Lie groups with left-invariant Riemannian metrics arises as a very special case of this construction, namely when
15938: 3120: 1159:{\displaystyle \left\{{\frac {\partial }{\partial x^{1}}}{\Big |}_{p},\dotsc ,{\frac {\partial }{\partial x^{n}}}{\Big |}_{p}\right\}} 19766: 14316:
The images below show parallel transport induced by the Levi-Civita connection associated to two different Riemannian metrics on the
15071: 5355: 19961: 6410: 15392: 15783:
of a simply-connected Riemannian space form, modulo a certain group action of isometries. For example, the isometry group of the
12372: 7503: 961: 19182:. Mathematics: Theory & Applications (Translated from the second Portuguese edition of 1979 original ed.). Boston, MA: 1637: 369:
A tangent plane of the sphere with two vectors in it. A Riemannian metric allows one to take the inner product of these vectors.
172:, Riemannian metrics are more naturally defined or constructed using the intrinsic point of view. Additionally, many metrics on 20708: 20683: 16771: 16503:; among them only the one-dimensional manifolds have zero scalar curvature. These spaces are important from the perspective of 677: 16111:
The Levi-Civita connection and curvature of a general left-invariant Riemannian metric can be computed explicitly in terms of
14373: 13580: 9841:
Although the length of a curve is given by an explicit formula, it is generally impossible to write out the distance function
7359: 2286: 20570: 19831: 19418: 19368: 19333: 19191: 19149: 18951:{\displaystyle (x_{1},\ldots ,x_{n})\cdot (y_{1},\ldots ,y_{n})=(x_{1}+y_{n}x_{1},\ldots ,x_{n-1}+y_{n}x_{n-1},x_{n}y_{n}).} 14322: 10424:
complete metric space of finite diameter must be compact; it matters that the metric space came from a Riemannian manifold.
20057: 19288: 17504: 17004: 16641:
These can be extended, to a certain degree, to infinite-dimensional manifolds; that is, manifolds that are modeled after a
9675: 8019: 6291: 4685:{\displaystyle \left\{x\in \mathbb {R} ^{3}:{\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}+{\frac {z^{2}}{c^{2}}}=1\right\}} 1884:
are smooth in any smooth coordinate chart. One can consider many other types of Riemannian metrics in this spirit, such as
744: 13332: 20110: 19638: 10854: 9726: 9276: 6982: 4739: 20394: 12153: 3458: 1940: 148: 19504:
Michor, Peter W.; Mumford, David (2005). "Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms".
7721: 3217: 20543: 20508: 19254: 19095: 16609:
The statements and theorems above are for finite-dimensional manifolds—manifolds whose charts map to open subsets of
16596: 10328: 9891: 9464: 17: 17763: 17464: 17136: 16696: 16567: 11863: 11729: 8322: 7960: 801: 20159: 19325: 7821: 7407: 6640: 3706: 15696:{\displaystyle {\frac {dx_{1}^{2}+\cdots +dx_{n}^{2}}{(1+{\frac {\kappa }{4}}(x_{1}^{2}+\cdots +x_{n}^{2}))^{2}}}} 9124: 8491:{\displaystyle d_{g}(p,q)=\inf\{L(\gamma ):\gamma {\text{ an admissible curve with }}\gamma (0)=p,\gamma (1)=q\}.} 2009: 20142: 19751: 16228:
is transitive. Every homogeneous Riemannian manifold is geodesically complete and has constant scalar curvature.
11194: 6969:{\displaystyle \varphi _{\alpha }\colon U_{\alpha }\to \varphi _{\alpha }(U_{\alpha })\subseteq \mathbf {R} ^{n}} 2474:
For example, translations and rotations are both isometries from Euclidean space (to be defined soon) to itself.
184:
to transport an inner product on a single tangent space to the entire manifold, and many special metrics such as
147:
of the manifold. A Riemannian manifold is a smooth manifold together with a Riemannian metric. The techniques of
19465:
Magnani, Valentino; Tiberio, Daniele (2020). "A remark on vanishing geodesic distances in infinite dimensions".
16142:(that is, simultaneously left- and right-invariant). All left-invariant metrics have constant scalar curvature. 2719:. The Riemannian volume form is preserved by orientation-preserving isometries. The volume form gives rise to a 20796: 19217: 16484:, quaternionic hyperbolic space, and Cayley hyperbolic space, which are instead analogues of hyperbolic space. 16108:; right-invariant Riemannian metrics could be constructed likewise using the right multiplication map instead. 14653:
the unit circle. Indeed, in the first image, the vectors fall outside of the tangent space to the unit circle.
10617: 9426: 9018: 1576: 193: 18035: 17561: 17411: 17269: 16468:
Many of the fundamental examples of Riemannian manifolds are symmetric. The most basic include the sphere and
15855: 14527: 12245: 11542: 1754: 1422: 20791: 20354: 19761: 19610: 19348: 16473: 11450: 9774:
and Euclidean lengths measured in a smooth coordinate chart, also verifies that the metric space topology of
7762: 278:
of a surface embedded in 3-dimensional space only depends on local measurements made within the surface (the
50: 16516: 16231:
Up to isometry, all homogeneous Riemannian manifolds arise by the following construction. Given a Lie group
14806:{\displaystyle R:{\mathfrak {X}}(M)\times {\mathfrak {X}}(M)\times {\mathfrak {X}}(M)\to {\mathfrak {X}}(M)} 7440: 6862: 189: 20786: 20605: 20501: 20339: 20062: 19836: 14970: 11294: 4852: 1933:
In analogy to how an inner product on a vector space induces an isomorphism between a vector space and its
16145:
Left- and bi-invariant metrics on Lie groups are an important source of examples of Riemannian manifolds.
5632:{\displaystyle {\widetilde {g}}_{p,q}((u_{1},u_{2}),(v_{1},v_{2}))=g_{p}(u_{1},v_{1})+h_{q}(u_{2},v_{2}).} 300:
in 1854. However, they would not be formalized until much later. In fact, the more primitive concept of a
20384: 19605: 15157: 14595: 14462: 10669: 6574: 6505: 5070: 2846: 156: 13513: 11615: 10454: 7413: 4782: 4451: 3577: 20626: 20389: 20359: 20067: 20023: 20004: 19771: 19715: 19600: 19402: 19294: 19133: 18195: 16612: 16426: 15548:
is the dimension of the manifold. In particular, every Riemannian manifold of constant curvature is an
10372:
has a maximum, since it is a continuous function on a compact metric space. This proves the following.
10086: 6016: 5750: 4236: 2892: 337: 319: 239: 168:
space itself without referencing an ambient space. In many instances, such as for hyperbolic space and
18073:
In the case of strong Riemannian metrics, one part of the finite-dimensional Hopf–Rinow still holds.
13633: 13548: 13250: 12488: 11664: 9074: 7847: 7330: 6468: 5987: 5293: 4940: 4887: 4701: 20755: 19926: 19791: 16557: 16422: 12723: 8793: 7677: 6853: 2793: 73:
on which many geometric notions such as distance, angles, length, volume, and curvature are defined.
16461:
proved in the 1920s that a locally symmetric Riemannian manifold which is geodesically complete and
12873: 8870:
only allows this "coordinate chart geometry" to distort the "true geometry" by some bounded factor.
7303: 2927: 2432: 20688: 20548: 20311: 20176: 19868: 19710: 16642: 16561: 16553: 16481: 16438: 15928:
on the tangent space at the identity, the inner product on the tangent space at an arbitrary point
15768: 15379: 15335: 15255: 14713: 14662: 14056: 13177: 13134: 13055: 12960: 12668: 12601: 12018: 11336: 9348: 8142: 7916: 1540: 345: 14135: 14100: 13738: 13461: 13099: 13020: 12925: 12323: 11923: 11814: 10929: 9400: 9207: 7084: 6446: 4997: 3862: 3268: 2247: 20734: 20008: 19978: 19902: 19892: 19848: 19678: 19631: 19552: 19444:
Burtscher, Annegret (2015). "Length structures on manifolds with continuous Riemannian metrics".
18190: 17299: 14367: 14170: 12837: 10842:{\displaystyle \nabla _{f_{1}X_{1}+f_{2}X_{2}}Y=f_{1}\,\nabla _{X_{1}}Y+f_{2}\,\nabla _{X_{2}}Y,} 8866:
must first pass though a certain "inner radius." The assumed continuity of the Riemannian metric
8285:
The integrand is bounded and continuous except at finitely many points, so it is integrable. For
7624: 7476: 2565: 247: 19226:. Progress in Mathematics. Vol. 152. Translated by Bates, Sean Michael. With appendices by 17196: 12997:. Any two such geodesics agree on their common domain. Taking the union over all open intervals 9246: 8943: 8113: 5800: 5322: 3781: 53:
contains information about the lengths and angle between the vectors. The dot products on every
20765: 20698: 20693: 20631: 20590: 20349: 19968: 19863: 19776: 19683: 16578: 16123: 15061: 13809: 13761: 13325: 13320: 11014: 11008: 10379: 10289: 10246: 10240: 10094: 10021: 9974: 9777: 8724: 8659: 8620: 8553: 8506: 6254:{\displaystyle ({\widetilde {g}}_{ij})={\begin{pmatrix}g_{U}&0\\0&h_{V}\end{pmatrix}}.} 5227: 4199: 3516: 2480: 1466: 327: 279: 20760: 15290: 14020: 11403: 9104: 5026: 3888: 3648: 2211: 19998: 19993: 17103: 17054: 16838: 16485: 16469: 16248: 16150: 15847: 15732: 15022: 14674: 14276: 14236: 13999: 13978: 13846: 13700: 13662: 13506: 13423: 13385: 13221: 12784: 12703: 12647: 12561: 12129: 11978: 11843: 11794: 11595: 11575: 11382: 11167: 11023: 10283: 9527: 9507: 8767: 4967: 2720: 1536:
is a positive-definite inner product then says exactly that this matrix-valued function is a
62: 18700: 16924: 16745: 14206: 12811: 9181: 8972: 8908: 7727: 4025: 3955: 3920: 3711: 2688: 2519: 2406: 2099: 1857: 1798: 1202: 1172: 573: 500: 426: 400: 202:, the study of Riemannian manifolds, has deep connections to other areas of math, including 20595: 20329: 20267: 20115: 19819: 19809: 19781: 19756: 19666: 19575: 19428: 19378: 19301: 19264: 19201: 19159: 19105: 18114: 18082: 18008: 17976: 17949: 17899: 17820: 17384: 17237: 16897: 16138:. These formulas simplify considerably in the special case of a Riemannian metric which is 15737: 15556:
in his 1854 lecture introducing Riemannian geometry, the locally-defined Riemannian metric
14976: 13852: 13773: 13282: 12517: 11504: 9938: 9844: 8876: 8289: 6377: 6350: 5955: 5908: 5876: 5829: 5698: 5646: 5192: 5160: 4820: 4526: 4486: 3827: 3682: 3678: 3616: 3550: 2634: 2176: 2144: 2070: 1885: 1512: 1395: 910: 271: 164: 19583: 19436: 19386: 19309: 19272: 19209: 19183: 19167: 19113: 18165:
is a weak Riemannian metric, then no notion of completeness implies the other in general.
17336: 15885: 2138:, and they are considered to be the same manifold for the purpose of Riemannian geometry. 1225:. Relative to this basis, one can define the Riemannian metric's components at each point 8: 20652: 20609: 20580: 20563: 20524: 20467: 20149: 20027: 19941: 19352: 19280: 18746:
In the upper half-space model of hyperbolic space, the Lie group structure is defined by
18210: 18180: 16504: 16154: 15889: 15751: 15371: 15339: 15191: 10584:{\displaystyle \nabla :{\mathfrak {X}}(M)\times {\mathfrak {X}}(M)\to {\mathfrak {X}}(M)} 5063: 5057: 4733: 1928: 1889: 199: 20440: 17360: 17313: 16646: 16472:
with their standard metrics, along with hyperbolic space. The complex projective space,
9662:{\displaystyle L(\gamma )\geq {\sqrt {\lambda }}\int _{0}^{\delta }\|\gamma '(t)\|\,dt.} 7876: 6706: 6551: 4262: 2076: 20750: 20647: 20616: 20409: 20364: 20261: 20132: 19936: 19624: 19531: 19513: 19492: 19474: 19125: 18205: 18148: 17929: 17879: 17859: 17849: 17444: 17083: 16974: 16954: 16877: 16676: 16450: 16446: 15363: 15317: 15225: 15042: 14694: 14296: 14256: 13958: 13949: 13935: 13908: 13886: 13487: 13000: 12905: 12764: 12581: 12352: 11998: 11954: 11774: 11308: 10981: 10961: 10597: 10491: 10060: 9871: 9816: 9547: 9054: 8998: 8698: 8592: 7827: 7803: 7703: 7683: 7651: 7552: 7133: 7113: 7026: 6770: 6749: 6620: 6270: 5935: 5856: 5730: 5678: 5273: 5253: 4977: 4920: 4292: 4242: 4005: 3985: 3761: 3741: 3688: 3529: 2772: 2746: 2726: 2667: 2614: 2545: 1986: 1902: 1896: 1833: 1730: 1546: 1492: 1228: 1038: 886: 866: 653: 633: 613: 550: 530: 480: 460: 376: 365: 341: 323: 275: 262:
Riemannian manifolds were first conceptualized by their namesake, German mathematician
219: 211: 203: 81: 20657: 19946: 19566: 19547: 16512: 14940: 11264: 8761: 8081: 5222: 20662: 20344: 20324: 20319: 20226: 20137: 19951: 19931: 19786: 19725: 19496: 19453: 19414: 19364: 19329: 19250: 19187: 19175: 19145: 19091: 18220: 16500: 16191: 16167: 16163: 15914: 15826: 15780: 15718:
can be covered by coordinate charts relative to which the metric has the above form.
15549: 15215: 15183: 10444: 10438: 9672:
The integral which appears here represents the Euclidean length of a curve from 0 to
7898: 4435:{\displaystyle S^{n}=\{x\in \mathbb {R} ^{n+1}:(x^{1})^{2}+\cdots +(x^{n+1})^{2}=1\}} 1934: 1032: 671: 315: 283: 227: 177: 17973:
may fail to separate points. In fact, it may even be identically 0. For example, if
258: 20729: 20724: 20600: 20553: 20482: 20276: 20231: 20154: 20125: 19983: 19916: 19911: 19906: 19896: 19688: 19671: 19579: 19561: 19523: 19484: 19432: 19406: 19382: 19356: 19305: 19268: 19242: 19205: 19163: 19137: 19109: 19083: 18185: 17817:
are defined in a way similar to the finite-dimensional case. The distance function
16654: 16528: 16462: 15788: 15553: 15527: 15351: 14927:{\displaystyle R(X,Y)Z=\nabla _{X}\nabla _{Y}Z-\nabla _{Y}\nabla _{X}Z-\nabla _{}Z} 6856: 5112:. Hence isometric immersions and isometric embeddings are Riemannian submanifolds. 1980: 1537: 297: 263: 243: 231: 207: 169: 121: 101: 15378:. This is equivalent to the condition that, relative to any coordinate chart, the 13382:
is not geodesically complete because the maximal geodesic with initial conditions
20558: 20493: 20425: 20334: 20164: 20120: 19886: 19571: 19535: 19424: 19374: 19297: 19260: 19197: 19155: 19101: 19079: 18215: 18175: 16650: 16442: 16404: 16386: 16240: 16159: 15806: 15728: 15499: 15014: 14317: 13877: 13575: 10015: 8547: 7217:{\displaystyle g=\sum _{\alpha \in A}\tau _{\alpha }\cdot {\tilde {g}}_{\alpha }} 6741: 4914: 3296: 394: 333: 301: 296:
Riemannian manifolds and their curvature were first introduced non-rigorously by
136: 74: 70: 31: 15867: 15310:
holds, and a (pseudo-)Riemannian manifold whose metric is Einstein is called an
13218:
that has the shortest length of any admissible curve with the same endpoints as
6153:{\displaystyle {\widetilde {g}}=\sum _{ij}{\widetilde {g}}_{ij}\,dx^{i}\,dx^{j}} 20291: 20216: 20186: 20084: 20077: 20017: 19988: 19858: 19853: 19814: 19394: 19284: 19235: 16225: 15776: 15711: 6976:
are diffeomorphisms. Such an atlas exists because the manifold is paracompact.
2206: 1976: 1567: 290: 185: 105: 19360: 19246: 19087: 19078:. Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Vol. 10. Berlin: 16458: 311: 20780: 20585: 20477: 20301: 20296: 20281: 20271: 20221: 20198: 20072: 20032: 19973: 19921: 19720: 19457: 18200: 17048: 16508: 16496: 16146: 15383: 13940: 13659:
is not geodesically complete as the maximal geodesic with initial conditions
13307: 12542: 11154:{\displaystyle X{\bigl (}g(Y,Z){\bigr )}=g(\nabla _{X}Y,Z)+g(Y,\nabla _{X}Z)} 10485: 2764: 940: 601: 454: 181: 144: 140: 54: 19239: 18716: 16480:
are analogues of the real projective space which are also symmetric, as are
12555:
without making any effort to accelerate or turn would trace out a geodesic.
7700:
into Euclidean space and then pulls back the metric from Euclidean space to
7290:{\displaystyle {\tilde {g}}_{\alpha }=\varphi _{\alpha }^{*}g^{\text{can}}.} 4186:{\displaystyle i^{*}g_{p}(v,w)=g_{i(p)}{\big (}di_{p}(v),di_{p}(w){\big )},} 37: 20404: 20399: 20241: 20208: 20181: 20089: 19730: 19231: 19227: 19121: 19071: 17307: 16477: 16434: 16221: 15863: 15843: 15838:
inheriting a geodesically complete Riemannian metric of constant curvature
10229:{\displaystyle \operatorname {diam} (M,d_{g})=\sup\{d_{g}(p,q):p,q\in M\}.} 10011: 8543: 7614:{\displaystyle \operatorname {supp} (\tau _{\alpha })\subseteq U_{\alpha }} 7074:{\displaystyle \operatorname {supp} (\tau _{\alpha })\subseteq U_{\alpha }} 5134: 947: 741:
in a smooth way (see the section on regularity below). This induces a norm
305: 223: 12117:{\displaystyle D_{t}:{\mathfrak {X}}(\gamma )\to {\mathfrak {X}}(\gamma )} 946:
A Riemannian metric is not to be confused with the distance function of a
57:, packaged together into one mathematical object, are a Riemannian metric. 20247: 20236: 20193: 20094: 19695: 19543: 19488: 19317: 18988: 18111:
be a strong Riemannian manifold. Then metric completeness (in the metric
17354: 16520: 16300: 16255: 16131: 8275:{\displaystyle L(\gamma )=\int _{0}^{1}\|\gamma '(t)\|_{\gamma (t)}\,dt.} 6745: 2664: 235: 160: 42: 15174:
is the trace. The Ricci curvature tensor is a covariant 2-tensor field.
14511:
Parallel transports on the punctured plane under Levi-Civita connections
14366:. The curve the parallel transport is done along is the unit circle. In 20703: 20472: 20430: 20256: 20169: 19801: 19705: 19616: 19410: 19141: 18688: 17923:
separates points (hence is a metric) and induces the original topology.
15851: 15814: 15727:
is a Riemannian manifold with constant curvature which is additionally
15723: 15714:, and so it follows that any Riemannian manifold of constant curvature 6403: 5148: 4966:
automatically inherits a Riemannian metric. By the same principle, any
1571: 173: 113: 14518: 12514:(left), the maximal geodesics are straight lines. In the round sphere 10415:
is complete, then it is compact if and only if it has finite diameter.
20286: 20251: 19956: 19843: 19527: 19518: 17303: 15910: 12551: 4556: 3521: 349: 289:
A map that preserves the local measurements of a surface is called a
109: 1975:, a Riemannian metric induces an isomorphism of bundles between the 20575: 20450: 20445: 20435: 19826: 19647: 19479: 15875: 15799: 14586: 13944:
Parallel transport of a tangent vector along a curve in the sphere.
12457: 6845:{\displaystyle \{(U_{\alpha },\varphi _{\alpha })\}_{\alpha \in A}} 6728: 4289: 3526: 117: 78: 15710:. Any two Riemannian manifolds of the same constant curvature are 13802:
be a connected Riemannian manifold. The following are equivalent:
12476: 6736:
Every smooth manifold admits a (non-canonical) Riemannian metric.
4937:. This is an immersion (since it is locally a diffeomorphism), so 19132:(Revised reprint of the 1975 original ed.). Providence, RI: 19022: 19020: 19018: 17742:{\displaystyle G_{f}(u,v)=\int _{M}g_{f(x)}(u(x),v(x))\,d\mu (x)} 15219: 12467: 9269:
denotes the Euclidean norm induced by the local coordinates. Let
6267: 5125: 215: 18676: 18664: 16059:{\displaystyle g_{p}(u,v)=g_{e}(dL_{p^{-1}}(u),dL_{p^{-1}}(v)),} 7897:
there are many natural smooth Riemannian manifolds, such as the
3201:{\displaystyle g^{\text{can}}=(dx^{1})^{2}+\cdots +(dx^{n})^{2}} 20042: 3574:
with the round metric is an embedded Riemannian submanifold of
46: 19015: 19005: 19003: 16312:
are in one-to-one correspondence with those inner products on
15314:. Examples of Einstein manifolds include Euclidean space, the 15144:{\displaystyle Ric(X,Y)=\operatorname {tr} (Z\mapsto R(Z,X)Y)} 8016:
is nonzero everywhere it is defined. The nonnegative function
5434:{\displaystyle T_{(p,q)}(M\times N)\cong T_{p}M\oplus T_{q}N,} 360: 19037: 19035: 15871: 9770:
The observation about comparison between lengths measured by
6436:{\displaystyle \mathbb {R} \times \cdots \times \mathbb {R} } 5144: 19238:. (Based on the 1981 French original ed.). Boston, MA: 18960: 18654: 18652: 15779:
construction, any Riemannian space form is isometric to the
15488:{\displaystyle R_{ijkl}=\kappa (g_{il}g_{jk}-g_{ik}g_{jl}).} 8838:. Verification of the other metric space axioms is omitted. 120:. Riemannian manifolds are named after German mathematician 19401:(Sixth edition of 1967 original ed.). Providence, RI: 19351:. Vol. 171 (Third edition of 1998 original ed.). 19000: 18972: 18565: 17298:
its diffeomorphism group. The latter is a smooth manifold (
16495:, referring to those which cannot be locally decomposed as 16349:
naturally viewed as a subgroup of the full isometry group.
14645:
Warning: This is parallel transport on the punctured plane
12440:{\displaystyle D_{t}X(t)=\nabla _{\gamma '(t)}{\tilde {X}}} 11840:
is a smooth vector field on a neighborhood of the image of
9813:
coincides with the original topological space structure of
7542:{\displaystyle \tau _{\alpha }\cdot {\tilde {g}}_{\alpha }} 6760:
Proof that every smooth manifold admits a Riemannian metric
6374:
is given the round metric, the product Riemannian manifold
1339: 1300: 1024:{\displaystyle (x^{1},\ldots ,x^{n}):U\to \mathbb {R} ^{n}} 27:
Smooth manifold with an inner product on each tangent space
19223:
Metric structures for Riemannian and non-Riemannian spaces
19032: 17306:. Its tangent bundle at the identity is the set of smooth 15817:, the natural group action of the orthogonal group on the 14370:, the metric on the left is the standard Euclidean metric 1712:{\displaystyle g=\sum _{i,j}g_{ij}\,dx^{i}\otimes dx^{j}.} 19047: 18649: 16828:{\displaystyle g_{x}:T_{x}M\times T_{x}M\to \mathbb {R} } 16365:, and the direct sum decomposition of the Lie algebra of 13247:
The nonconstant maximal geodesics of the Euclidean plane
734:{\displaystyle g_{p}:T_{p}M\times T_{p}M\to \mathbb {R} } 18428: 18271: 18269: 18256: 18254: 18239: 15552:, thereby having constant scalar curvature. As found by 14452:{\displaystyle dx^{2}+dy^{2}=dr^{2}+r^{2}\,d\theta ^{2}} 13623:{\displaystyle \mathbb {R} ^{2}\smallsetminus \{(0,0)\}} 10427: 7399:{\displaystyle \varphi _{\alpha }^{*}g^{\mathrm {can} }} 2393:{\displaystyle g_{p}(u,v)=h_{f(p)}(df_{p}(u),df_{p}(v))} 18728: 16457:. This property nearly characterizes symmetric spaces; 15900: 10286:
and has finite diameter, it is compact. Conversely, if
2743:
which allows measurable functions to be integrated. If
1570:, the Riemannian metric can be written in terms of the 953: 352:, which is a 4-dimensional pseudo-Riemannian manifold. 304:
was first explicitly defined only in 1913 in a book by
18613: 18577: 18500: 18476: 18452: 17760:
Length of curves and the Riemannian distance function
14359:{\displaystyle \mathbb {R} ^{2}\smallsetminus \{0,0\}} 13348: 6203: 4970:
of a Riemannian manifold inherits a Riemannian metric.
3344: 1722: 340:(a generalization of Riemannian manifolds) to develop 18752: 18519: 18517: 18515: 18266: 18251: 18151: 18117: 18085: 18038: 18011: 17979: 17952: 17932: 17902: 17882: 17862: 17823: 17766: 17632: 17564: 17551:{\displaystyle u,v\in T_{f}\operatorname {Diff} (M).} 17507: 17467: 17447: 17414: 17387: 17363: 17339: 17316: 17272: 17240: 17199: 17139: 17106: 17086: 17057: 17040:{\displaystyle (H,\langle \,\cdot ,\cdot \,\rangle )} 17007: 16977: 16957: 16927: 16900: 16880: 16841: 16774: 16748: 16699: 16679: 16615: 16266:. If this subspace is invariant under the linear map 15941: 15565: 15395: 15356: 15320: 15293: 15258: 15228: 15194: 15160: 15074: 15045: 15025: 14979: 14943: 14822: 14723: 14697: 14677: 14598: 14530: 14465: 14376: 14325: 14299: 14279: 14259: 14239: 14209: 14173: 14138: 14103: 14059: 14023: 14002: 13981: 13961: 13911: 13889: 13855: 13812: 13776: 13741: 13703: 13665: 13636: 13583: 13551: 13516: 13490: 13464: 13426: 13388: 13335: 13285: 13253: 13224: 13180: 13137: 13102: 13058: 13023: 13003: 12963: 12928: 12908: 12876: 12840: 12814: 12787: 12767: 12726: 12706: 12671: 12650: 12604: 12584: 12564: 12520: 12491: 12375: 12355: 12326: 12248: 12156: 12132: 12065: 12021: 12001: 11981: 11957: 11926: 11866: 11846: 11817: 11797: 11777: 11732: 11667: 11618: 11598: 11578: 11545: 11507: 11453: 11406: 11385: 11339: 11328: 11311: 11267: 11197: 11170: 11053: 11026: 10984: 10964: 10932: 10857: 10714: 10672: 10620: 10600: 10520: 10494: 10457: 10382: 10331: 10292: 10249: 10139: 10097: 10063: 10024: 9977: 9941: 9894: 9874: 9847: 9819: 9780: 9729: 9712:{\displaystyle x(\partial V)\subset \mathbb {R} ^{n}} 9678: 9588: 9550: 9530: 9510: 9467: 9429: 9403: 9351: 9279: 9249: 9210: 9184: 9127: 9107: 9077: 9057: 9021: 9001: 8975: 8946: 8911: 8879: 8796: 8770: 8727: 8701: 8662: 8623: 8595: 8556: 8509: 8385: 8325: 8292: 8192: 8145: 8116: 8084: 8071:{\displaystyle t\mapsto \|\gamma '(t)\|_{\gamma (t)}} 8022: 7963: 7919: 7879: 7850: 7830: 7806: 7765: 7730: 7706: 7686: 7654: 7627: 7575: 7555: 7506: 7479: 7443: 7416: 7362: 7333: 7306: 7236: 7159: 7136: 7116: 7087: 7035: 6985: 6898: 6865: 6793: 6773: 6709: 6643: 6623: 6577: 6554: 6508: 6471: 6449: 6413: 6380: 6353: 6340:{\displaystyle T^{n}=S^{1}\times \cdots \times S^{1}} 6294: 6273: 6166: 6071: 6019: 5990: 5958: 5938: 5911: 5879: 5859: 5832: 5803: 5753: 5733: 5701: 5681: 5649: 5449: 5358: 5325: 5296: 5276: 5256: 5230: 5195: 5163: 5073: 5029: 5000: 4980: 4943: 4923: 4890: 4855: 4823: 4785: 4742: 4704: 4566: 4529: 4489: 4454: 4318: 4295: 4265: 4245: 4202: 4061: 4028: 4008: 3988: 3958: 3923: 3891: 3865: 3830: 3784: 3764: 3744: 3714: 3691: 3651: 3619: 3580: 3553: 3532: 3461: 3311: 3271: 3220: 3123: 2960: 2930: 2895: 2849: 2796: 2775: 2749: 2729: 2691: 2670: 2637: 2617: 2568: 2548: 2522: 2483: 2435: 2409: 2289: 2250: 2214: 2179: 2147: 2102: 2079: 2012: 1989: 1943: 1905: 1860: 1836: 1801: 1757: 1733: 1640: 1579: 1549: 1515: 1495: 1469: 1425: 1398: 1254: 1231: 1205: 1175: 1064: 1041: 964: 913: 889: 869: 804: 791:{\displaystyle \|\cdot \|_{p}:T_{p}M\to \mathbb {R} } 747: 680: 656: 636: 616: 576: 553: 533: 503: 483: 463: 429: 403: 379: 84: 19548:"Curvatures of left invariant metrics on Lie groups" 18440: 18394: 18392: 18367: 18365: 13375:{\displaystyle \mathbb {R} ^{2}\backslash \{(0,0)\}} 13238:
is a geodesic (in a unit-speed reparameterization).
4698:
is a smooth embedded submanifold of Euclidean space
4448:
is a smooth embedded submanifold of Euclidean space
18350: 18328: 18326: 18313: 18311: 18286: 18284: 16345:. Each such Riemannian metric is homogeneous, with 15895: 13630:with the restriction of the Riemannian metric from 10915:{\displaystyle \nabla _{X}fY=X(f)Y+f\,\nabla _{X}Y} 9761:{\displaystyle L(\gamma )\geq {\sqrt {\lambda }}R.} 9338:{\displaystyle \sup\{r>0:B_{r}(0)\subset x(V)\}} 6497: 20523: 18950: 18637: 18625: 18601: 18589: 18553: 18541: 18529: 18512: 18488: 18464: 18157: 18130: 18103: 18056: 18024: 17997: 17965: 17938: 17915: 17888: 17868: 17836: 17809: 17741: 17616: 17550: 17494: 17453: 17432: 17400: 17372: 17345: 17325: 17290: 17258: 17223: 17185: 17125: 17092: 17072: 17039: 16983: 16963: 16943: 16913: 16886: 16860: 16827: 16760: 16734: 16685: 16633: 16224:as the requirement that the natural action of the 16058: 15695: 15487: 15326: 15299: 15279: 15234: 15206: 15166: 15143: 15051: 15031: 14997: 14961: 14926: 14805: 14703: 14683: 14630: 14572: 14497: 14451: 14358: 14305: 14293:, and then take the value of this vector field at 14285: 14265: 14245: 14225: 14195: 14159: 14124: 14089: 14045: 14008: 13987: 13967: 13917: 13895: 13868: 13837: 13794: 13749: 13727: 13689: 13651: 13622: 13566: 13537: 13496: 13472: 13450: 13412: 13374: 13298: 13268: 13230: 13210: 13163: 13123: 13084: 13044: 13009: 12989: 12949: 12914: 12894: 12862: 12826: 12793: 12773: 12753: 12712: 12692: 12656: 12634: 12590: 12570: 12533: 12506: 12439: 12361: 12341: 12310: 12233: 12138: 12116: 12051: 12007: 11987: 11963: 11941: 11912: 11852: 11832: 11803: 11783: 11760: 11718: 11650: 11604: 11584: 11564: 11531: 11493: 11439: 11391: 11369: 11317: 11285: 11250: 11176: 11153: 11032: 10990: 10970: 10948: 10914: 10841: 10700: 10654: 10606: 10583: 10500: 10476: 10407: 10364: 10317: 10274: 10228: 10122: 10069: 10049: 10002: 9959: 9927: 9880: 9860: 9825: 9805: 9760: 9711: 9661: 9571: 9536: 9516: 9494: 9453: 9415: 9381: 9337: 9261: 9235: 9196: 9170: 9113: 9093: 9063: 9043: 9007: 8987: 8961: 8932: 8897: 8830: 8782: 8752: 8707: 8687: 8648: 8601: 8581: 8534: 8490: 8368: 8310: 8274: 8175: 8131: 8102: 8070: 8008: 7949: 7888: 7865: 7836: 7812: 7792: 7751: 7724:states that, given any smooth Riemannian manifold 7712: 7692: 7660: 7640: 7613: 7561: 7541: 7492: 7465: 7429: 7398: 7348: 7319: 7289: 7216: 7142: 7122: 7099: 7073: 7018:{\displaystyle \{\tau _{\alpha }\}_{\alpha \in A}} 7017: 6968: 6884: 6844: 6779: 6718: 6695: 6629: 6609: 6563: 6540: 6486: 6457: 6435: 6393: 6366: 6339: 6279: 6253: 6152: 6055: 6005: 5976: 5944: 5924: 5897: 5865: 5845: 5818: 5789: 5739: 5719: 5687: 5667: 5631: 5433: 5340: 5311: 5282: 5262: 5242: 5213: 5181: 5104: 5047: 5015: 4986: 4958: 4929: 4905: 4876: 4841: 4806: 4772:{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} } 4771: 4719: 4684: 4547: 4502: 4475: 4434: 4301: 4274: 4251: 4227: 4185: 4044: 4014: 3994: 3974: 3944: 3909: 3877: 3848: 3812: 3770: 3750: 3730: 3697: 3669: 3637: 3601: 3566: 3538: 3495: 3444: 3287: 3257: 3200: 3103: 2943: 2913: 2881: 2822: 2781: 2755: 2735: 2707: 2676: 2655: 2623: 2595: 2554: 2534: 2504: 2466: 2421: 2392: 2272: 2232: 2197: 2165: 2118: 2088: 2058: 1995: 1967: 1911: 1876: 1842: 1822: 1787: 1739: 1711: 1623: 1555: 1528: 1501: 1481: 1455: 1411: 1380: 1237: 1217: 1191: 1158: 1047: 1023: 931: 895: 875: 855: 790: 733: 662: 642: 622: 592: 559: 539: 519: 489: 469: 445: 415: 385: 330:, a special connection on a Riemannian manifold. 238:. Generalizations of Riemannian manifolds include 90: 18416: 18404: 18389: 18377: 18362: 16534: 13574:is geodesically complete. On the other hand, the 12234:{\displaystyle D_{t}(aX+bY)=a\,D_{t}X+b\,D_{t}Y,} 4849:is not simply connected, there is a covering map 3496:{\displaystyle (\mathbb {R} ^{n},g^{\text{can}})} 1968:{\displaystyle v\mapsto \langle v,\cdot \rangle } 1919:is assumed to be smooth unless stated otherwise. 1140: 1095: 20778: 18338: 18323: 18308: 18296: 18281: 16566:but its sources remain unclear because it lacks 16417:there exists some isometry of the manifold with 10171: 9280: 8414: 6729:Every smooth manifold admits a Riemannian metric 3258:{\displaystyle g_{ij}^{\text{can}}=\delta _{ij}} 19279: 18994: 17266:be a compact Riemannian manifold and denote by 16149:, constructed as left-invariant metrics on the 13764:characterizes geodesically complete manifolds. 10365:{\displaystyle d_{g}:M\times M\to \mathbb {R} } 9928:{\displaystyle d_{g}:M\times M\to \mathbb {R} } 9495:{\displaystyle \gamma (\delta )\in \partial V.} 8110:except for at finitely many points. The length 7029:subordinate to the given atlas, i.e. such that 192:are constructed intrinsically using tools from 19464: 19290:Foundations of differential geometry. Volume I 19041: 17810:{\displaystyle d_{g}:M\times M\to [0,\infty )} 17495:{\displaystyle f\in \operatorname {Diff} (M),} 17186:{\displaystyle g_{x}(u,v)=\langle u,v\rangle } 16735:{\displaystyle g:TM\times TM\to \mathbb {R} ,} 16153:SU(2), are among the simplest examples of the 16104:. Riemannian metrics constructed this way are 11913:{\displaystyle X(t)={\tilde {X}}_{\gamma (t)}} 11761:{\displaystyle X\in {\mathfrak {X}}(\gamma ).} 8841:There must be some precompact open set around 8656:is a metric space, and the metric topology on 8369:{\displaystyle d_{g}:M\times M\to [0,\infty )} 8009:{\displaystyle \gamma '(t)\in T_{\gamma (t)}M} 6748:. The reason is that the proof makes use of a 5221:be two Riemannian manifolds, and consider the 1795:are continuous in any smooth coordinate chart 856:{\displaystyle \|v\|_{p}={\sqrt {g_{p}(v,v)}}} 163:of Euclidean space of any dimension. Although 20509: 19632: 19503: 19053: 15915:group of rotations in three-dimensional space 11084: 11059: 6696:{\displaystyle f_{1}g_{1}+\ldots +f_{k}g_{k}} 6407:. As another example, the Riemannian product 4175: 4121: 939:. A Riemannian metric is a special case of a 19598: 17180: 17168: 17031: 17017: 14353: 14341: 13617: 13599: 13369: 13351: 13017:containing 0 on which a geodesic satisfying 10220: 10174: 9888:is compact, there always exist points where 9646: 9626: 9332: 9283: 9256: 9250: 9171:{\displaystyle g(X,X)\geq \lambda \|X\|^{2}} 9159: 9152: 8482: 8417: 8244: 8223: 8050: 8029: 7000: 6986: 6827: 6794: 4429: 4332: 3211:or equivalently by its coordinate functions 2603:is an isometry (and thus a diffeomorphism). 2059:{\displaystyle (p,v)\mapsto g_{p}(v,\cdot )} 1962: 1950: 1618: 1580: 812: 805: 755: 748: 19120: 18706: 18694: 18005:is a compact Riemannian manifold, then the 17755: 16220:. This can be rephrased in the language of 14656: 13510:if the domain of every maximal geodesic is 11251:{\displaystyle \nabla _{X}Y-\nabla _{Y}X=,} 9524:is at least as large as the restriction of 8764:, the most difficult part is checking that 7899:set of rotations of three-dimensional space 361:Riemannian metrics and Riemannian manifolds 20679:Fundamental theorem of Riemannian geometry 20516: 20502: 19639: 19625: 19130:Comparison theorems in Riemannian geometry 15735:. A Riemannian space form is said to be a 6465:has the Euclidean metric, is isometric to 19565: 19517: 19478: 19443: 18434: 17723: 17030: 17020: 16821: 16725: 16618: 16597:Learn how and when to remove this message 15218:, which has applications to the study of 15008: 14435: 14328: 13955:Specifically, call a smooth vector field 13743: 13639: 13586: 13554: 13466: 13338: 13256: 12494: 12291: 12214: 12194: 11644: 11002: 10898: 10815: 10781: 10655:{\displaystyle (X,Y)\mapsto \nabla _{X}Y} 10358: 9921: 9699: 9649: 9454:{\displaystyle \gamma (\delta )\notin V;} 9044:{\displaystyle {\overline {V}}\subset U.} 8262: 7904: 7853: 7780: 7336: 6474: 6451: 6429: 6415: 6136: 6122: 4788: 4765: 4751: 4707: 4580: 4457: 4343: 3583: 3467: 2898: 2512:not assumed to be a diffeomorphism, is a 1781: 1676: 1624:{\displaystyle \{dx^{1},\ldots ,dx^{n}\}} 1449: 1011: 784: 727: 527:are thought of as the vectors tangent to 19646: 19342: 19174: 19026: 18734: 18722: 18710: 18571: 18275: 18260: 18245: 18057:{\displaystyle \operatorname {Diff} (M)} 17617:{\displaystyle x\in M,u(x)\in T_{f(x)}M} 17433:{\displaystyle \operatorname {Diff} (M)} 17291:{\displaystyle \operatorname {Diff} (M)} 14649:the unit circle, not parallel transport 14573:{\displaystyle dr^{2}+r^{2}d\theta ^{2}} 13939: 13324: 13092:exists, one obtains a geodesic called a 12311:{\displaystyle D_{t}(fX)=f'X+f\,D_{t}X,} 11565:{\displaystyle {\mathfrak {X}}(\gamma )} 9719:, and so it is greater than or equal to 8319:a connected Riemannian manifold, define 4483:. The Riemannian metric this induces on 3520: 1788:{\displaystyle g_{ij}:U\to \mathbb {R} } 1456:{\displaystyle g_{ij}:U\to \mathbb {R} } 364: 257: 36: 18068: 16499:. Every such space is an example of an 15821:-sphere restricts to a group action of 15214:plays a defining role in the theory of 11494:{\displaystyle X(t)\in T_{\gamma (t)}M} 7793:{\displaystyle F:M\to \mathbb {R} ^{N}} 14: 20779: 19542: 19216: 18982: 16894:is a weak Riemannian metric such that 16239:which does not contain any nontrivial 15361:A Riemannian manifold is said to have 14592:This transport is given by the metric 14524:This transport is given by the metric 13306:with the round metric are exactly the 7466:{\displaystyle {\tilde {g}}_{\alpha }} 6885:{\displaystyle U_{\alpha }\subseteq M} 5348:which can be described in a few ways. 1922: 423:, there is an associated vector space 20497: 19620: 19070: 19009: 16299:-invariant Riemannian metrics on the 16173: 15177: 13929: 13314: 13279:The nonconstant maximal geodesics of 10428:Connections, geodesics, and curvature 7844:of the standard Riemannian metric on 6617:are any positive smooth functions on 4877:{\displaystyle {\widetilde {M}}\to M} 19393: 19322:Introduction to Riemannian Manifolds 18682: 18670: 18658: 18064:induces vanishing geodesic distance. 16971:is a strong Riemannian metric, then 16538: 15901:Left-invariant metrics on Lie groups 14973:. The Riemann curvature tensor is a 8440: an admissible curve with  5023:, then the immersion (or embedding) 4779:is a smooth embedded submanifold of 954:The Riemannian metric in coordinates 348:are constraints on the curvature of 108:in three-dimensional space, such as 19316: 18978: 18966: 18643: 18631: 18619: 18607: 18595: 18583: 18559: 18547: 18535: 18523: 18506: 18494: 18482: 18470: 18458: 18446: 18422: 18410: 18398: 18383: 18371: 18356: 18344: 18332: 18317: 18302: 18290: 16380: 16212:of the Riemannian manifold sending 15345: 15167:{\displaystyle \operatorname {tr} } 14789: 14770: 14751: 14732: 14631:{\displaystyle dr^{2}+d\theta ^{2}} 14498:{\displaystyle dr^{2}+d\theta ^{2}} 14459:, while the metric on the right is 13504:with its Levi-Civita connection is 13096:of which every geodesic satisfying 12541:(right), the maximal geodesics are 12100: 12081: 11741: 11548: 10701:{\displaystyle f\in C^{\infty }(M)} 10567: 10548: 10529: 10460: 9868:by any explicit means. In fact, if 6610:{\displaystyle f_{1},\ldots ,f_{k}} 6541:{\displaystyle g_{1},\ldots ,g_{k}} 5105:{\displaystyle {\tilde {g}}=i^{*}g} 2889:denote the standard coordinates on 2882:{\displaystyle x^{1},\ldots ,x^{n}} 1723:Regularity of the Riemannian metric 180:are defined intrinsically by using 24: 17801: 16425:and for which the negation of the 15357:Constant curvature and space forms 15026: 14900: 14884: 14874: 14858: 14848: 14678: 13883:All closed and bounded subsets of 13538:{\displaystyle (-\infty ,\infty )} 13529: 13523: 12565: 12402: 11982: 11651:{\displaystyle f:\to \mathbb {R} } 11329:Covariant derivative along a curve 11215: 11199: 11171: 11136: 11099: 11027: 10934: 10900: 10859: 10817: 10783: 10716: 10684: 10640: 10521: 10477:{\displaystyle {\mathfrak {X}}(M)} 9685: 9483: 9345:. Now, given any admissible curve 8905:be a smooth coordinate chart with 8360: 7621:. It takes the value 0 outside of 7430:{\displaystyle \varphi _{\alpha }} 7390: 7387: 7384: 5290:naturally put a Riemannian metric 4807:{\displaystyle \mathbb {R} ^{n+1}} 4476:{\displaystyle \mathbb {R} ^{n+1}} 3602:{\displaystyle \mathbb {R} ^{n+1}} 3047: 3043: 3002: 2998: 2838: 1347: 1343: 1308: 1304: 1121: 1117: 1076: 1072: 149:differential and integral calculus 25: 20808: 19592: 18138:) implies geodesic completeness. 17876:is a strong Riemannian metric on 16634:{\displaystyle \mathbb {R} ^{n}.} 15382:can be expressed in terms of the 14273:to a vector field parallel along 14167:. to parallel transport a vector 6056:{\displaystyle (U\times V,(x,y))} 5790:{\displaystyle (U\times V,(x,y))} 3645:be a Riemannian manifold and let 2914:{\displaystyle \mathbb {R} ^{n}.} 2631:-dimensional Riemannian manifold 1169:form a basis of the vector space 950:, which is also called a metric. 883:endowed with a Riemannian metric 318:, one of the first concepts of a 286:("remarkable theorem" in Latin). 186:constant scalar curvature metrics 124:, who first conceptualized them. 116:, are all examples of Riemannian 16543: 16391:A connected Riemannian manifold 15896:Riemannian metrics on Lie groups 15745:if the curvature is zero, and a 15741:if the curvature is positive, a 14585: 14517: 13652:{\displaystyle \mathbb {R} ^{2}} 13567:{\displaystyle \mathbb {R} ^{2}} 13269:{\displaystyle \mathbb {R} ^{2}} 12507:{\displaystyle \mathbb {R} ^{n}} 12475: 12466: 11719:{\displaystyle (fX)(t)=f(t)X(t)} 9094:{\displaystyle {\overline {V}},} 7866:{\displaystyle \mathbb {R} ^{N}} 7349:{\displaystyle \mathbb {R} ^{n}} 6956: 6703:is another Riemannian metric on 6498:Positive combinations of metrics 6487:{\displaystyle \mathbb {R} ^{n}} 6006:{\displaystyle {\widetilde {g}}} 5797:is a smooth coordinate chart on 5727:is a smooth coordinate chart on 5675:is a smooth coordinate chart on 5312:{\displaystyle {\widetilde {g}}} 5133: 5124: 4994:already has a Riemannian metric 4959:{\displaystyle {\widetilde {M}}} 4906:{\displaystyle {\widetilde {M}}} 4720:{\displaystyle \mathbb {R} ^{3}} 2205:are two Riemannian manifolds, a 19446:New York Journal of Mathematics 18740: 16084:is the left multiplication map 15767:respectively. Furthermore, the 15334:-sphere, hyperbolic space, and 15222:. A (pseudo-)Riemannian metric 12754:{\displaystyle D_{t}\gamma '=0} 11791:be a smooth vector field along 10057:coincides with the topology on 8831:{\displaystyle d_{g}(p,q)>0} 8589:coincides with the topology on 3510: 3302:which together form the matrix 2823:{\displaystyle \int _{M}dV_{g}} 600:does not come equipped with an 282:). This result is known as the 19679:Differentiable/Smooth manifold 18942: 18829: 18823: 18791: 18785: 18753: 18098: 18086: 18051: 18045: 17992: 17980: 17804: 17792: 17789: 17736: 17730: 17720: 17717: 17711: 17702: 17696: 17690: 17685: 17679: 17655: 17643: 17606: 17600: 17586: 17580: 17542: 17536: 17486: 17480: 17427: 17421: 17285: 17279: 17253: 17241: 17231:is a strong Riemannian metric. 17162: 17150: 17034: 17008: 16817: 16721: 16660: 16535:Infinite-dimensional manifolds 16050: 16047: 16041: 16012: 16006: 15980: 15964: 15952: 15681: 15677: 15635: 15616: 15479: 15421: 15138: 15132: 15120: 15114: 15108: 15096: 15084: 14992: 14980: 14956: 14944: 14916: 14904: 14838: 14826: 14800: 14794: 14784: 14781: 14775: 14762: 14756: 14743: 14737: 14148: 14142: 14113: 14107: 14081: 14078: 14066: 13832: 13813: 13789: 13777: 13722: 13710: 13684: 13672: 13614: 13602: 13532: 13517: 13445: 13433: 13407: 13395: 13366: 13354: 13202: 13199: 13187: 13152: 13146: 13112: 13106: 13073: 13067: 13033: 13027: 12978: 12972: 12938: 12932: 12902:defined on some open interval 12895:{\displaystyle \gamma :I\to M} 12886: 12626: 12623: 12611: 12431: 12420: 12414: 12395: 12389: 12333: 12268: 12259: 12185: 12167: 12111: 12105: 12095: 12092: 12086: 12043: 12040: 12028: 11933: 11905: 11899: 11889: 11876: 11870: 11824: 11752: 11746: 11713: 11707: 11701: 11695: 11686: 11680: 11677: 11668: 11640: 11637: 11625: 11572:of smooth vector fields along 11559: 11553: 11526: 11514: 11483: 11477: 11463: 11457: 11428: 11425: 11413: 11361: 11358: 11346: 11280: 11268: 11242: 11230: 11148: 11126: 11117: 11095: 11079: 11067: 10886: 10880: 10695: 10689: 10636: 10633: 10621: 10578: 10572: 10562: 10559: 10553: 10540: 10534: 10471: 10465: 10432: 10402: 10383: 10354: 10325:is compact, then the function 10312: 10293: 10269: 10250: 10199: 10187: 10165: 10146: 10117: 10098: 10044: 10025: 9997: 9978: 9954: 9942: 9917: 9800: 9781: 9739: 9733: 9691: 9682: 9643: 9637: 9598: 9592: 9563: 9551: 9477: 9471: 9439: 9433: 9373: 9370: 9358: 9329: 9323: 9314: 9308: 9143: 9131: 8921: 8915: 8892: 8880: 8819: 8807: 8747: 8728: 8682: 8663: 8643: 8624: 8576: 8557: 8529: 8510: 8473: 8467: 8452: 8446: 8429: 8423: 8408: 8396: 8363: 8351: 8348: 8305: 8293: 8257: 8251: 8240: 8234: 8202: 8196: 8167: 8164: 8152: 8126: 8120: 8097: 8085: 8063: 8057: 8046: 8040: 8026: 7998: 7992: 7978: 7972: 7941: 7938: 7926: 7775: 7743: 7731: 7676:An alternative proof uses the 7595: 7582: 7527: 7451: 7320:{\displaystyle g^{\text{can}}} 7244: 7202: 7055: 7042: 6948: 6935: 6922: 6823: 6797: 6192: 6167: 6050: 6047: 6035: 6020: 5971: 5959: 5892: 5880: 5784: 5781: 5769: 5754: 5714: 5702: 5662: 5650: 5623: 5597: 5581: 5555: 5539: 5536: 5510: 5504: 5478: 5475: 5393: 5381: 5376: 5364: 5352:Considering the decomposition 5208: 5196: 5176: 5164: 5080: 5039: 5007: 4868: 4836: 4824: 4761: 4414: 4394: 4376: 4362: 4222: 4216: 4170: 4164: 4145: 4139: 4114: 4108: 4094: 4082: 4022:. In general, the formula for 3933: 3927: 3901: 3843: 3831: 3807: 3785: 3661: 3632: 3620: 3490: 3462: 3333: 3312: 3189: 3172: 3154: 3137: 2944:{\displaystyle g^{\text{can}}} 2650: 2638: 2590: 2584: 2578: 2493: 2467:{\displaystyle u,v\in T_{p}M.} 2387: 2384: 2378: 2359: 2353: 2337: 2332: 2326: 2312: 2300: 2224: 2192: 2180: 2160: 2148: 2053: 2041: 2028: 2025: 2013: 1947: 1814: 1802: 1777: 1445: 1270: 1006: 997: 965: 926: 914: 848: 836: 780: 723: 194:partial differential equations 45:of two vectors tangent to the 13: 1: 19567:10.1016/S0001-8708(76)80002-3 19349:Graduate Texts in Mathematics 18227: 17946:is a weak Riemannian metric, 17461:, is defined as follows. Let 16995: 16474:quaternionic projective space 15280:{\displaystyle Ric=\lambda g} 14090:{\displaystyle \gamma :\to M} 13241: 13211:{\displaystyle \gamma :\to M} 13164:{\displaystyle \gamma '(0)=v} 13085:{\displaystyle \gamma '(0)=v} 12990:{\displaystyle \gamma '(0)=v} 12693:{\displaystyle D_{t}\gamma '} 12635:{\displaystyle \gamma :\to M} 12059:, there is a unique operator 12052:{\displaystyle \gamma :\to M} 11370:{\displaystyle \gamma :\to M} 9397:, there must be some minimal 9382:{\displaystyle \gamma :\to M} 8176:{\displaystyle \gamma :\to M} 7950:{\displaystyle \gamma :\to M} 2129: 2003:is a Riemannian metric, then 355: 51:3-dimensional Euclidean space 20606:Raising and lowering indices 19399:Spaces of constant curvature 16196:if for every pair of points 14971:Lie bracket of vector fields 14160:{\displaystyle \gamma (1)=q} 14125:{\displaystyle \gamma (0)=p} 13750:{\displaystyle \mathbb {R} } 13473:{\displaystyle \mathbb {R} } 13124:{\displaystyle \gamma (0)=p} 13045:{\displaystyle \gamma (0)=p} 12950:{\displaystyle \gamma (0)=p} 12451: 12342:{\displaystyle {\tilde {X}}} 11942:{\displaystyle {\tilde {X}}} 11833:{\displaystyle {\tilde {X}}} 10949:{\displaystyle \nabla _{X}Y} 9416:{\displaystyle \delta >0} 9236:{\displaystyle X\in T_{r}M,} 9083: 9027: 8695:agrees with the topology on 7913:is a piecewise smooth curve 7100:{\displaystyle \alpha \in A} 6458:{\displaystyle \mathbb {R} } 5016:{\displaystyle {\tilde {g}}} 3878:{\displaystyle N\subseteq M} 3288:{\displaystyle \delta _{ij}} 2273:{\displaystyle g=f^{\ast }h} 1463:can be put together into an 7: 20385:Classification of manifolds 19606:Encyclopedia of Mathematics 19295:John Wiley & Sons, Inc. 19176:do Carmo, Manfredo Perdigão 18995:Kobayashi & Nomizu 1963 18725:, Section 4.4.3 and p. 399. 18168: 16991:must be a Hilbert manifold. 16507:. As found in the 1950s by 16465:must in fact be symmetric. 15856:Poincaré dodecahedral space 15188:The Ricci curvature tensor 14196:{\displaystyle v\in T_{p}M} 12863:{\displaystyle v\in T_{p}M} 12126:covariant derivative along 10080: 9101:there is a positive number 8078:is defined on the interval 7641:{\displaystyle U_{\alpha }} 7493:{\displaystyle U_{\alpha }} 7327:is the Euclidean metric on 7110:Define a Riemannian metric 6494:with the Euclidean metric. 5115: 3982:is just the restriction of 2833: 2596:{\displaystyle f:U\to f(U)} 2477:One says that a smooth map 1631:of the cotangent bundle as 338:pseudo-Riemannian manifolds 240:pseudo-Riemannian manifolds 159:. The same is true for any 10: 20813: 20627:Pseudo-Riemannian manifold 19063: 19042:Magnani & Tiberio 2020 18196:Pseudo-Riemannian manifold 18032:weak Riemannian metric on 17408:weak Riemannian metric on 17224:{\displaystyle x,u,v\in H} 16517:quaternion-Kähler geometry 16384: 16316:which are invariant under 16262:within the Lie algebra of 15805:thereof in which only the 15349: 15181: 15012: 14660: 13933: 13318: 12870:, there exists a geodesic 12455: 11379:smooth vector field along 11006: 10436: 9262:{\displaystyle \|\cdot \|} 8962:{\displaystyle q\notin U.} 8132:{\displaystyle L(\gamma )} 6266:For example, consider the 5819:{\displaystyle M\times N.} 5341:{\displaystyle M\times N,} 3813:{\displaystyle (N,i^{*}g)} 3758:is a Riemannian metric on 3514: 1926: 1489:matrix-valued function on 253: 29: 20756:Geometrization conjecture 20743: 20717: 20671: 20640: 20536: 20461:over commutative algebras 20418: 20377: 20310: 20207: 20103: 20050: 20041: 19877: 19800: 19739: 19659: 19361:10.1007/978-3-319-26654-1 19247:10.1007/978-0-8176-4583-0 19088:10.1007/978-3-540-74311-8 19054:Michor & Mumford 2005 16208:, there is some isometry 14053:identically. Fix a curve 13925:is geodesically complete. 13838:{\displaystyle (M,d_{g})} 11975:Given a fixed connection 10408:{\displaystyle (M,d_{g})} 10318:{\displaystyle (M,d_{g})} 10275:{\displaystyle (M,d_{g})} 10123:{\displaystyle (M,d_{g})} 10050:{\displaystyle (M,d_{g})} 10003:{\displaystyle (M,d_{g})} 9806:{\displaystyle (M,d_{g})} 8753:{\displaystyle (M,d_{g})} 8688:{\displaystyle (M,d_{g})} 8649:{\displaystyle (M,d_{g})} 8582:{\displaystyle (M,d_{g})} 8535:{\displaystyle (M,d_{g})} 7720:. On the other hand, the 7678:Whitney embedding theorem 7549:is defined and smooth on 6787:be a smooth manifold and 6548:be Riemannian metrics on 5932:be the representation of 5853:be the representation of 5250:. The Riemannian metrics 5243:{\displaystyle M\times N} 4814:with its standard metric. 4228:{\displaystyle di_{p}(v)} 4002:to vectors tangent along 2606: 2542:has an open neighborhood 2505:{\displaystyle f:M\to N,} 1482:{\displaystyle n\times n} 20177:Riemann curvature tensor 19343:Petersen, Peter (2016). 18232: 16921:induces the topology on 16872:strong Riemannian metric 16643:topological vector space 16552:This section includes a 16482:complex hyperbolic space 16439:Riemann curvature tensor 16369:into the Lie algebra of 15380:Riemann curvature tensor 15336:complex projective space 15300:{\displaystyle \lambda } 14714:Riemann curvature tensor 14663:Riemann curvature tensor 14657:Riemann curvature tensor 14046:{\displaystyle D_{t}V=0} 13484:The Riemannian manifold 11440:{\displaystyle X:\to TM} 10958:covariant derivative of 9114:{\displaystyle \lambda } 8762:axioms of a metric space 7668:is a Riemannian metric. 5984:. The representation of 5048:{\displaystyle i:N\to M} 3910:{\displaystyle i:N\to M} 3670:{\displaystyle i:N\to M} 3455:The Riemannian manifold 2233:{\displaystyle f:M\to N} 2096:to the cotangent bundle 2073:from the tangent bundle 1895:There are situations in 346:Einstein field equations 248:sub-Riemannian manifolds 30:Not to be confused with 19553:Advances in Mathematics 19240:Birkhäuser Boston, Inc. 18707:Cheeger & Ebin 2008 18695:Cheeger & Ebin 2008 18191:Sub-Riemannian manifold 17126:{\displaystyle T_{x}H.} 17073:{\displaystyle x\in H,} 16861:{\displaystyle T_{x}M.} 16835:is an inner product on 16581:more precise citations. 15706:has constant curvature 15032:{\displaystyle \nabla } 14684:{\displaystyle \nabla } 14286:{\displaystyle \gamma } 14246:{\displaystyle \gamma } 14009:{\displaystyle \gamma } 13988:{\displaystyle \gamma } 13728:{\displaystyle v=(1,1)} 13690:{\displaystyle p=(1,1)} 13451:{\displaystyle v=(1,1)} 13413:{\displaystyle p=(1,1)} 13231:{\displaystyle \gamma } 12922:containing 0 such that 12794:{\displaystyle \gamma } 12713:{\displaystyle \gamma } 12657:{\displaystyle \gamma } 12642:be a smooth curve. The 12571:{\displaystyle \nabla } 12139:{\displaystyle \gamma } 11988:{\displaystyle \nabla } 11853:{\displaystyle \gamma } 11804:{\displaystyle \gamma } 11605:{\displaystyle \gamma } 11585:{\displaystyle \gamma } 11392:{\displaystyle \gamma } 11177:{\displaystyle \nabla } 11033:{\displaystyle \nabla } 9537:{\displaystyle \gamma } 9517:{\displaystyle \gamma } 8845:which every curve from 8783:{\displaystyle p\neq q} 8139:of an admissible curve 1509:. The requirement that 214:. Applications include 190:Kähler–Einstein metrics 20766:Uniformization theorem 20699:Nash embedding theorem 20632:Riemannian volume form 20591:Levi-Civita connection 19969:Manifold with boundary 19684:Differential structure 19599:L.A. Sidorov (2001) , 19403:AMS Chelsea Publishing 19134:AMS Chelsea Publishing 18952: 18159: 18132: 18105: 18058: 18026: 17999: 17967: 17940: 17917: 17890: 17870: 17838: 17811: 17756:Metric space structure 17743: 17618: 17552: 17496: 17455: 17434: 17402: 17374: 17347: 17327: 17292: 17260: 17225: 17187: 17127: 17094: 17074: 17041: 16985: 16965: 16945: 16944:{\displaystyle T_{x}M} 16915: 16888: 16862: 16829: 16762: 16761:{\displaystyle x\in M} 16736: 16687: 16671:weak Riemannian metric 16635: 16486:Grassmannian manifolds 16470:real projective spaces 16235:with compact subgroup 16178:A Riemannian manifold 16124:adjoint representation 16060: 15697: 15498:This implies that the 15489: 15328: 15301: 15281: 15236: 15208: 15168: 15145: 15062:Ricci curvature tensor 15053: 15033: 15009:Ricci curvature tensor 14999: 14963: 14928: 14807: 14705: 14685: 14632: 14574: 14499: 14453: 14360: 14307: 14287: 14267: 14247: 14227: 14226:{\displaystyle T_{q}M} 14197: 14161: 14126: 14091: 14047: 14010: 13989: 13969: 13945: 13919: 13897: 13870: 13839: 13796: 13751: 13729: 13691: 13653: 13624: 13568: 13539: 13498: 13481: 13474: 13452: 13414: 13376: 13300: 13270: 13232: 13212: 13165: 13125: 13086: 13046: 13011: 12991: 12951: 12916: 12896: 12864: 12828: 12827:{\displaystyle p\in M} 12795: 12775: 12755: 12714: 12694: 12658: 12636: 12592: 12572: 12535: 12508: 12441: 12363: 12343: 12312: 12235: 12140: 12118: 12053: 12009: 11989: 11965: 11943: 11914: 11854: 11834: 11805: 11785: 11762: 11720: 11652: 11606: 11586: 11566: 11533: 11495: 11441: 11393: 11371: 11319: 11302:Levi-Civita connection 11287: 11252: 11178: 11155: 11034: 11015:Levi-Civita connection 11009:Levi-Civita connection 11003:Levi-Civita connection 10992: 10972: 10950: 10916: 10843: 10702: 10656: 10608: 10585: 10502: 10478: 10409: 10366: 10319: 10276: 10230: 10124: 10071: 10051: 10004: 9961: 9929: 9882: 9862: 9827: 9807: 9762: 9713: 9663: 9573: 9538: 9518: 9496: 9455: 9417: 9383: 9339: 9263: 9237: 9198: 9197:{\displaystyle r\in V} 9172: 9115: 9095: 9065: 9045: 9009: 8989: 8988:{\displaystyle V\ni x} 8963: 8934: 8933:{\displaystyle x(p)=0} 8899: 8832: 8784: 8754: 8709: 8689: 8650: 8603: 8583: 8536: 8492: 8370: 8312: 8276: 8177: 8133: 8104: 8072: 8010: 7951: 7905:Metric space structure 7890: 7867: 7838: 7814: 7794: 7759:there is an embedding 7753: 7752:{\displaystyle (M,g),} 7722:Nash embedding theorem 7714: 7694: 7662: 7642: 7615: 7563: 7543: 7494: 7467: 7431: 7400: 7350: 7321: 7291: 7218: 7144: 7124: 7101: 7075: 7019: 6970: 6886: 6846: 6781: 6720: 6697: 6631: 6611: 6565: 6542: 6488: 6459: 6437: 6395: 6368: 6341: 6281: 6255: 6154: 6057: 6007: 5978: 5946: 5926: 5899: 5867: 5847: 5820: 5791: 5741: 5721: 5689: 5669: 5633: 5435: 5342: 5313: 5284: 5264: 5244: 5215: 5183: 5106: 5049: 5017: 4988: 4974:On the other hand, if 4960: 4931: 4907: 4878: 4843: 4808: 4773: 4721: 4686: 4549: 4504: 4477: 4436: 4303: 4276: 4253: 4229: 4187: 4046: 4045:{\displaystyle i^{*}g} 4016: 3996: 3976: 3975:{\displaystyle i^{*}g} 3946: 3945:{\displaystyle i(x)=x} 3911: 3879: 3850: 3822:Riemannian submanifold 3814: 3772: 3752: 3732: 3731:{\displaystyle i^{*}g} 3699: 3671: 3639: 3610: 3603: 3568: 3540: 3517:Riemannian submanifold 3497: 3446: 3289: 3259: 3202: 3105: 2945: 2915: 2883: 2824: 2783: 2757: 2737: 2717:Riemannian volume form 2709: 2708:{\displaystyle dV_{g}} 2678: 2657: 2625: 2597: 2556: 2536: 2535:{\displaystyle p\in M} 2506: 2468: 2423: 2422:{\displaystyle p\in M} 2394: 2274: 2234: 2199: 2167: 2120: 2119:{\displaystyle T^{*}M} 2090: 2060: 1997: 1969: 1913: 1888:Riemannian metrics or 1878: 1877:{\displaystyle g_{ij}} 1844: 1830:The Riemannian metric 1824: 1823:{\displaystyle (U,x).} 1789: 1741: 1727:The Riemannian metric 1713: 1625: 1557: 1530: 1503: 1483: 1457: 1413: 1382: 1239: 1219: 1218:{\displaystyle p\in U} 1193: 1192:{\displaystyle T_{p}M} 1160: 1049: 1025: 933: 897: 877: 857: 792: 735: 664: 644: 624: 594: 593:{\displaystyle T_{p}M} 561: 541: 521: 520:{\displaystyle T_{p}M} 491: 471: 447: 446:{\displaystyle T_{p}M} 417: 416:{\displaystyle p\in M} 387: 370: 328:Levi-Civita connection 280:first fundamental form 267: 92: 58: 20797:Differential geometry 19467:Proc. Amer. Math. Soc 18953: 18160: 18133: 18131:{\displaystyle d_{g}} 18106: 18104:{\displaystyle (M,g)} 18059: 18027: 18025:{\displaystyle L^{2}} 18000: 17998:{\displaystyle (M,g)} 17968: 17966:{\displaystyle d_{g}} 17941: 17918: 17916:{\displaystyle d_{g}} 17891: 17871: 17839: 17837:{\displaystyle d_{g}} 17812: 17744: 17619: 17553: 17497: 17456: 17435: 17403: 17401:{\displaystyle L^{2}} 17375: 17348: 17328: 17293: 17261: 17259:{\displaystyle (M,g)} 17226: 17188: 17128: 17095: 17075: 17042: 16986: 16966: 16946: 16916: 16914:{\displaystyle g_{x}} 16889: 16863: 16830: 16763: 16737: 16693:is a smooth function 16688: 16636: 16361:, the Lie algebra of 16249:complemented subspace 16151:special unitary group 16061: 15848:real projective space 15747:hyperbolic space form 15733:geodesically complete 15724:Riemannian space form 15698: 15490: 15329: 15302: 15282: 15237: 15209: 15169: 15146: 15054: 15034: 15000: 14998:{\displaystyle (1,3)} 14964: 14929: 14808: 14706: 14686: 14633: 14575: 14500: 14454: 14361: 14308: 14288: 14268: 14248: 14228: 14198: 14162: 14127: 14092: 14048: 14011: 13990: 13975:along a smooth curve 13970: 13943: 13920: 13898: 13871: 13869:{\displaystyle d_{g}} 13840: 13797: 13795:{\displaystyle (M,g)} 13752: 13735:does not have domain 13730: 13692: 13654: 13625: 13569: 13540: 13507:geodesically complete 13499: 13475: 13458:does not have domain 13453: 13415: 13377: 13328: 13301: 13299:{\displaystyle S^{2}} 13271: 13233: 13213: 13166: 13126: 13087: 13047: 13012: 12992: 12952: 12917: 12897: 12865: 12829: 12796: 12776: 12756: 12715: 12695: 12659: 12637: 12593: 12573: 12536: 12534:{\displaystyle S^{n}} 12509: 12442: 12364: 12344: 12313: 12236: 12141: 12119: 12054: 12010: 11990: 11966: 11944: 11915: 11855: 11835: 11806: 11786: 11763: 11721: 11653: 11612:by a smooth function 11607: 11587: 11567: 11534: 11532:{\displaystyle t\in } 11496: 11442: 11394: 11377:is a smooth curve, a 11372: 11320: 11288: 11253: 11179: 11156: 11035: 10993: 10973: 10951: 10917: 10844: 10703: 10657: 10609: 10586: 10503: 10479: 10410: 10367: 10320: 10277: 10231: 10125: 10072: 10052: 10005: 9962: 9960:{\displaystyle (M,g)} 9930: 9883: 9863: 9861:{\displaystyle d_{g}} 9828: 9808: 9763: 9714: 9664: 9574: 9539: 9519: 9497: 9456: 9418: 9384: 9340: 9264: 9238: 9199: 9173: 9116: 9096: 9066: 9046: 9010: 8995:be an open subset of 8990: 8964: 8935: 8900: 8898:{\displaystyle (U,x)} 8833: 8785: 8760:satisfies all of the 8755: 8710: 8690: 8651: 8604: 8584: 8537: 8493: 8371: 8313: 8311:{\displaystyle (M,g)} 8277: 8178: 8134: 8105: 8073: 8011: 7952: 7891: 7868: 7839: 7815: 7795: 7754: 7715: 7695: 7663: 7643: 7616: 7564: 7544: 7495: 7468: 7432: 7401: 7351: 7322: 7292: 7219: 7145: 7125: 7102: 7076: 7020: 6971: 6892:are open subsets and 6887: 6847: 6782: 6721: 6698: 6632: 6612: 6566: 6543: 6489: 6460: 6443:, where each copy of 6438: 6396: 6394:{\displaystyle T^{n}} 6369: 6367:{\displaystyle S^{1}} 6342: 6282: 6256: 6155: 6058: 6008: 5979: 5977:{\displaystyle (V,y)} 5947: 5927: 5925:{\displaystyle h_{V}} 5900: 5898:{\displaystyle (U,x)} 5868: 5848: 5846:{\displaystyle g_{U}} 5821: 5792: 5742: 5722: 5720:{\displaystyle (V,y)} 5690: 5670: 5668:{\displaystyle (U,x)} 5634: 5436: 5343: 5314: 5285: 5265: 5245: 5216: 5214:{\displaystyle (N,h)} 5184: 5182:{\displaystyle (M,g)} 5107: 5050: 5018: 4989: 4968:smooth covering space 4961: 4932: 4908: 4879: 4844: 4842:{\displaystyle (M,g)} 4809: 4774: 4736:of a smooth function 4722: 4687: 4550: 4548:{\displaystyle a,b,c} 4505: 4503:{\displaystyle S^{n}} 4478: 4437: 4304: 4277: 4254: 4230: 4188: 4047: 4017: 3997: 3977: 3947: 3912: 3880: 3851: 3849:{\displaystyle (M,g)} 3815: 3773: 3753: 3733: 3700: 3672: 3640: 3638:{\displaystyle (M,g)} 3604: 3569: 3567:{\displaystyle S^{n}} 3541: 3524: 3498: 3447: 3290: 3260: 3203: 3106: 2946: 2916: 2884: 2825: 2784: 2758: 2738: 2710: 2679: 2658: 2656:{\displaystyle (M,g)} 2626: 2598: 2557: 2537: 2507: 2469: 2424: 2395: 2275: 2235: 2200: 2198:{\displaystyle (N,h)} 2168: 2166:{\displaystyle (M,g)} 2121: 2091: 2071:smooth vector bundles 2061: 1998: 1970: 1914: 1879: 1845: 1825: 1790: 1742: 1714: 1626: 1558: 1531: 1529:{\displaystyle g_{p}} 1504: 1484: 1458: 1414: 1412:{\displaystyle n^{2}} 1383: 1240: 1220: 1194: 1161: 1050: 1026: 934: 932:{\displaystyle (M,g)} 898: 878: 858: 793: 736: 665: 645: 625: 595: 562: 542: 522: 492: 472: 448: 418: 388: 368: 261: 93: 63:differential geometry 40: 20792:Riemannian manifolds 20689:Gauss–Bonnet theorem 20596:Covariant derivative 20116:Covariant derivative 19667:Topological manifold 19281:Kobayashi, Shoshichi 18750: 18149: 18115: 18083: 18036: 18009: 17977: 17950: 17930: 17900: 17880: 17860: 17821: 17764: 17630: 17562: 17505: 17465: 17445: 17412: 17385: 17361: 17346:{\displaystyle \mu } 17337: 17314: 17270: 17238: 17197: 17137: 17104: 17084: 17055: 17005: 16975: 16955: 16925: 16898: 16878: 16839: 16772: 16746: 16697: 16677: 16613: 16069:where for arbitrary 15939: 15769:Killing–Hopf theorem 15743:Euclidean space form 15738:spherical space form 15563: 15393: 15318: 15291: 15256: 15226: 15192: 15158: 15072: 15043: 15023: 14977: 14941: 14820: 14721: 14695: 14675: 14596: 14528: 14463: 14374: 14323: 14297: 14277: 14257: 14237: 14207: 14171: 14136: 14101: 14057: 14021: 14000: 13979: 13959: 13909: 13887: 13853: 13810: 13774: 13739: 13701: 13663: 13634: 13581: 13549: 13514: 13488: 13462: 13424: 13386: 13333: 13329:The punctured plane 13283: 13251: 13222: 13178: 13135: 13100: 13056: 13021: 13001: 12961: 12926: 12906: 12874: 12838: 12812: 12785: 12765: 12724: 12704: 12669: 12665:is the vector field 12648: 12602: 12582: 12562: 12518: 12489: 12373: 12353: 12324: 12246: 12154: 12130: 12063: 12019: 11999: 11979: 11955: 11924: 11864: 11844: 11815: 11795: 11775: 11730: 11665: 11616: 11596: 11576: 11543: 11505: 11451: 11404: 11383: 11337: 11309: 11265: 11195: 11168: 11051: 11024: 10982: 10962: 10930: 10855: 10712: 10670: 10618: 10598: 10518: 10492: 10484:denote the space of 10455: 10380: 10329: 10290: 10247: 10137: 10095: 10091:of the metric space 10061: 10022: 9975: 9939: 9892: 9872: 9845: 9817: 9778: 9727: 9676: 9586: 9548: 9528: 9508: 9465: 9427: 9401: 9349: 9277: 9247: 9208: 9182: 9125: 9105: 9075: 9055: 9019: 8999: 8973: 8944: 8909: 8877: 8794: 8768: 8725: 8699: 8660: 8621: 8593: 8554: 8507: 8383: 8323: 8290: 8190: 8143: 8114: 8082: 8020: 7961: 7917: 7877: 7848: 7828: 7804: 7763: 7728: 7704: 7684: 7652: 7625: 7573: 7553: 7504: 7477: 7441: 7414: 7360: 7331: 7304: 7234: 7157: 7134: 7114: 7085: 7033: 7025:be a differentiable 6983: 6896: 6863: 6791: 6771: 6707: 6641: 6621: 6575: 6552: 6506: 6469: 6447: 6411: 6378: 6351: 6292: 6271: 6164: 6069: 6017: 5988: 5956: 5936: 5909: 5877: 5857: 5830: 5801: 5751: 5731: 5699: 5679: 5647: 5447: 5356: 5323: 5294: 5274: 5254: 5228: 5193: 5161: 5071: 5027: 4998: 4978: 4941: 4921: 4888: 4853: 4821: 4783: 4740: 4702: 4564: 4527: 4487: 4452: 4316: 4293: 4263: 4243: 4200: 4059: 4026: 4006: 3986: 3956: 3921: 3889: 3863: 3828: 3782: 3762: 3742: 3712: 3689: 3683:embedded submanifold 3679:immersed submanifold 3649: 3617: 3578: 3551: 3530: 3459: 3309: 3269: 3218: 3121: 2958: 2928: 2893: 2847: 2794: 2773: 2747: 2727: 2689: 2668: 2635: 2615: 2566: 2546: 2520: 2481: 2433: 2407: 2287: 2248: 2212: 2177: 2145: 2100: 2077: 2069:is a isomorphism of 2010: 1987: 1941: 1903: 1892:Riemannian metrics. 1858: 1834: 1799: 1755: 1731: 1638: 1577: 1547: 1513: 1493: 1467: 1423: 1396: 1252: 1229: 1203: 1173: 1062: 1039: 962: 911: 887: 867: 863:. A smooth manifold 802: 745: 678: 654: 634: 614: 574: 551: 531: 501: 481: 461: 427: 401: 377: 344:. Specifically, the 274:discovered that the 272:Carl Friedrich Gauss 82: 20787:Riemannian geometry 20761:Poincaré conjecture 20622:Riemannian manifold 20610:Musical isomorphism 20525:Riemannian geometry 20150:Exterior derivative 19752:Atiyah–Singer index 19701:Riemannian manifold 19601:"Riemannian metric" 19345:Riemannian geometry 19293:. New York–London: 19180:Riemannian geometry 18697:, Proposition 3.18. 18685:, Chapters 2 and 3. 18673:, Chapters 2 and 7. 18622:, pp. 196–197. 18586:, pp. 105–110. 18574:, pp. 146–147. 18509:, pp. 103–104. 18485:, pp. 101–102. 18461:, pp. 122–123. 18211:Symplectic manifold 18181:Riemannian geometry 16505:Riemannian holonomy 16409:if for every point 15890:hyperbolic geometry 15798:. Given any finite 15752:hyperbolic manifold 15676: 15652: 15613: 15586: 15372:sectional curvature 15340:Fubini-Study metric 15248:Einstein's equation 15207:{\displaystyle Ric} 12485:In Euclidean space 12349:is an extension of 12015:and a smooth curve 11042:preserve the metric 10666:For every function 10510:(affine) connection 10445:(affine) connection 9625: 9071:and compactness of 8873:To be precise, let 8222: 7473:is only defined on 7377: 7273: 6013:in the coordinates 5064:isometric embedding 5058:isometric immersion 3332: 3238: 1929:Musical isomorphism 1923:Musical isomorphism 905:Riemannian manifold 336:used the theory of 200:Riemannian geometry 67:Riemannian manifold 20751:General relativity 20694:Hopf–Rinow theorem 20641:Types of manifolds 20617:Parallel transport 20456:Secondary calculus 20410:Singularity theory 20365:Parallel transport 20133:De Rham cohomology 19772:Generalized Stokes 19489:10.1090/proc/14986 19076:Einstein manifolds 18948: 18709:, Corollary 3.19; 18206:Hermitian manifold 18155: 18128: 18101: 18069:Hopf–Rinow theorem 18054: 18022: 17995: 17963: 17936: 17913: 17886: 17866: 17834: 17807: 17739: 17614: 17548: 17492: 17451: 17430: 17398: 17373:{\displaystyle M.} 17370: 17343: 17326:{\displaystyle M.} 17323: 17288: 17256: 17221: 17183: 17123: 17090: 17070: 17037: 16981: 16961: 16941: 16911: 16884: 16858: 16825: 16758: 16742:such that for any 16732: 16683: 16631: 16554:list of references 16453:), are said to be 16451:constant curvature 16337:for every element 16174:Homogeneous spaces 16056: 15693: 15662: 15638: 15599: 15572: 15485: 15374:equals the number 15364:constant curvature 15324: 15297: 15287:for some constant 15277: 15232: 15216:Einstein manifolds 15204: 15178:Einstein manifolds 15164: 15141: 15049: 15029: 14995: 14959: 14924: 14803: 14701: 14681: 14628: 14570: 14495: 14449: 14356: 14303: 14283: 14263: 14243: 14223: 14193: 14157: 14122: 14087: 14043: 14006: 13985: 13965: 13950:Parallel transport 13946: 13936:Parallel transport 13930:Parallel transport 13915: 13893: 13866: 13835: 13792: 13762:Hopf–Rinow theorem 13747: 13725: 13687: 13649: 13620: 13564: 13535: 13494: 13482: 13470: 13448: 13410: 13372: 13321:Hopf–Rinow theorem 13315:Hopf–Rinow theorem 13296: 13266: 13228: 13208: 13171:is a restriction. 13161: 13121: 13082: 13042: 13007: 12987: 12947: 12912: 12892: 12860: 12824: 12791: 12771: 12751: 12710: 12690: 12654: 12632: 12588: 12568: 12531: 12504: 12437: 12359: 12339: 12308: 12231: 12136: 12114: 12049: 12005: 11985: 11961: 11939: 11910: 11850: 11830: 11801: 11781: 11758: 11716: 11648: 11602: 11582: 11562: 11529: 11491: 11437: 11389: 11367: 11315: 11283: 11248: 11174: 11151: 11030: 10988: 10968: 10946: 10912: 10839: 10698: 10652: 10614:is a bilinear map 10604: 10581: 10498: 10474: 10405: 10362: 10315: 10272: 10241:Hopf–Rinow theorem 10226: 10120: 10067: 10047: 10000: 9957: 9925: 9878: 9858: 9823: 9803: 9758: 9709: 9659: 9611: 9569: 9534: 9514: 9492: 9451: 9413: 9379: 9335: 9259: 9233: 9194: 9168: 9111: 9091: 9061: 9041: 9005: 8985: 8959: 8930: 8895: 8828: 8780: 8750: 8721:In verifying that 8705: 8685: 8646: 8617:Proof sketch that 8599: 8579: 8532: 8488: 8366: 8308: 8272: 8208: 8173: 8129: 8100: 8068: 8006: 7947: 7889:{\displaystyle g.} 7886: 7863: 7834: 7810: 7790: 7749: 7710: 7690: 7658: 7638: 7611: 7559: 7539: 7490: 7463: 7427: 7396: 7363: 7346: 7317: 7287: 7259: 7214: 7181: 7140: 7120: 7097: 7071: 7027:partition of unity 7015: 6966: 6882: 6842: 6777: 6750:partition of unity 6719:{\displaystyle M.} 6716: 6693: 6627: 6607: 6564:{\displaystyle M.} 6561: 6538: 6484: 6455: 6433: 6391: 6364: 6347:. If each copy of 6337: 6277: 6251: 6242: 6150: 6099: 6053: 6003: 5974: 5942: 5922: 5895: 5863: 5843: 5816: 5787: 5737: 5717: 5685: 5665: 5629: 5431: 5338: 5309: 5280: 5260: 5240: 5211: 5179: 5102: 5045: 5013: 4984: 4956: 4927: 4903: 4874: 4839: 4804: 4769: 4717: 4682: 4545: 4500: 4473: 4432: 4299: 4275:{\displaystyle i.} 4272: 4249: 4225: 4183: 4042: 4012: 3992: 3972: 3942: 3907: 3875: 3859:In the case where 3846: 3810: 3768: 3748: 3728: 3695: 3667: 3635: 3611: 3599: 3564: 3536: 3493: 3442: 3433: 3315: 3285: 3255: 3221: 3198: 3101: 3080: 3030: 2985: 2941: 2911: 2879: 2820: 2779: 2753: 2733: 2705: 2674: 2653: 2621: 2593: 2552: 2532: 2502: 2464: 2419: 2390: 2270: 2230: 2195: 2163: 2116: 2089:{\displaystyle TM} 2086: 2056: 1993: 1965: 1909: 1897:geometric analysis 1874: 1854:if its components 1840: 1820: 1785: 1751:if its components 1737: 1709: 1662: 1621: 1553: 1526: 1499: 1479: 1453: 1409: 1378: 1235: 1215: 1189: 1156: 1045: 1021: 929: 893: 873: 853: 788: 731: 660: 640: 620: 590: 557: 537: 517: 487: 467: 443: 413: 383: 371: 342:general relativity 276:Gaussian curvature 268: 220:general relativity 212:algebraic geometry 204:geometric topology 178:homogeneous spaces 88: 59: 20774: 20773: 20491: 20490: 20373: 20372: 20138:Differential form 19792:Whitney embedding 19726:Differential form 19420:978-0-8218-5282-8 19370:978-3-319-26652-7 19335:978-3-319-91754-2 19193:978-0-8176-3490-2 19184:Birkhäuser Boston 19151:978-0-8218-4417-5 18997:, Theorem IV.4.5. 18449:, pp. 89–91. 18359:, pp. 12–13. 18248:, pp. 35–36. 18221:Einstein manifold 18158:{\displaystyle g} 17939:{\displaystyle g} 17889:{\displaystyle M} 17869:{\displaystyle g} 17846:geodesic distance 17454:{\displaystyle G} 17302:) and in fact, a 17093:{\displaystyle H} 17080:one can identify 16984:{\displaystyle M} 16964:{\displaystyle g} 16887:{\displaystyle M} 16686:{\displaystyle M} 16655:Hilbert manifolds 16607: 16606: 16599: 16501:Einstein manifold 16455:locally symmetric 16168:abelian Lie group 16164:compact Lie group 15886:Teichmüller space 15827:quotient manifold 15781:quotient manifold 15777:covering manifold 15712:locally isometric 15691: 15633: 15550:Einstein manifold 15327:{\displaystyle n} 15312:Einstein manifold 15235:{\displaystyle g} 15184:Einstein manifold 15052:{\displaystyle M} 15019:Fix a connection 14704:{\displaystyle M} 14671:Fix a connection 14368:polar coordinates 14306:{\displaystyle q} 14266:{\displaystyle v} 13968:{\displaystyle V} 13918:{\displaystyle M} 13896:{\displaystyle M} 13806:The metric space 13497:{\displaystyle M} 13010:{\displaystyle I} 12915:{\displaystyle I} 12774:{\displaystyle t} 12591:{\displaystyle M} 12558:Fix a connection 12434: 12362:{\displaystyle X} 12336: 12008:{\displaystyle M} 11964:{\displaystyle X} 11936: 11892: 11827: 11784:{\displaystyle X} 11318:{\displaystyle g} 10991:{\displaystyle X} 10971:{\displaystyle Y} 10851:The product rule 10607:{\displaystyle M} 10501:{\displaystyle M} 10439:Affine connection 10070:{\displaystyle M} 9967:is an ellipsoid. 9881:{\displaystyle M} 9838: 9837: 9826:{\displaystyle M} 9750: 9723:. So we conclude 9609: 9572:{\displaystyle .} 9086: 9064:{\displaystyle g} 9051:By continuity of 9030: 9008:{\displaystyle U} 8858:, any curve from 8708:{\displaystyle M} 8602:{\displaystyle M} 8441: 7837:{\displaystyle F} 7813:{\displaystyle N} 7713:{\displaystyle M} 7693:{\displaystyle M} 7673: 7672: 7661:{\displaystyle g} 7562:{\displaystyle M} 7530: 7454: 7314: 7281: 7247: 7205: 7166: 7143:{\displaystyle M} 7123:{\displaystyle g} 6780:{\displaystyle M} 6630:{\displaystyle M} 6280:{\displaystyle n} 6180: 6110: 6087: 6081: 6000: 5945:{\displaystyle h} 5866:{\displaystyle g} 5740:{\displaystyle N} 5688:{\displaystyle M} 5460: 5306: 5283:{\displaystyle h} 5263:{\displaystyle g} 5083: 5010: 4987:{\displaystyle N} 4953: 4930:{\displaystyle M} 4900: 4865: 4669: 4642: 4615: 4523:Fix real numbers 4302:{\displaystyle n} 4252:{\displaystyle v} 4015:{\displaystyle N} 3995:{\displaystyle g} 3771:{\displaystyle N} 3751:{\displaystyle g} 3698:{\displaystyle M} 3539:{\displaystyle n} 3487: 3330: 3236: 3131: 3071: 3061: 3021: 3016: 2976: 2968: 2938: 2782:{\displaystyle M} 2756:{\displaystyle M} 2736:{\displaystyle M} 2677:{\displaystyle n} 2624:{\displaystyle n} 2555:{\displaystyle U} 2141:Specifically, if 1996:{\displaystyle g} 1912:{\displaystyle g} 1843:{\displaystyle g} 1740:{\displaystyle g} 1647: 1556:{\displaystyle p} 1541:positive-definite 1502:{\displaystyle U} 1361: 1322: 1238:{\displaystyle p} 1135: 1090: 1048:{\displaystyle M} 1033:local coordinates 896:{\displaystyle g} 876:{\displaystyle M} 851: 672:positive-definite 663:{\displaystyle p} 643:{\displaystyle M} 623:{\displaystyle g} 609:Riemannian metric 560:{\displaystyle p} 540:{\displaystyle M} 490:{\displaystyle p} 470:{\displaystyle M} 397:. For each point 386:{\displaystyle M} 316:Cartan connection 284:Theorema Egregium 244:Finsler manifolds 228:computer graphics 129:Riemannian metric 91:{\displaystyle n} 18:Riemannian metric 16:(Redirected from 20804: 20518: 20511: 20504: 20495: 20494: 20483:Stratified space 20441:Fréchet manifold 20155:Interior product 20048: 20047: 19745: 19641: 19634: 19627: 19618: 19617: 19613: 19587: 19569: 19539: 19521: 19500: 19482: 19473:(1): 3653–3656. 19461: 19440: 19411:10.1090/chel/372 19390: 19339: 19313: 19276: 19213: 19171: 19142:10.1090/chel/365 19117: 19072:Besse, Arthur L. 19057: 19051: 19045: 19039: 19030: 19024: 19013: 19007: 18998: 18992: 18986: 18976: 18970: 18969:, Example 3.16f. 18964: 18958: 18957: 18955: 18954: 18949: 18941: 18940: 18931: 18930: 18918: 18917: 18902: 18901: 18889: 18888: 18864: 18863: 18854: 18853: 18841: 18840: 18822: 18821: 18803: 18802: 18784: 18783: 18765: 18764: 18744: 18738: 18732: 18726: 18720: 18714: 18704: 18698: 18692: 18686: 18680: 18674: 18668: 18662: 18656: 18647: 18641: 18635: 18629: 18623: 18617: 18611: 18605: 18599: 18593: 18587: 18581: 18575: 18569: 18563: 18557: 18551: 18545: 18539: 18533: 18527: 18521: 18510: 18504: 18498: 18492: 18486: 18480: 18474: 18468: 18462: 18456: 18450: 18444: 18438: 18432: 18426: 18420: 18414: 18408: 18402: 18396: 18387: 18381: 18375: 18369: 18360: 18354: 18348: 18342: 18336: 18330: 18321: 18315: 18306: 18300: 18294: 18288: 18279: 18273: 18264: 18258: 18249: 18243: 18186:Finsler manifold 18164: 18162: 18161: 18156: 18137: 18135: 18134: 18129: 18127: 18126: 18110: 18108: 18107: 18102: 18063: 18061: 18060: 18055: 18031: 18029: 18028: 18023: 18021: 18020: 18004: 18002: 18001: 17996: 17972: 17970: 17969: 17964: 17962: 17961: 17945: 17943: 17942: 17937: 17922: 17920: 17919: 17914: 17912: 17911: 17895: 17893: 17892: 17887: 17875: 17873: 17872: 17867: 17843: 17841: 17840: 17835: 17833: 17832: 17816: 17814: 17813: 17808: 17776: 17775: 17748: 17746: 17745: 17740: 17689: 17688: 17670: 17669: 17642: 17641: 17623: 17621: 17620: 17615: 17610: 17609: 17557: 17555: 17554: 17549: 17529: 17528: 17501: 17499: 17498: 17493: 17460: 17458: 17457: 17452: 17439: 17437: 17436: 17431: 17407: 17405: 17404: 17399: 17397: 17396: 17379: 17377: 17376: 17371: 17352: 17350: 17349: 17344: 17332: 17330: 17329: 17324: 17297: 17295: 17294: 17289: 17265: 17263: 17262: 17257: 17230: 17228: 17227: 17222: 17192: 17190: 17189: 17184: 17149: 17148: 17132: 17130: 17129: 17124: 17116: 17115: 17099: 17097: 17096: 17091: 17079: 17077: 17076: 17071: 17046: 17044: 17043: 17038: 16990: 16988: 16987: 16982: 16970: 16968: 16967: 16962: 16950: 16948: 16947: 16942: 16937: 16936: 16920: 16918: 16917: 16912: 16910: 16909: 16893: 16891: 16890: 16885: 16867: 16865: 16864: 16859: 16851: 16850: 16834: 16832: 16831: 16826: 16824: 16813: 16812: 16797: 16796: 16784: 16783: 16768:the restriction 16767: 16765: 16764: 16759: 16741: 16739: 16738: 16733: 16728: 16692: 16690: 16689: 16684: 16640: 16638: 16637: 16632: 16627: 16626: 16621: 16602: 16595: 16591: 16588: 16582: 16577:this section by 16568:inline citations 16547: 16546: 16539: 16529:Spin(7) geometry 16463:simply-connected 16432: 16420: 16416: 16412: 16402: 16381:Symmetric spaces 16376: 16372: 16368: 16364: 16360: 16355: 16348: 16344: 16340: 16336: 16315: 16311: 16298: 16294: 16290: 16287:for any element 16286: 16265: 16261: 16253: 16246: 16238: 16234: 16219: 16215: 16211: 16207: 16203: 16199: 16189: 16137: 16129: 16121: 16103: 16097: 16094:sending a point 16093: 16083: 16072: 16065: 16063: 16062: 16057: 16040: 16039: 16038: 16037: 16005: 16004: 16003: 16002: 15979: 15978: 15951: 15950: 15931: 15927: 15908: 15883: 15841: 15837: 15824: 15820: 15812: 15804: 15797: 15789:orthogonal group 15786: 15766: 15762: 15758: 15717: 15709: 15702: 15700: 15699: 15694: 15692: 15690: 15689: 15688: 15675: 15670: 15651: 15646: 15634: 15626: 15614: 15612: 15607: 15585: 15580: 15567: 15554:Bernhard Riemann 15547: 15543: 15528:scalar curvature 15525: 15494: 15492: 15491: 15486: 15478: 15477: 15465: 15464: 15449: 15448: 15436: 15435: 15414: 15413: 15377: 15369: 15352:Scalar curvature 15346:Scalar curvature 15333: 15331: 15330: 15325: 15306: 15304: 15303: 15298: 15286: 15284: 15283: 15278: 15241: 15239: 15238: 15233: 15213: 15211: 15210: 15205: 15173: 15171: 15170: 15165: 15150: 15148: 15147: 15142: 15058: 15056: 15055: 15050: 15038: 15036: 15035: 15030: 15004: 15002: 15001: 14996: 14968: 14966: 14965: 14962:{\displaystyle } 14960: 14933: 14931: 14930: 14925: 14920: 14919: 14892: 14891: 14882: 14881: 14866: 14865: 14856: 14855: 14812: 14810: 14809: 14804: 14793: 14792: 14774: 14773: 14755: 14754: 14736: 14735: 14710: 14708: 14707: 14702: 14690: 14688: 14687: 14682: 14637: 14635: 14634: 14629: 14627: 14626: 14611: 14610: 14589: 14579: 14577: 14576: 14571: 14569: 14568: 14556: 14555: 14543: 14542: 14521: 14504: 14502: 14501: 14496: 14494: 14493: 14478: 14477: 14458: 14456: 14455: 14450: 14448: 14447: 14434: 14433: 14421: 14420: 14405: 14404: 14389: 14388: 14365: 14363: 14362: 14357: 14337: 14336: 14331: 14312: 14310: 14309: 14304: 14292: 14290: 14289: 14284: 14272: 14270: 14269: 14264: 14252: 14250: 14249: 14244: 14232: 14230: 14229: 14224: 14219: 14218: 14202: 14200: 14199: 14194: 14189: 14188: 14166: 14164: 14163: 14158: 14131: 14129: 14128: 14123: 14096: 14094: 14093: 14088: 14052: 14050: 14049: 14044: 14033: 14032: 14015: 14013: 14012: 14007: 13994: 13992: 13991: 13986: 13974: 13972: 13971: 13966: 13924: 13922: 13921: 13916: 13902: 13900: 13899: 13894: 13875: 13873: 13872: 13867: 13865: 13864: 13844: 13842: 13841: 13836: 13831: 13830: 13801: 13799: 13798: 13793: 13756: 13754: 13753: 13748: 13746: 13734: 13732: 13731: 13726: 13696: 13694: 13693: 13688: 13658: 13656: 13655: 13650: 13648: 13647: 13642: 13629: 13627: 13626: 13621: 13595: 13594: 13589: 13573: 13571: 13570: 13565: 13563: 13562: 13557: 13544: 13542: 13541: 13536: 13503: 13501: 13500: 13495: 13479: 13477: 13476: 13471: 13469: 13457: 13455: 13454: 13449: 13419: 13417: 13416: 13411: 13381: 13379: 13378: 13373: 13347: 13346: 13341: 13305: 13303: 13302: 13297: 13295: 13294: 13275: 13273: 13272: 13267: 13265: 13264: 13259: 13237: 13235: 13234: 13229: 13217: 13215: 13214: 13209: 13170: 13168: 13167: 13162: 13145: 13130: 13128: 13127: 13122: 13094:maximal geodesic 13091: 13089: 13088: 13083: 13066: 13051: 13049: 13048: 13043: 13016: 13014: 13013: 13008: 12996: 12994: 12993: 12988: 12971: 12956: 12954: 12953: 12948: 12921: 12919: 12918: 12913: 12901: 12899: 12898: 12893: 12869: 12867: 12866: 12861: 12856: 12855: 12833: 12831: 12830: 12825: 12800: 12798: 12797: 12792: 12780: 12778: 12777: 12772: 12760: 12758: 12757: 12752: 12744: 12736: 12735: 12719: 12717: 12716: 12711: 12699: 12697: 12696: 12691: 12689: 12681: 12680: 12663: 12661: 12660: 12655: 12644:acceleration of 12641: 12639: 12638: 12633: 12597: 12595: 12594: 12589: 12577: 12575: 12574: 12569: 12540: 12538: 12537: 12532: 12530: 12529: 12513: 12511: 12510: 12505: 12503: 12502: 12497: 12479: 12470: 12446: 12444: 12443: 12438: 12436: 12435: 12427: 12424: 12423: 12413: 12385: 12384: 12368: 12366: 12365: 12360: 12348: 12346: 12345: 12340: 12338: 12337: 12329: 12317: 12315: 12314: 12309: 12301: 12300: 12281: 12258: 12257: 12240: 12238: 12237: 12232: 12224: 12223: 12204: 12203: 12166: 12165: 12145: 12143: 12142: 12137: 12123: 12121: 12120: 12115: 12104: 12103: 12085: 12084: 12075: 12074: 12058: 12056: 12055: 12050: 12014: 12012: 12011: 12006: 11994: 11992: 11991: 11986: 11970: 11968: 11967: 11962: 11948: 11946: 11945: 11940: 11938: 11937: 11929: 11919: 11917: 11916: 11911: 11909: 11908: 11894: 11893: 11885: 11859: 11857: 11856: 11851: 11839: 11837: 11836: 11831: 11829: 11828: 11820: 11810: 11808: 11807: 11802: 11790: 11788: 11787: 11782: 11767: 11765: 11764: 11759: 11745: 11744: 11725: 11723: 11722: 11717: 11657: 11655: 11654: 11649: 11647: 11611: 11609: 11608: 11603: 11591: 11589: 11588: 11583: 11571: 11569: 11568: 11563: 11552: 11551: 11538: 11536: 11535: 11530: 11500: 11498: 11497: 11492: 11487: 11486: 11446: 11444: 11443: 11438: 11400:is a smooth map 11398: 11396: 11395: 11390: 11376: 11374: 11373: 11368: 11324: 11322: 11321: 11316: 11292: 11290: 11289: 11286:{\displaystyle } 11284: 11257: 11255: 11254: 11249: 11223: 11222: 11207: 11206: 11183: 11181: 11180: 11175: 11160: 11158: 11157: 11152: 11144: 11143: 11107: 11106: 11088: 11087: 11063: 11062: 11039: 11037: 11036: 11031: 10997: 10995: 10994: 10989: 10978:with respect to 10977: 10975: 10974: 10969: 10955: 10953: 10952: 10947: 10942: 10941: 10921: 10919: 10918: 10913: 10908: 10907: 10867: 10866: 10848: 10846: 10845: 10840: 10832: 10831: 10830: 10829: 10814: 10813: 10798: 10797: 10796: 10795: 10780: 10779: 10764: 10763: 10762: 10761: 10752: 10751: 10739: 10738: 10729: 10728: 10707: 10705: 10704: 10699: 10688: 10687: 10661: 10659: 10658: 10653: 10648: 10647: 10613: 10611: 10610: 10605: 10590: 10588: 10587: 10582: 10571: 10570: 10552: 10551: 10533: 10532: 10507: 10505: 10504: 10499: 10483: 10481: 10480: 10475: 10464: 10463: 10414: 10412: 10411: 10406: 10401: 10400: 10371: 10369: 10368: 10363: 10361: 10341: 10340: 10324: 10322: 10321: 10316: 10311: 10310: 10281: 10279: 10278: 10273: 10268: 10267: 10235: 10233: 10232: 10227: 10186: 10185: 10164: 10163: 10129: 10127: 10126: 10121: 10116: 10115: 10076: 10074: 10073: 10068: 10056: 10054: 10053: 10048: 10043: 10042: 10009: 10007: 10006: 10001: 9996: 9995: 9966: 9964: 9963: 9958: 9934: 9932: 9931: 9926: 9924: 9904: 9903: 9887: 9885: 9884: 9879: 9867: 9865: 9864: 9859: 9857: 9856: 9832: 9830: 9829: 9824: 9812: 9810: 9809: 9804: 9799: 9798: 9767: 9765: 9764: 9759: 9751: 9746: 9718: 9716: 9715: 9710: 9708: 9707: 9702: 9668: 9666: 9665: 9660: 9636: 9624: 9619: 9610: 9605: 9578: 9576: 9575: 9570: 9543: 9541: 9540: 9535: 9523: 9521: 9520: 9515: 9501: 9499: 9498: 9493: 9460: 9458: 9457: 9452: 9422: 9420: 9419: 9414: 9388: 9386: 9385: 9380: 9344: 9342: 9341: 9336: 9307: 9306: 9268: 9266: 9265: 9260: 9242: 9240: 9239: 9234: 9226: 9225: 9203: 9201: 9200: 9195: 9177: 9175: 9174: 9169: 9167: 9166: 9120: 9118: 9117: 9112: 9100: 9098: 9097: 9092: 9087: 9079: 9070: 9068: 9067: 9062: 9050: 9048: 9047: 9042: 9031: 9023: 9014: 9012: 9011: 9006: 8994: 8992: 8991: 8986: 8968: 8966: 8965: 8960: 8939: 8937: 8936: 8931: 8904: 8902: 8901: 8896: 8837: 8835: 8834: 8829: 8806: 8805: 8789: 8787: 8786: 8781: 8759: 8757: 8756: 8751: 8746: 8745: 8714: 8712: 8711: 8706: 8694: 8692: 8691: 8686: 8681: 8680: 8655: 8653: 8652: 8647: 8642: 8641: 8613: 8612: 8608: 8606: 8605: 8600: 8588: 8586: 8585: 8580: 8575: 8574: 8541: 8539: 8538: 8533: 8528: 8527: 8497: 8495: 8494: 8489: 8442: 8439: 8395: 8394: 8375: 8373: 8372: 8367: 8335: 8334: 8317: 8315: 8314: 8309: 8281: 8279: 8278: 8273: 8261: 8260: 8233: 8221: 8216: 8182: 8180: 8179: 8174: 8138: 8136: 8135: 8130: 8109: 8107: 8106: 8103:{\displaystyle } 8101: 8077: 8075: 8074: 8069: 8067: 8066: 8039: 8015: 8013: 8012: 8007: 8002: 8001: 7971: 7956: 7954: 7953: 7948: 7911:admissible curve 7895: 7893: 7892: 7887: 7872: 7870: 7869: 7864: 7862: 7861: 7856: 7843: 7841: 7840: 7835: 7819: 7817: 7816: 7811: 7799: 7797: 7796: 7791: 7789: 7788: 7783: 7758: 7756: 7755: 7750: 7719: 7717: 7716: 7711: 7699: 7697: 7696: 7691: 7667: 7665: 7664: 7659: 7647: 7645: 7644: 7639: 7637: 7636: 7620: 7618: 7617: 7612: 7610: 7609: 7594: 7593: 7568: 7566: 7565: 7560: 7548: 7546: 7545: 7540: 7538: 7537: 7532: 7531: 7523: 7516: 7515: 7499: 7497: 7496: 7491: 7489: 7488: 7472: 7470: 7469: 7464: 7462: 7461: 7456: 7455: 7447: 7436: 7434: 7433: 7428: 7426: 7425: 7405: 7403: 7402: 7397: 7395: 7394: 7393: 7376: 7371: 7355: 7353: 7352: 7347: 7345: 7344: 7339: 7326: 7324: 7323: 7318: 7316: 7315: 7312: 7296: 7294: 7293: 7288: 7283: 7282: 7279: 7272: 7267: 7255: 7254: 7249: 7248: 7240: 7223: 7221: 7220: 7215: 7213: 7212: 7207: 7206: 7198: 7191: 7190: 7180: 7149: 7147: 7146: 7141: 7129: 7127: 7126: 7121: 7106: 7104: 7103: 7098: 7080: 7078: 7077: 7072: 7070: 7069: 7054: 7053: 7024: 7022: 7021: 7016: 7014: 7013: 6998: 6997: 6975: 6973: 6972: 6967: 6965: 6964: 6959: 6947: 6946: 6934: 6933: 6921: 6920: 6908: 6907: 6891: 6889: 6888: 6883: 6875: 6874: 6851: 6849: 6848: 6843: 6841: 6840: 6822: 6821: 6809: 6808: 6786: 6784: 6783: 6778: 6756: 6755: 6725: 6723: 6722: 6717: 6702: 6700: 6699: 6694: 6692: 6691: 6682: 6681: 6663: 6662: 6653: 6652: 6636: 6634: 6633: 6628: 6616: 6614: 6613: 6608: 6606: 6605: 6587: 6586: 6570: 6568: 6567: 6562: 6547: 6545: 6544: 6539: 6537: 6536: 6518: 6517: 6493: 6491: 6490: 6485: 6483: 6482: 6477: 6464: 6462: 6461: 6456: 6454: 6442: 6440: 6439: 6434: 6432: 6418: 6400: 6398: 6397: 6392: 6390: 6389: 6373: 6371: 6370: 6365: 6363: 6362: 6346: 6344: 6343: 6338: 6336: 6335: 6317: 6316: 6304: 6303: 6286: 6284: 6283: 6278: 6260: 6258: 6257: 6252: 6247: 6246: 6239: 6238: 6215: 6214: 6191: 6190: 6182: 6181: 6173: 6159: 6157: 6156: 6151: 6149: 6148: 6135: 6134: 6121: 6120: 6112: 6111: 6103: 6098: 6083: 6082: 6074: 6062: 6060: 6059: 6054: 6012: 6010: 6009: 6004: 6002: 6001: 5993: 5983: 5981: 5980: 5975: 5951: 5949: 5948: 5943: 5931: 5929: 5928: 5923: 5921: 5920: 5904: 5902: 5901: 5896: 5872: 5870: 5869: 5864: 5852: 5850: 5849: 5844: 5842: 5841: 5825: 5823: 5822: 5817: 5796: 5794: 5793: 5788: 5746: 5744: 5743: 5738: 5726: 5724: 5723: 5718: 5694: 5692: 5691: 5686: 5674: 5672: 5671: 5666: 5638: 5636: 5635: 5630: 5622: 5621: 5609: 5608: 5596: 5595: 5580: 5579: 5567: 5566: 5554: 5553: 5535: 5534: 5522: 5521: 5503: 5502: 5490: 5489: 5474: 5473: 5462: 5461: 5453: 5440: 5438: 5437: 5432: 5424: 5423: 5408: 5407: 5380: 5379: 5347: 5345: 5344: 5339: 5318: 5316: 5315: 5310: 5308: 5307: 5299: 5289: 5287: 5286: 5281: 5269: 5267: 5266: 5261: 5249: 5247: 5246: 5241: 5223:product manifold 5220: 5218: 5217: 5212: 5188: 5186: 5185: 5180: 5137: 5128: 5111: 5109: 5108: 5103: 5098: 5097: 5085: 5084: 5076: 5054: 5052: 5051: 5046: 5022: 5020: 5019: 5014: 5012: 5011: 5003: 4993: 4991: 4990: 4985: 4965: 4963: 4962: 4957: 4955: 4954: 4946: 4936: 4934: 4933: 4928: 4912: 4910: 4909: 4904: 4902: 4901: 4893: 4883: 4881: 4880: 4875: 4867: 4866: 4858: 4848: 4846: 4845: 4840: 4813: 4811: 4810: 4805: 4803: 4802: 4791: 4778: 4776: 4775: 4770: 4768: 4760: 4759: 4754: 4726: 4724: 4723: 4718: 4716: 4715: 4710: 4691: 4689: 4688: 4683: 4681: 4677: 4670: 4668: 4667: 4658: 4657: 4648: 4643: 4641: 4640: 4631: 4630: 4621: 4616: 4614: 4613: 4604: 4603: 4594: 4589: 4588: 4583: 4554: 4552: 4551: 4546: 4509: 4507: 4506: 4501: 4499: 4498: 4482: 4480: 4479: 4474: 4472: 4471: 4460: 4441: 4439: 4438: 4433: 4422: 4421: 4412: 4411: 4384: 4383: 4374: 4373: 4358: 4357: 4346: 4328: 4327: 4308: 4306: 4305: 4300: 4281: 4279: 4278: 4273: 4258: 4256: 4255: 4250: 4234: 4232: 4231: 4226: 4215: 4214: 4192: 4190: 4189: 4184: 4179: 4178: 4163: 4162: 4138: 4137: 4125: 4124: 4118: 4117: 4081: 4080: 4071: 4070: 4051: 4049: 4048: 4043: 4038: 4037: 4021: 4019: 4018: 4013: 4001: 3999: 3998: 3993: 3981: 3979: 3978: 3973: 3968: 3967: 3951: 3949: 3948: 3943: 3916: 3914: 3913: 3908: 3884: 3882: 3881: 3876: 3855: 3853: 3852: 3847: 3820:is said to be a 3819: 3817: 3816: 3811: 3803: 3802: 3777: 3775: 3774: 3769: 3757: 3755: 3754: 3749: 3737: 3735: 3734: 3729: 3724: 3723: 3704: 3702: 3701: 3696: 3676: 3674: 3673: 3668: 3644: 3642: 3641: 3636: 3608: 3606: 3605: 3600: 3598: 3597: 3586: 3573: 3571: 3570: 3565: 3563: 3562: 3545: 3543: 3542: 3537: 3502: 3500: 3499: 3494: 3489: 3488: 3485: 3476: 3475: 3470: 3451: 3449: 3448: 3443: 3438: 3437: 3331: 3328: 3326: 3294: 3292: 3291: 3286: 3284: 3283: 3264: 3262: 3261: 3256: 3254: 3253: 3237: 3234: 3232: 3207: 3205: 3204: 3199: 3197: 3196: 3187: 3186: 3162: 3161: 3152: 3151: 3133: 3132: 3129: 3114:or equivalently 3110: 3108: 3107: 3102: 3100: 3099: 3090: 3089: 3079: 3067: 3063: 3062: 3060: 3059: 3058: 3042: 3040: 3039: 3029: 3017: 3015: 3014: 3013: 2997: 2995: 2994: 2984: 2970: 2969: 2966: 2950: 2948: 2947: 2942: 2940: 2939: 2936: 2923:Euclidean metric 2921:The (canonical) 2920: 2918: 2917: 2912: 2907: 2906: 2901: 2888: 2886: 2885: 2880: 2878: 2877: 2859: 2858: 2829: 2827: 2826: 2821: 2819: 2818: 2806: 2805: 2788: 2786: 2785: 2780: 2762: 2760: 2759: 2754: 2742: 2740: 2739: 2734: 2714: 2712: 2711: 2706: 2704: 2703: 2683: 2681: 2680: 2675: 2662: 2660: 2659: 2654: 2630: 2628: 2627: 2622: 2602: 2600: 2599: 2594: 2561: 2559: 2558: 2553: 2541: 2539: 2538: 2533: 2511: 2509: 2508: 2503: 2473: 2471: 2470: 2465: 2457: 2456: 2428: 2426: 2425: 2420: 2399: 2397: 2396: 2391: 2377: 2376: 2352: 2351: 2336: 2335: 2299: 2298: 2279: 2277: 2276: 2271: 2266: 2265: 2239: 2237: 2236: 2231: 2204: 2202: 2201: 2196: 2172: 2170: 2169: 2164: 2125: 2123: 2122: 2117: 2112: 2111: 2095: 2093: 2092: 2087: 2065: 2063: 2062: 2057: 2040: 2039: 2002: 2000: 1999: 1994: 1981:cotangent bundle 1974: 1972: 1971: 1966: 1918: 1916: 1915: 1910: 1883: 1881: 1880: 1875: 1873: 1872: 1849: 1847: 1846: 1841: 1829: 1827: 1826: 1821: 1794: 1792: 1791: 1786: 1784: 1770: 1769: 1746: 1744: 1743: 1738: 1718: 1716: 1715: 1710: 1705: 1704: 1689: 1688: 1675: 1674: 1661: 1630: 1628: 1627: 1622: 1617: 1616: 1595: 1594: 1566:In terms of the 1562: 1560: 1559: 1554: 1535: 1533: 1532: 1527: 1525: 1524: 1508: 1506: 1505: 1500: 1488: 1486: 1485: 1480: 1462: 1460: 1459: 1454: 1452: 1438: 1437: 1418: 1416: 1415: 1410: 1408: 1407: 1387: 1385: 1384: 1379: 1377: 1373: 1372: 1371: 1366: 1362: 1360: 1359: 1358: 1342: 1333: 1332: 1327: 1323: 1321: 1320: 1319: 1303: 1292: 1291: 1279: 1278: 1273: 1267: 1266: 1244: 1242: 1241: 1236: 1224: 1222: 1221: 1216: 1198: 1196: 1195: 1190: 1185: 1184: 1165: 1163: 1162: 1157: 1155: 1151: 1150: 1149: 1144: 1143: 1136: 1134: 1133: 1132: 1116: 1105: 1104: 1099: 1098: 1091: 1089: 1088: 1087: 1071: 1054: 1052: 1051: 1046: 1030: 1028: 1027: 1022: 1020: 1019: 1014: 996: 995: 977: 976: 938: 936: 935: 930: 902: 900: 899: 894: 882: 880: 879: 874: 862: 860: 859: 854: 852: 835: 834: 825: 820: 819: 797: 795: 794: 789: 787: 776: 775: 763: 762: 740: 738: 737: 732: 730: 719: 718: 703: 702: 690: 689: 669: 667: 666: 661: 650:assigns to each 649: 647: 646: 641: 629: 627: 626: 621: 599: 597: 596: 591: 586: 585: 566: 564: 563: 558: 546: 544: 543: 538: 526: 524: 523: 518: 513: 512: 496: 494: 493: 488: 476: 474: 473: 468: 452: 450: 449: 444: 439: 438: 422: 420: 419: 414: 392: 390: 389: 384: 298:Bernhard Riemann 264:Bernhard Riemann 232:machine learning 208:complex geometry 170:projective space 122:Bernhard Riemann 102:hyperbolic space 97: 95: 94: 89: 21: 20812: 20811: 20807: 20806: 20805: 20803: 20802: 20801: 20777: 20776: 20775: 20770: 20739: 20718:Generalizations 20713: 20667: 20636: 20571:Exponential map 20532: 20522: 20492: 20487: 20426:Banach manifold 20419:Generalizations 20414: 20369: 20306: 20203: 20165:Ricci curvature 20121:Cotangent space 20099: 20037: 19879: 19873: 19832:Exponential map 19796: 19741: 19735: 19655: 19645: 19595: 19590: 19421: 19395:Wolf, Joseph A. 19371: 19336: 19326:Springer-Verlag 19285:Nomizu, Katsumi 19257: 19194: 19152: 19098: 19080:Springer-Verlag 19066: 19061: 19060: 19052: 19048: 19040: 19033: 19025: 19016: 19008: 19001: 18993: 18989: 18977: 18973: 18965: 18961: 18936: 18932: 18926: 18922: 18907: 18903: 18897: 18893: 18878: 18874: 18859: 18855: 18849: 18845: 18836: 18832: 18817: 18813: 18798: 18794: 18779: 18775: 18760: 18756: 18751: 18748: 18747: 18745: 18741: 18733: 18729: 18721: 18717: 18705: 18701: 18693: 18689: 18681: 18677: 18669: 18665: 18657: 18650: 18642: 18638: 18630: 18626: 18618: 18614: 18606: 18602: 18594: 18590: 18582: 18578: 18570: 18566: 18558: 18554: 18546: 18542: 18534: 18530: 18522: 18513: 18505: 18501: 18493: 18489: 18481: 18477: 18469: 18465: 18457: 18453: 18445: 18441: 18433: 18429: 18421: 18417: 18409: 18405: 18397: 18390: 18382: 18378: 18370: 18363: 18355: 18351: 18343: 18339: 18331: 18324: 18316: 18309: 18301: 18297: 18289: 18282: 18274: 18267: 18259: 18252: 18244: 18240: 18235: 18230: 18225: 18216:Kahler manifold 18176:Smooth manifold 18171: 18150: 18147: 18146: 18122: 18118: 18116: 18113: 18112: 18084: 18081: 18080: 18071: 18037: 18034: 18033: 18016: 18012: 18010: 18007: 18006: 17978: 17975: 17974: 17957: 17953: 17951: 17948: 17947: 17931: 17928: 17927: 17907: 17903: 17901: 17898: 17897: 17881: 17878: 17877: 17861: 17858: 17857: 17828: 17824: 17822: 17819: 17818: 17771: 17767: 17765: 17762: 17761: 17758: 17675: 17671: 17665: 17661: 17637: 17633: 17631: 17628: 17627: 17596: 17592: 17563: 17560: 17559: 17524: 17520: 17506: 17503: 17502: 17466: 17463: 17462: 17446: 17443: 17442: 17413: 17410: 17409: 17392: 17388: 17386: 17383: 17382: 17362: 17359: 17358: 17338: 17335: 17334: 17315: 17312: 17311: 17271: 17268: 17267: 17239: 17236: 17235: 17198: 17195: 17194: 17144: 17140: 17138: 17135: 17134: 17111: 17107: 17105: 17102: 17101: 17085: 17082: 17081: 17056: 17053: 17052: 17051:, then for any 17006: 17003: 17002: 16998: 16976: 16973: 16972: 16956: 16953: 16952: 16932: 16928: 16926: 16923: 16922: 16905: 16901: 16899: 16896: 16895: 16879: 16876: 16875: 16846: 16842: 16840: 16837: 16836: 16820: 16808: 16804: 16792: 16788: 16779: 16775: 16773: 16770: 16769: 16747: 16744: 16743: 16724: 16698: 16695: 16694: 16678: 16675: 16674: 16663: 16645:; for example, 16622: 16617: 16616: 16614: 16611: 16610: 16603: 16592: 16586: 16583: 16572: 16558:related reading 16548: 16544: 16537: 16524: 16513:Kähler geometry 16443:Ricci curvature 16430: 16418: 16414: 16410: 16392: 16389: 16387:Symmetric space 16383: 16374: 16370: 16366: 16362: 16358: 16353: 16346: 16342: 16338: 16323: 16317: 16313: 16303: 16296: 16292: 16288: 16273: 16267: 16263: 16259: 16251: 16244: 16241:normal subgroup 16236: 16232: 16217: 16213: 16209: 16205: 16201: 16197: 16179: 16176: 16135: 16127: 16120: 16112: 16099: 16095: 16085: 16082: 16074: 16070: 16030: 16026: 16025: 16021: 15995: 15991: 15990: 15986: 15974: 15970: 15946: 15942: 15940: 15937: 15936: 15929: 15926: 15918: 15906: 15903: 15898: 15878: 15839: 15829: 15822: 15818: 15810: 15807:identity matrix 15802: 15791: 15787:-sphere is the 15784: 15764: 15760: 15756: 15715: 15707: 15684: 15680: 15671: 15666: 15647: 15642: 15625: 15615: 15608: 15603: 15581: 15576: 15568: 15566: 15564: 15561: 15560: 15545: 15531: 15524: 15511: 15503: 15500:Ricci curvature 15470: 15466: 15457: 15453: 15441: 15437: 15428: 15424: 15400: 15396: 15394: 15391: 15390: 15375: 15367: 15359: 15354: 15348: 15319: 15316: 15315: 15292: 15289: 15288: 15257: 15254: 15253: 15244:Einstein metric 15227: 15224: 15223: 15193: 15190: 15189: 15186: 15180: 15159: 15156: 15155: 15073: 15070: 15069: 15044: 15041: 15040: 15024: 15021: 15020: 15017: 15015:Ricci curvature 15011: 15005:-tensor field. 14978: 14975: 14974: 14942: 14939: 14938: 14903: 14899: 14887: 14883: 14877: 14873: 14861: 14857: 14851: 14847: 14821: 14818: 14817: 14788: 14787: 14769: 14768: 14750: 14749: 14731: 14730: 14722: 14719: 14718: 14696: 14693: 14692: 14676: 14673: 14672: 14665: 14659: 14643: 14642: 14641: 14640: 14639: 14622: 14618: 14606: 14602: 14597: 14594: 14593: 14590: 14582: 14581: 14564: 14560: 14551: 14547: 14538: 14534: 14529: 14526: 14525: 14522: 14513: 14512: 14489: 14485: 14473: 14469: 14464: 14461: 14460: 14443: 14439: 14429: 14425: 14416: 14412: 14400: 14396: 14384: 14380: 14375: 14372: 14371: 14332: 14327: 14326: 14324: 14321: 14320: 14318:punctured plane 14298: 14295: 14294: 14278: 14275: 14274: 14258: 14255: 14254: 14253:, first extend 14238: 14235: 14234: 14214: 14210: 14208: 14205: 14204: 14203:to a vector in 14184: 14180: 14172: 14169: 14168: 14137: 14134: 14133: 14102: 14099: 14098: 14058: 14055: 14054: 14028: 14024: 14022: 14019: 14018: 14001: 13998: 13997: 13996:parallel along 13980: 13977: 13976: 13960: 13957: 13956: 13938: 13932: 13910: 13907: 13906: 13888: 13885: 13884: 13878:Cauchy sequence 13860: 13856: 13854: 13851: 13850: 13826: 13822: 13811: 13808: 13807: 13775: 13772: 13771: 13742: 13740: 13737: 13736: 13702: 13699: 13698: 13664: 13661: 13660: 13643: 13638: 13637: 13635: 13632: 13631: 13590: 13585: 13584: 13582: 13579: 13578: 13576:punctured plane 13558: 13553: 13552: 13550: 13547: 13546: 13515: 13512: 13511: 13489: 13486: 13485: 13465: 13463: 13460: 13459: 13425: 13422: 13421: 13387: 13384: 13383: 13342: 13337: 13336: 13334: 13331: 13330: 13323: 13317: 13290: 13286: 13284: 13281: 13280: 13260: 13255: 13254: 13252: 13249: 13248: 13244: 13223: 13220: 13219: 13179: 13176: 13175: 13138: 13136: 13133: 13132: 13101: 13098: 13097: 13059: 13057: 13054: 13053: 13022: 13019: 13018: 13002: 12999: 12998: 12964: 12962: 12959: 12958: 12927: 12924: 12923: 12907: 12904: 12903: 12875: 12872: 12871: 12851: 12847: 12839: 12836: 12835: 12813: 12810: 12809: 12786: 12783: 12782: 12766: 12763: 12762: 12737: 12731: 12727: 12725: 12722: 12721: 12705: 12702: 12701: 12682: 12676: 12672: 12670: 12667: 12666: 12649: 12646: 12645: 12603: 12600: 12599: 12583: 12580: 12579: 12563: 12560: 12559: 12549: 12548: 12547: 12546: 12525: 12521: 12519: 12516: 12515: 12498: 12493: 12492: 12490: 12487: 12486: 12482: 12481: 12480: 12472: 12471: 12460: 12454: 12426: 12425: 12406: 12405: 12401: 12380: 12376: 12374: 12371: 12370: 12354: 12351: 12350: 12328: 12327: 12325: 12322: 12321: 12296: 12292: 12274: 12253: 12249: 12247: 12244: 12243: 12219: 12215: 12199: 12195: 12161: 12157: 12155: 12152: 12151: 12131: 12128: 12127: 12099: 12098: 12080: 12079: 12070: 12066: 12064: 12061: 12060: 12020: 12017: 12016: 12000: 11997: 11996: 11980: 11977: 11976: 11956: 11953: 11952: 11928: 11927: 11925: 11922: 11921: 11895: 11884: 11883: 11882: 11865: 11862: 11861: 11845: 11842: 11841: 11819: 11818: 11816: 11813: 11812: 11796: 11793: 11792: 11776: 11773: 11772: 11740: 11739: 11731: 11728: 11727: 11666: 11663: 11662: 11643: 11617: 11614: 11613: 11597: 11594: 11593: 11577: 11574: 11573: 11547: 11546: 11544: 11541: 11540: 11506: 11503: 11502: 11473: 11469: 11452: 11449: 11448: 11405: 11402: 11401: 11384: 11381: 11380: 11338: 11335: 11334: 11331: 11310: 11307: 11306: 11266: 11263: 11262: 11218: 11214: 11202: 11198: 11196: 11193: 11192: 11169: 11166: 11165: 11139: 11135: 11102: 11098: 11083: 11082: 11058: 11057: 11052: 11049: 11048: 11025: 11022: 11021: 11011: 11005: 10983: 10980: 10979: 10963: 10960: 10959: 10937: 10933: 10931: 10928: 10927: 10926:The expression 10903: 10899: 10862: 10858: 10856: 10853: 10852: 10825: 10821: 10820: 10816: 10809: 10805: 10791: 10787: 10786: 10782: 10775: 10771: 10757: 10753: 10747: 10743: 10734: 10730: 10724: 10720: 10719: 10715: 10713: 10710: 10709: 10683: 10679: 10671: 10668: 10667: 10643: 10639: 10619: 10616: 10615: 10599: 10596: 10595: 10566: 10565: 10547: 10546: 10528: 10527: 10519: 10516: 10515: 10493: 10490: 10489: 10459: 10458: 10456: 10453: 10452: 10441: 10435: 10430: 10396: 10392: 10381: 10378: 10377: 10357: 10336: 10332: 10330: 10327: 10326: 10306: 10302: 10291: 10288: 10287: 10263: 10259: 10248: 10245: 10244: 10181: 10177: 10159: 10155: 10138: 10135: 10134: 10111: 10107: 10096: 10093: 10092: 10083: 10062: 10059: 10058: 10038: 10034: 10023: 10020: 10019: 10016:metric topology 9991: 9987: 9976: 9973: 9972: 9940: 9937: 9936: 9920: 9899: 9895: 9893: 9890: 9889: 9873: 9870: 9869: 9852: 9848: 9846: 9843: 9842: 9839: 9818: 9815: 9814: 9794: 9790: 9779: 9776: 9775: 9745: 9728: 9725: 9724: 9703: 9698: 9697: 9677: 9674: 9673: 9629: 9620: 9615: 9604: 9587: 9584: 9583: 9549: 9546: 9545: 9529: 9526: 9525: 9509: 9506: 9505: 9466: 9463: 9462: 9428: 9425: 9424: 9402: 9399: 9398: 9350: 9347: 9346: 9302: 9298: 9278: 9275: 9274: 9248: 9245: 9244: 9221: 9217: 9209: 9206: 9205: 9183: 9180: 9179: 9162: 9158: 9126: 9123: 9122: 9106: 9103: 9102: 9078: 9076: 9073: 9072: 9056: 9053: 9052: 9022: 9020: 9017: 9016: 9000: 8997: 8996: 8974: 8971: 8970: 8945: 8942: 8941: 8910: 8907: 8906: 8878: 8875: 8874: 8801: 8797: 8795: 8792: 8791: 8769: 8766: 8765: 8741: 8737: 8726: 8723: 8722: 8715: 8700: 8697: 8696: 8676: 8672: 8661: 8658: 8657: 8637: 8633: 8622: 8619: 8618: 8594: 8591: 8590: 8570: 8566: 8555: 8552: 8551: 8548:metric topology 8523: 8519: 8508: 8505: 8504: 8438: 8390: 8386: 8384: 8381: 8380: 8330: 8326: 8324: 8321: 8320: 8291: 8288: 8287: 8247: 8243: 8226: 8217: 8212: 8191: 8188: 8187: 8144: 8141: 8140: 8115: 8112: 8111: 8083: 8080: 8079: 8053: 8049: 8032: 8021: 8018: 8017: 7988: 7984: 7964: 7962: 7959: 7958: 7957:whose velocity 7918: 7915: 7914: 7907: 7878: 7875: 7874: 7857: 7852: 7851: 7849: 7846: 7845: 7829: 7826: 7825: 7805: 7802: 7801: 7784: 7779: 7778: 7764: 7761: 7760: 7729: 7726: 7725: 7705: 7702: 7701: 7685: 7682: 7681: 7674: 7653: 7650: 7649: 7632: 7628: 7626: 7623: 7622: 7605: 7601: 7589: 7585: 7574: 7571: 7570: 7554: 7551: 7550: 7533: 7522: 7521: 7520: 7511: 7507: 7505: 7502: 7501: 7484: 7480: 7478: 7475: 7474: 7457: 7446: 7445: 7444: 7442: 7439: 7438: 7421: 7417: 7415: 7412: 7411: 7383: 7382: 7378: 7372: 7367: 7361: 7358: 7357: 7340: 7335: 7334: 7332: 7329: 7328: 7311: 7307: 7305: 7302: 7301: 7278: 7274: 7268: 7263: 7250: 7239: 7238: 7237: 7235: 7232: 7231: 7208: 7197: 7196: 7195: 7186: 7182: 7170: 7158: 7155: 7154: 7135: 7132: 7131: 7115: 7112: 7111: 7086: 7083: 7082: 7065: 7061: 7049: 7045: 7034: 7031: 7030: 7003: 6999: 6993: 6989: 6984: 6981: 6980: 6960: 6955: 6954: 6942: 6938: 6929: 6925: 6916: 6912: 6903: 6899: 6897: 6894: 6893: 6870: 6866: 6864: 6861: 6860: 6830: 6826: 6817: 6813: 6804: 6800: 6792: 6789: 6788: 6772: 6769: 6768: 6761: 6731: 6708: 6705: 6704: 6687: 6683: 6677: 6673: 6658: 6654: 6648: 6644: 6642: 6639: 6638: 6622: 6619: 6618: 6601: 6597: 6582: 6578: 6576: 6573: 6572: 6553: 6550: 6549: 6532: 6528: 6513: 6509: 6507: 6504: 6503: 6500: 6478: 6473: 6472: 6470: 6467: 6466: 6450: 6448: 6445: 6444: 6428: 6414: 6412: 6409: 6408: 6385: 6381: 6379: 6376: 6375: 6358: 6354: 6352: 6349: 6348: 6331: 6327: 6312: 6308: 6299: 6295: 6293: 6290: 6289: 6272: 6269: 6268: 6241: 6240: 6234: 6230: 6228: 6222: 6221: 6216: 6210: 6206: 6199: 6198: 6183: 6172: 6171: 6170: 6165: 6162: 6161: 6144: 6140: 6130: 6126: 6113: 6102: 6101: 6100: 6091: 6073: 6072: 6070: 6067: 6066: 6018: 6015: 6014: 5992: 5991: 5989: 5986: 5985: 5957: 5954: 5953: 5937: 5934: 5933: 5916: 5912: 5910: 5907: 5906: 5878: 5875: 5874: 5858: 5855: 5854: 5837: 5833: 5831: 5828: 5827: 5802: 5799: 5798: 5752: 5749: 5748: 5732: 5729: 5728: 5700: 5697: 5696: 5680: 5677: 5676: 5648: 5645: 5644: 5617: 5613: 5604: 5600: 5591: 5587: 5575: 5571: 5562: 5558: 5549: 5545: 5530: 5526: 5517: 5513: 5498: 5494: 5485: 5481: 5463: 5452: 5451: 5450: 5448: 5445: 5444: 5441:one may define 5419: 5415: 5403: 5399: 5363: 5359: 5357: 5354: 5353: 5324: 5321: 5320: 5298: 5297: 5295: 5292: 5291: 5275: 5272: 5271: 5255: 5252: 5251: 5229: 5226: 5225: 5194: 5191: 5190: 5162: 5159: 5158: 5155: 5154: 5153: 5152: 5140: 5139: 5138: 5130: 5129: 5118: 5093: 5089: 5075: 5074: 5072: 5069: 5068: 5028: 5025: 5024: 5002: 5001: 4999: 4996: 4995: 4979: 4976: 4975: 4945: 4944: 4942: 4939: 4938: 4922: 4919: 4918: 4915:universal cover 4892: 4891: 4889: 4886: 4885: 4857: 4856: 4854: 4851: 4850: 4822: 4819: 4818: 4792: 4787: 4786: 4784: 4781: 4780: 4764: 4755: 4750: 4749: 4741: 4738: 4737: 4711: 4706: 4705: 4703: 4700: 4699: 4663: 4659: 4653: 4649: 4647: 4636: 4632: 4626: 4622: 4620: 4609: 4605: 4599: 4595: 4593: 4584: 4579: 4578: 4571: 4567: 4565: 4562: 4561: 4528: 4525: 4524: 4516:standard metric 4494: 4490: 4488: 4485: 4484: 4461: 4456: 4455: 4453: 4450: 4449: 4417: 4413: 4401: 4397: 4379: 4375: 4369: 4365: 4347: 4342: 4341: 4323: 4319: 4317: 4314: 4313: 4294: 4291: 4290: 4264: 4261: 4260: 4244: 4241: 4240: 4210: 4206: 4201: 4198: 4197: 4174: 4173: 4158: 4154: 4133: 4129: 4120: 4119: 4104: 4100: 4076: 4072: 4066: 4062: 4060: 4057: 4056: 4033: 4029: 4027: 4024: 4023: 4007: 4004: 4003: 3987: 3984: 3983: 3963: 3959: 3957: 3954: 3953: 3952:and the metric 3922: 3919: 3918: 3890: 3887: 3886: 3864: 3861: 3860: 3829: 3826: 3825: 3798: 3794: 3783: 3780: 3779: 3763: 3760: 3759: 3743: 3740: 3739: 3719: 3715: 3713: 3710: 3709: 3690: 3687: 3686: 3650: 3647: 3646: 3618: 3615: 3614: 3587: 3582: 3581: 3579: 3576: 3575: 3558: 3554: 3552: 3549: 3548: 3531: 3528: 3527: 3519: 3513: 3505:Euclidean space 3484: 3480: 3471: 3466: 3465: 3460: 3457: 3456: 3432: 3431: 3426: 3421: 3416: 3410: 3409: 3404: 3399: 3394: 3388: 3387: 3382: 3377: 3372: 3366: 3365: 3360: 3355: 3350: 3340: 3339: 3327: 3319: 3310: 3307: 3306: 3297:Kronecker delta 3276: 3272: 3270: 3267: 3266: 3246: 3242: 3233: 3225: 3219: 3216: 3215: 3192: 3188: 3182: 3178: 3157: 3153: 3147: 3143: 3128: 3124: 3122: 3119: 3118: 3095: 3091: 3085: 3081: 3075: 3054: 3050: 3046: 3041: 3035: 3031: 3025: 3009: 3005: 3001: 2996: 2990: 2986: 2980: 2975: 2971: 2965: 2961: 2959: 2956: 2955: 2935: 2931: 2929: 2926: 2925: 2902: 2897: 2896: 2894: 2891: 2890: 2873: 2869: 2854: 2850: 2848: 2845: 2844: 2841: 2839:Euclidean space 2836: 2814: 2810: 2801: 2797: 2795: 2792: 2791: 2774: 2771: 2770: 2748: 2745: 2744: 2728: 2725: 2724: 2699: 2695: 2690: 2687: 2686: 2669: 2666: 2665: 2636: 2633: 2632: 2616: 2613: 2612: 2609: 2567: 2564: 2563: 2547: 2544: 2543: 2521: 2518: 2517: 2482: 2479: 2478: 2452: 2448: 2434: 2431: 2430: 2408: 2405: 2404: 2372: 2368: 2347: 2343: 2322: 2318: 2294: 2290: 2288: 2285: 2284: 2261: 2257: 2249: 2246: 2245: 2213: 2210: 2209: 2178: 2175: 2174: 2146: 2143: 2142: 2132: 2107: 2103: 2101: 2098: 2097: 2078: 2075: 2074: 2035: 2031: 2011: 2008: 2007: 1988: 1985: 1984: 1942: 1939: 1938: 1931: 1925: 1904: 1901: 1900: 1865: 1861: 1859: 1856: 1855: 1835: 1832: 1831: 1800: 1797: 1796: 1780: 1762: 1758: 1756: 1753: 1752: 1732: 1729: 1728: 1725: 1700: 1696: 1684: 1680: 1667: 1663: 1651: 1639: 1636: 1635: 1612: 1608: 1590: 1586: 1578: 1575: 1574: 1548: 1545: 1544: 1520: 1516: 1514: 1511: 1510: 1494: 1491: 1490: 1468: 1465: 1464: 1448: 1430: 1426: 1424: 1421: 1420: 1403: 1399: 1397: 1394: 1393: 1367: 1354: 1350: 1346: 1341: 1338: 1337: 1328: 1315: 1311: 1307: 1302: 1299: 1298: 1297: 1293: 1287: 1283: 1274: 1269: 1268: 1259: 1255: 1253: 1250: 1249: 1230: 1227: 1226: 1204: 1201: 1200: 1180: 1176: 1174: 1171: 1170: 1145: 1139: 1138: 1137: 1128: 1124: 1120: 1115: 1100: 1094: 1093: 1092: 1083: 1079: 1075: 1070: 1069: 1065: 1063: 1060: 1059: 1040: 1037: 1036: 1015: 1010: 1009: 991: 987: 972: 968: 963: 960: 959: 956: 912: 909: 908: 888: 885: 884: 868: 865: 864: 830: 826: 824: 815: 811: 803: 800: 799: 783: 771: 767: 758: 754: 746: 743: 742: 726: 714: 710: 698: 694: 685: 681: 679: 676: 675: 655: 652: 651: 635: 632: 631: 615: 612: 611: 581: 577: 575: 572: 571: 552: 549: 548: 532: 529: 528: 508: 504: 502: 499: 498: 482: 479: 478: 462: 459: 458: 434: 430: 428: 425: 424: 402: 399: 398: 395:smooth manifold 378: 375: 374: 363: 358: 334:Albert Einstein 314:introduced the 302:smooth manifold 256: 139:is a choice of 137:smooth manifold 106:smooth surfaces 83: 80: 79: 75:Euclidean space 71:geometric space 49:sitting inside 35: 32:Riemann surface 28: 23: 22: 15: 12: 11: 5: 20810: 20800: 20799: 20794: 20789: 20772: 20771: 20769: 20768: 20763: 20758: 20753: 20747: 20745: 20741: 20740: 20738: 20737: 20735:Sub-Riemannian 20732: 20727: 20721: 20719: 20715: 20714: 20712: 20711: 20706: 20701: 20696: 20691: 20686: 20681: 20675: 20673: 20669: 20668: 20666: 20665: 20660: 20655: 20650: 20644: 20642: 20638: 20637: 20635: 20634: 20629: 20624: 20619: 20614: 20613: 20612: 20603: 20598: 20593: 20583: 20578: 20573: 20568: 20567: 20566: 20561: 20556: 20551: 20540: 20538: 20537:Basic concepts 20534: 20533: 20521: 20520: 20513: 20506: 20498: 20489: 20488: 20486: 20485: 20480: 20475: 20470: 20465: 20464: 20463: 20453: 20448: 20443: 20438: 20433: 20428: 20422: 20420: 20416: 20415: 20413: 20412: 20407: 20402: 20397: 20392: 20387: 20381: 20379: 20375: 20374: 20371: 20370: 20368: 20367: 20362: 20357: 20352: 20347: 20342: 20337: 20332: 20327: 20322: 20316: 20314: 20308: 20307: 20305: 20304: 20299: 20294: 20289: 20284: 20279: 20274: 20264: 20259: 20254: 20244: 20239: 20234: 20229: 20224: 20219: 20213: 20211: 20205: 20204: 20202: 20201: 20196: 20191: 20190: 20189: 20179: 20174: 20173: 20172: 20162: 20157: 20152: 20147: 20146: 20145: 20135: 20130: 20129: 20128: 20118: 20113: 20107: 20105: 20101: 20100: 20098: 20097: 20092: 20087: 20082: 20081: 20080: 20070: 20065: 20060: 20054: 20052: 20045: 20039: 20038: 20036: 20035: 20030: 20020: 20015: 20001: 19996: 19991: 19986: 19981: 19979:Parallelizable 19976: 19971: 19966: 19965: 19964: 19954: 19949: 19944: 19939: 19934: 19929: 19924: 19919: 19914: 19909: 19899: 19889: 19883: 19881: 19875: 19874: 19872: 19871: 19866: 19861: 19859:Lie derivative 19856: 19854:Integral curve 19851: 19846: 19841: 19840: 19839: 19829: 19824: 19823: 19822: 19815:Diffeomorphism 19812: 19806: 19804: 19798: 19797: 19795: 19794: 19789: 19784: 19779: 19774: 19769: 19764: 19759: 19754: 19748: 19746: 19737: 19736: 19734: 19733: 19728: 19723: 19718: 19713: 19708: 19703: 19698: 19693: 19692: 19691: 19686: 19676: 19675: 19674: 19663: 19661: 19660:Basic concepts 19657: 19656: 19644: 19643: 19636: 19629: 19621: 19615: 19614: 19594: 19593:External links 19591: 19589: 19588: 19560:(3): 293–329. 19540: 19528:10.4171/dm/187 19506:Documenta Math 19501: 19462: 19441: 19419: 19391: 19369: 19353:Springer, Cham 19340: 19334: 19314: 19277: 19255: 19214: 19192: 19172: 19150: 19126:Ebin, David G. 19118: 19096: 19067: 19065: 19062: 19059: 19058: 19046: 19031: 19014: 18999: 18987: 18981:, p. 72; 18971: 18959: 18947: 18944: 18939: 18935: 18929: 18925: 18921: 18916: 18913: 18910: 18906: 18900: 18896: 18892: 18887: 18884: 18881: 18877: 18873: 18870: 18867: 18862: 18858: 18852: 18848: 18844: 18839: 18835: 18831: 18828: 18825: 18820: 18816: 18812: 18809: 18806: 18801: 18797: 18793: 18790: 18787: 18782: 18778: 18774: 18771: 18768: 18763: 18759: 18755: 18739: 18737:, p. 369. 18727: 18715: 18713:, Section 4.4. 18699: 18687: 18675: 18663: 18648: 18646:, p. 210. 18636: 18634:, p. 207. 18624: 18612: 18610:, p. 200. 18600: 18598:, p. 201. 18588: 18576: 18564: 18562:, p. 131. 18552: 18550:, p. 137. 18540: 18538:, p. 156. 18528: 18526:, p. 105. 18511: 18499: 18497:, p. 103. 18487: 18475: 18473:, p. 100. 18463: 18451: 18439: 18437:, p. 276. 18435:Burtscher 2015 18427: 18415: 18403: 18388: 18376: 18361: 18349: 18337: 18322: 18307: 18295: 18280: 18265: 18250: 18237: 18236: 18234: 18231: 18229: 18226: 18224: 18223: 18218: 18213: 18208: 18203: 18198: 18193: 18188: 18183: 18178: 18172: 18170: 18167: 18154: 18125: 18121: 18100: 18097: 18094: 18091: 18088: 18070: 18067: 18066: 18065: 18053: 18050: 18047: 18044: 18041: 18019: 18015: 17994: 17991: 17988: 17985: 17982: 17960: 17956: 17935: 17924: 17910: 17906: 17885: 17865: 17848:, is always a 17831: 17827: 17806: 17803: 17800: 17797: 17794: 17791: 17788: 17785: 17782: 17779: 17774: 17770: 17757: 17754: 17753: 17752: 17751: 17750: 17738: 17735: 17732: 17729: 17726: 17722: 17719: 17716: 17713: 17710: 17707: 17704: 17701: 17698: 17695: 17692: 17687: 17684: 17681: 17678: 17674: 17668: 17664: 17660: 17657: 17654: 17651: 17648: 17645: 17640: 17636: 17613: 17608: 17605: 17602: 17599: 17595: 17591: 17588: 17585: 17582: 17579: 17576: 17573: 17570: 17567: 17547: 17544: 17541: 17538: 17535: 17532: 17527: 17523: 17519: 17516: 17513: 17510: 17491: 17488: 17485: 17482: 17479: 17476: 17473: 17470: 17450: 17429: 17426: 17423: 17420: 17417: 17395: 17391: 17369: 17366: 17342: 17322: 17319: 17287: 17284: 17281: 17278: 17275: 17255: 17252: 17249: 17246: 17243: 17232: 17220: 17217: 17214: 17211: 17208: 17205: 17202: 17182: 17179: 17176: 17173: 17170: 17167: 17164: 17161: 17158: 17155: 17152: 17147: 17143: 17122: 17119: 17114: 17110: 17089: 17069: 17066: 17063: 17060: 17036: 17033: 17029: 17026: 17023: 17019: 17016: 17013: 17010: 16997: 16994: 16993: 16992: 16980: 16960: 16940: 16935: 16931: 16908: 16904: 16883: 16868: 16857: 16854: 16849: 16845: 16823: 16819: 16816: 16811: 16807: 16803: 16800: 16795: 16791: 16787: 16782: 16778: 16757: 16754: 16751: 16731: 16727: 16723: 16720: 16717: 16714: 16711: 16708: 16705: 16702: 16682: 16662: 16659: 16630: 16625: 16620: 16605: 16604: 16562:external links 16551: 16549: 16542: 16536: 16533: 16522: 16497:product spaces 16403:is said to be 16385:Main article: 16382: 16379: 16319: 16269: 16226:isometry group 16190:is said to be 16175: 16172: 16147:Berger spheres 16134:associated to 16116: 16106:left-invariant 16078: 16067: 16066: 16055: 16052: 16049: 16046: 16043: 16036: 16033: 16029: 16024: 16020: 16017: 16014: 16011: 16008: 16001: 15998: 15994: 15989: 15985: 15982: 15977: 15973: 15969: 15966: 15963: 15960: 15957: 15954: 15949: 15945: 15932:is defined by 15922: 15913:, such as the 15902: 15899: 15897: 15894: 15704: 15703: 15687: 15683: 15679: 15674: 15669: 15665: 15661: 15658: 15655: 15650: 15645: 15641: 15637: 15632: 15629: 15624: 15621: 15618: 15611: 15606: 15602: 15598: 15595: 15592: 15589: 15584: 15579: 15575: 15571: 15520: 15507: 15496: 15495: 15484: 15481: 15476: 15473: 15469: 15463: 15460: 15456: 15452: 15447: 15444: 15440: 15434: 15431: 15427: 15423: 15420: 15417: 15412: 15409: 15406: 15403: 15399: 15358: 15355: 15350:Main article: 15347: 15344: 15323: 15308: 15307: 15296: 15276: 15273: 15270: 15267: 15264: 15261: 15231: 15203: 15200: 15197: 15182:Main article: 15179: 15176: 15163: 15152: 15151: 15140: 15137: 15134: 15131: 15128: 15125: 15122: 15119: 15116: 15113: 15110: 15107: 15104: 15101: 15098: 15095: 15092: 15089: 15086: 15083: 15080: 15077: 15048: 15028: 15013:Main article: 15010: 15007: 14994: 14991: 14988: 14985: 14982: 14958: 14955: 14952: 14949: 14946: 14935: 14934: 14923: 14918: 14915: 14912: 14909: 14906: 14902: 14898: 14895: 14890: 14886: 14880: 14876: 14872: 14869: 14864: 14860: 14854: 14850: 14846: 14843: 14840: 14837: 14834: 14831: 14828: 14825: 14802: 14799: 14796: 14791: 14786: 14783: 14780: 14777: 14772: 14767: 14764: 14761: 14758: 14753: 14748: 14745: 14742: 14739: 14734: 14729: 14726: 14700: 14680: 14661:Main article: 14658: 14655: 14625: 14621: 14617: 14614: 14609: 14605: 14601: 14591: 14584: 14583: 14567: 14563: 14559: 14554: 14550: 14546: 14541: 14537: 14533: 14523: 14516: 14515: 14514: 14510: 14509: 14508: 14507: 14492: 14488: 14484: 14481: 14476: 14472: 14468: 14446: 14442: 14438: 14432: 14428: 14424: 14419: 14415: 14411: 14408: 14403: 14399: 14395: 14392: 14387: 14383: 14379: 14355: 14352: 14349: 14346: 14343: 14340: 14335: 14330: 14302: 14282: 14262: 14242: 14222: 14217: 14213: 14192: 14187: 14183: 14179: 14176: 14156: 14153: 14150: 14147: 14144: 14141: 14121: 14118: 14115: 14112: 14109: 14106: 14086: 14083: 14080: 14077: 14074: 14071: 14068: 14065: 14062: 14042: 14039: 14036: 14031: 14027: 14005: 13984: 13964: 13934:Main article: 13931: 13928: 13927: 13926: 13914: 13904: 13892: 13881: 13863: 13859: 13834: 13829: 13825: 13821: 13818: 13815: 13791: 13788: 13785: 13782: 13779: 13745: 13724: 13721: 13718: 13715: 13712: 13709: 13706: 13686: 13683: 13680: 13677: 13674: 13671: 13668: 13646: 13641: 13619: 13616: 13613: 13610: 13607: 13604: 13601: 13598: 13593: 13588: 13561: 13556: 13534: 13531: 13528: 13525: 13522: 13519: 13493: 13468: 13447: 13444: 13441: 13438: 13435: 13432: 13429: 13409: 13406: 13403: 13400: 13397: 13394: 13391: 13371: 13368: 13365: 13362: 13359: 13356: 13353: 13350: 13345: 13340: 13319:Main article: 13316: 13313: 13312: 13311: 13293: 13289: 13277: 13263: 13258: 13243: 13240: 13227: 13207: 13204: 13201: 13198: 13195: 13192: 13189: 13186: 13183: 13160: 13157: 13154: 13151: 13148: 13144: 13141: 13120: 13117: 13114: 13111: 13108: 13105: 13081: 13078: 13075: 13072: 13069: 13065: 13062: 13041: 13038: 13035: 13032: 13029: 13026: 13006: 12986: 12983: 12980: 12977: 12974: 12970: 12967: 12946: 12943: 12940: 12937: 12934: 12931: 12911: 12891: 12888: 12885: 12882: 12879: 12859: 12854: 12850: 12846: 12843: 12823: 12820: 12817: 12790: 12770: 12750: 12747: 12743: 12740: 12734: 12730: 12709: 12688: 12685: 12679: 12675: 12653: 12631: 12628: 12625: 12622: 12619: 12616: 12613: 12610: 12607: 12587: 12567: 12528: 12524: 12501: 12496: 12484: 12483: 12474: 12473: 12465: 12464: 12463: 12462: 12461: 12456:Main article: 12453: 12450: 12449: 12448: 12433: 12430: 12422: 12419: 12416: 12412: 12409: 12404: 12400: 12397: 12394: 12391: 12388: 12383: 12379: 12358: 12335: 12332: 12318: 12307: 12304: 12299: 12295: 12290: 12287: 12284: 12280: 12277: 12273: 12270: 12267: 12264: 12261: 12256: 12252: 12241: 12230: 12227: 12222: 12218: 12213: 12210: 12207: 12202: 12198: 12193: 12190: 12187: 12184: 12181: 12178: 12175: 12172: 12169: 12164: 12160: 12135: 12113: 12110: 12107: 12102: 12097: 12094: 12091: 12088: 12083: 12078: 12073: 12069: 12048: 12045: 12042: 12039: 12036: 12033: 12030: 12027: 12024: 12004: 11984: 11960: 11935: 11932: 11907: 11904: 11901: 11898: 11891: 11888: 11881: 11878: 11875: 11872: 11869: 11849: 11826: 11823: 11800: 11780: 11769: 11768: 11757: 11754: 11751: 11748: 11743: 11738: 11735: 11715: 11712: 11709: 11706: 11703: 11700: 11697: 11694: 11691: 11688: 11685: 11682: 11679: 11676: 11673: 11670: 11646: 11642: 11639: 11636: 11633: 11630: 11627: 11624: 11621: 11601: 11581: 11561: 11558: 11555: 11550: 11528: 11525: 11522: 11519: 11516: 11513: 11510: 11490: 11485: 11482: 11479: 11476: 11472: 11468: 11465: 11462: 11459: 11456: 11436: 11433: 11430: 11427: 11424: 11421: 11418: 11415: 11412: 11409: 11388: 11366: 11363: 11360: 11357: 11354: 11351: 11348: 11345: 11342: 11330: 11327: 11314: 11282: 11279: 11276: 11273: 11270: 11259: 11258: 11247: 11244: 11241: 11238: 11235: 11232: 11229: 11226: 11221: 11217: 11213: 11210: 11205: 11201: 11173: 11162: 11161: 11150: 11147: 11142: 11138: 11134: 11131: 11128: 11125: 11122: 11119: 11116: 11113: 11110: 11105: 11101: 11097: 11094: 11091: 11086: 11081: 11078: 11075: 11072: 11069: 11066: 11061: 11056: 11029: 11007:Main article: 11004: 11001: 10987: 10967: 10956:is called the 10945: 10940: 10936: 10924: 10923: 10911: 10906: 10902: 10897: 10894: 10891: 10888: 10885: 10882: 10879: 10876: 10873: 10870: 10865: 10861: 10849: 10838: 10835: 10828: 10824: 10819: 10812: 10808: 10804: 10801: 10794: 10790: 10785: 10778: 10774: 10770: 10767: 10760: 10756: 10750: 10746: 10742: 10737: 10733: 10727: 10723: 10718: 10697: 10694: 10691: 10686: 10682: 10678: 10675: 10651: 10646: 10642: 10638: 10635: 10632: 10629: 10626: 10623: 10603: 10592: 10591: 10580: 10577: 10574: 10569: 10564: 10561: 10558: 10555: 10550: 10545: 10542: 10539: 10536: 10531: 10526: 10523: 10497: 10473: 10470: 10467: 10462: 10437:Main article: 10434: 10431: 10429: 10426: 10417: 10416: 10404: 10399: 10395: 10391: 10388: 10385: 10360: 10356: 10353: 10350: 10347: 10344: 10339: 10335: 10314: 10309: 10305: 10301: 10298: 10295: 10271: 10266: 10262: 10258: 10255: 10252: 10243:shows that if 10237: 10236: 10225: 10222: 10219: 10216: 10213: 10210: 10207: 10204: 10201: 10198: 10195: 10192: 10189: 10184: 10180: 10176: 10173: 10170: 10167: 10162: 10158: 10154: 10151: 10148: 10145: 10142: 10119: 10114: 10110: 10106: 10103: 10100: 10082: 10079: 10066: 10046: 10041: 10037: 10033: 10030: 10027: 9999: 9994: 9990: 9986: 9983: 9980: 9956: 9953: 9950: 9947: 9944: 9923: 9919: 9916: 9913: 9910: 9907: 9902: 9898: 9877: 9855: 9851: 9836: 9835: 9822: 9802: 9797: 9793: 9789: 9786: 9783: 9757: 9754: 9749: 9744: 9741: 9738: 9735: 9732: 9706: 9701: 9696: 9693: 9690: 9687: 9684: 9681: 9670: 9669: 9658: 9655: 9652: 9648: 9645: 9642: 9639: 9635: 9632: 9628: 9623: 9618: 9614: 9608: 9603: 9600: 9597: 9594: 9591: 9568: 9565: 9562: 9559: 9556: 9553: 9533: 9513: 9504:The length of 9491: 9488: 9485: 9482: 9479: 9476: 9473: 9470: 9450: 9447: 9444: 9441: 9438: 9435: 9432: 9412: 9409: 9406: 9378: 9375: 9372: 9369: 9366: 9363: 9360: 9357: 9354: 9334: 9331: 9328: 9325: 9322: 9319: 9316: 9313: 9310: 9305: 9301: 9297: 9294: 9291: 9288: 9285: 9282: 9258: 9255: 9252: 9232: 9229: 9224: 9220: 9216: 9213: 9193: 9190: 9187: 9165: 9161: 9157: 9154: 9151: 9148: 9145: 9142: 9139: 9136: 9133: 9130: 9110: 9090: 9085: 9082: 9060: 9040: 9037: 9034: 9029: 9026: 9004: 8984: 8981: 8978: 8958: 8955: 8952: 8949: 8929: 8926: 8923: 8920: 8917: 8914: 8894: 8891: 8888: 8885: 8882: 8827: 8824: 8821: 8818: 8815: 8812: 8809: 8804: 8800: 8779: 8776: 8773: 8749: 8744: 8740: 8736: 8733: 8730: 8717: 8716: 8704: 8684: 8679: 8675: 8671: 8668: 8665: 8645: 8640: 8636: 8632: 8629: 8626: 8616: 8611: 8598: 8578: 8573: 8569: 8565: 8562: 8559: 8531: 8526: 8522: 8518: 8515: 8512: 8499: 8498: 8487: 8484: 8481: 8478: 8475: 8472: 8469: 8466: 8463: 8460: 8457: 8454: 8451: 8448: 8445: 8437: 8434: 8431: 8428: 8425: 8422: 8419: 8416: 8413: 8410: 8407: 8404: 8401: 8398: 8393: 8389: 8365: 8362: 8359: 8356: 8353: 8350: 8347: 8344: 8341: 8338: 8333: 8329: 8307: 8304: 8301: 8298: 8295: 8283: 8282: 8271: 8268: 8265: 8259: 8256: 8253: 8250: 8246: 8242: 8239: 8236: 8232: 8229: 8225: 8220: 8215: 8211: 8207: 8204: 8201: 8198: 8195: 8183:is defined as 8172: 8169: 8166: 8163: 8160: 8157: 8154: 8151: 8148: 8128: 8125: 8122: 8119: 8099: 8096: 8093: 8090: 8087: 8065: 8062: 8059: 8056: 8052: 8048: 8045: 8042: 8038: 8035: 8031: 8028: 8025: 8005: 8000: 7997: 7994: 7991: 7987: 7983: 7980: 7977: 7974: 7970: 7967: 7946: 7943: 7940: 7937: 7934: 7931: 7928: 7925: 7922: 7906: 7903: 7885: 7882: 7860: 7855: 7833: 7820:such that the 7809: 7787: 7782: 7777: 7774: 7771: 7768: 7748: 7745: 7742: 7739: 7736: 7733: 7709: 7689: 7671: 7670: 7657: 7635: 7631: 7608: 7604: 7600: 7597: 7592: 7588: 7584: 7581: 7578: 7558: 7536: 7529: 7526: 7519: 7514: 7510: 7500:, the product 7487: 7483: 7460: 7453: 7450: 7424: 7420: 7392: 7389: 7386: 7381: 7375: 7370: 7366: 7343: 7338: 7310: 7298: 7297: 7286: 7277: 7271: 7266: 7262: 7258: 7253: 7246: 7243: 7225: 7224: 7211: 7204: 7201: 7194: 7189: 7185: 7179: 7176: 7173: 7169: 7165: 7162: 7139: 7119: 7096: 7093: 7090: 7068: 7064: 7060: 7057: 7052: 7048: 7044: 7041: 7038: 7012: 7009: 7006: 7002: 6996: 6992: 6988: 6963: 6958: 6953: 6950: 6945: 6941: 6937: 6932: 6928: 6924: 6919: 6915: 6911: 6906: 6902: 6881: 6878: 6873: 6869: 6854:locally finite 6839: 6836: 6833: 6829: 6825: 6820: 6816: 6812: 6807: 6803: 6799: 6796: 6776: 6763: 6762: 6759: 6754: 6730: 6727: 6715: 6712: 6690: 6686: 6680: 6676: 6672: 6669: 6666: 6661: 6657: 6651: 6647: 6626: 6604: 6600: 6596: 6593: 6590: 6585: 6581: 6560: 6557: 6535: 6531: 6527: 6524: 6521: 6516: 6512: 6499: 6496: 6481: 6476: 6453: 6431: 6427: 6424: 6421: 6417: 6401:is called the 6388: 6384: 6361: 6357: 6334: 6330: 6326: 6323: 6320: 6315: 6311: 6307: 6302: 6298: 6276: 6264: 6263: 6262: 6261: 6250: 6245: 6237: 6233: 6229: 6227: 6224: 6223: 6220: 6217: 6213: 6209: 6205: 6204: 6202: 6197: 6194: 6189: 6186: 6179: 6176: 6169: 6147: 6143: 6139: 6133: 6129: 6125: 6119: 6116: 6109: 6106: 6097: 6094: 6090: 6086: 6080: 6077: 6052: 6049: 6046: 6043: 6040: 6037: 6034: 6031: 6028: 6025: 6022: 5999: 5996: 5973: 5970: 5967: 5964: 5961: 5941: 5919: 5915: 5894: 5891: 5888: 5885: 5882: 5862: 5840: 5836: 5815: 5812: 5809: 5806: 5786: 5783: 5780: 5777: 5774: 5771: 5768: 5765: 5762: 5759: 5756: 5736: 5716: 5713: 5710: 5707: 5704: 5684: 5664: 5661: 5658: 5655: 5652: 5641: 5640: 5639: 5628: 5625: 5620: 5616: 5612: 5607: 5603: 5599: 5594: 5590: 5586: 5583: 5578: 5574: 5570: 5565: 5561: 5557: 5552: 5548: 5544: 5541: 5538: 5533: 5529: 5525: 5520: 5516: 5512: 5509: 5506: 5501: 5497: 5493: 5488: 5484: 5480: 5477: 5472: 5469: 5466: 5459: 5456: 5430: 5427: 5422: 5418: 5414: 5411: 5406: 5402: 5398: 5395: 5392: 5389: 5386: 5383: 5378: 5375: 5372: 5369: 5366: 5362: 5337: 5334: 5331: 5328: 5305: 5302: 5279: 5259: 5239: 5236: 5233: 5210: 5207: 5204: 5201: 5198: 5178: 5175: 5172: 5169: 5166: 5142: 5141: 5132: 5131: 5123: 5122: 5121: 5120: 5119: 5117: 5114: 5101: 5096: 5092: 5088: 5082: 5079: 5044: 5041: 5038: 5035: 5032: 5009: 5006: 4983: 4972: 4971: 4952: 4949: 4926: 4899: 4896: 4873: 4870: 4864: 4861: 4838: 4835: 4832: 4829: 4826: 4815: 4801: 4798: 4795: 4790: 4767: 4763: 4758: 4753: 4748: 4745: 4729: 4728: 4714: 4709: 4695: 4694: 4693: 4692: 4680: 4676: 4673: 4666: 4662: 4656: 4652: 4646: 4639: 4635: 4629: 4625: 4619: 4612: 4608: 4602: 4598: 4592: 4587: 4582: 4577: 4574: 4570: 4544: 4541: 4538: 4535: 4532: 4520: 4519: 4510:is called the 4497: 4493: 4470: 4467: 4464: 4459: 4445: 4444: 4443: 4442: 4431: 4428: 4425: 4420: 4416: 4410: 4407: 4404: 4400: 4396: 4393: 4390: 4387: 4382: 4378: 4372: 4368: 4364: 4361: 4356: 4353: 4350: 4345: 4340: 4337: 4334: 4331: 4326: 4322: 4298: 4271: 4268: 4248: 4224: 4221: 4218: 4213: 4209: 4205: 4194: 4193: 4182: 4177: 4172: 4169: 4166: 4161: 4157: 4153: 4150: 4147: 4144: 4141: 4136: 4132: 4128: 4123: 4116: 4113: 4110: 4107: 4103: 4099: 4096: 4093: 4090: 4087: 4084: 4079: 4075: 4069: 4065: 4041: 4036: 4032: 4011: 3991: 3971: 3966: 3962: 3941: 3938: 3935: 3932: 3929: 3926: 3906: 3903: 3900: 3897: 3894: 3874: 3871: 3868: 3845: 3842: 3839: 3836: 3833: 3809: 3806: 3801: 3797: 3793: 3790: 3787: 3767: 3747: 3727: 3722: 3718: 3694: 3666: 3663: 3660: 3657: 3654: 3634: 3631: 3628: 3625: 3622: 3596: 3593: 3590: 3585: 3561: 3557: 3535: 3515:Main article: 3512: 3509: 3492: 3483: 3479: 3474: 3469: 3464: 3453: 3452: 3441: 3436: 3430: 3427: 3425: 3422: 3420: 3417: 3415: 3412: 3411: 3408: 3405: 3403: 3400: 3398: 3395: 3393: 3390: 3389: 3386: 3383: 3381: 3378: 3376: 3373: 3371: 3368: 3367: 3364: 3361: 3359: 3356: 3354: 3351: 3349: 3346: 3345: 3343: 3338: 3335: 3325: 3322: 3318: 3314: 3300: 3299: 3282: 3279: 3275: 3252: 3249: 3245: 3241: 3231: 3228: 3224: 3209: 3208: 3195: 3191: 3185: 3181: 3177: 3174: 3171: 3168: 3165: 3160: 3156: 3150: 3146: 3142: 3139: 3136: 3127: 3112: 3111: 3098: 3094: 3088: 3084: 3078: 3074: 3070: 3066: 3057: 3053: 3049: 3045: 3038: 3034: 3028: 3024: 3020: 3012: 3008: 3004: 3000: 2993: 2989: 2983: 2979: 2974: 2964: 2934: 2910: 2905: 2900: 2876: 2872: 2868: 2865: 2862: 2857: 2853: 2840: 2837: 2835: 2832: 2817: 2813: 2809: 2804: 2800: 2778: 2752: 2732: 2702: 2698: 2694: 2673: 2652: 2649: 2646: 2643: 2640: 2620: 2608: 2605: 2592: 2589: 2586: 2583: 2580: 2577: 2574: 2571: 2551: 2531: 2528: 2525: 2514:local isometry 2501: 2498: 2495: 2492: 2489: 2486: 2463: 2460: 2455: 2451: 2447: 2444: 2441: 2438: 2418: 2415: 2412: 2401: 2400: 2389: 2386: 2383: 2380: 2375: 2371: 2367: 2364: 2361: 2358: 2355: 2350: 2346: 2342: 2339: 2334: 2331: 2328: 2325: 2321: 2317: 2314: 2311: 2308: 2305: 2302: 2297: 2293: 2280:, that is, if 2269: 2264: 2260: 2256: 2253: 2229: 2226: 2223: 2220: 2217: 2207:diffeomorphism 2194: 2191: 2188: 2185: 2182: 2162: 2159: 2156: 2153: 2150: 2131: 2128: 2115: 2110: 2106: 2085: 2082: 2067: 2066: 2055: 2052: 2049: 2046: 2043: 2038: 2034: 2030: 2027: 2024: 2021: 2018: 2015: 1992: 1977:tangent bundle 1964: 1961: 1958: 1955: 1952: 1949: 1946: 1927:Main article: 1924: 1921: 1908: 1871: 1868: 1864: 1839: 1819: 1816: 1813: 1810: 1807: 1804: 1783: 1779: 1776: 1773: 1768: 1765: 1761: 1736: 1724: 1721: 1720: 1719: 1708: 1703: 1699: 1695: 1692: 1687: 1683: 1679: 1673: 1670: 1666: 1660: 1657: 1654: 1650: 1646: 1643: 1620: 1615: 1611: 1607: 1604: 1601: 1598: 1593: 1589: 1585: 1582: 1568:tensor algebra 1552: 1523: 1519: 1498: 1478: 1475: 1472: 1451: 1447: 1444: 1441: 1436: 1433: 1429: 1406: 1402: 1390: 1389: 1376: 1370: 1365: 1357: 1353: 1349: 1345: 1340: 1336: 1331: 1326: 1318: 1314: 1310: 1306: 1301: 1296: 1290: 1286: 1282: 1277: 1272: 1265: 1262: 1258: 1234: 1214: 1211: 1208: 1188: 1183: 1179: 1167: 1166: 1154: 1148: 1142: 1131: 1127: 1123: 1119: 1114: 1111: 1108: 1103: 1097: 1086: 1082: 1078: 1074: 1068: 1055:, the vectors 1044: 1018: 1013: 1008: 1005: 1002: 999: 994: 990: 986: 983: 980: 975: 971: 967: 955: 952: 928: 925: 922: 919: 916: 892: 872: 850: 847: 844: 841: 838: 833: 829: 823: 818: 814: 810: 807: 786: 782: 779: 774: 770: 766: 761: 757: 753: 750: 729: 725: 722: 717: 713: 709: 706: 701: 697: 693: 688: 684: 674:inner product 659: 639: 619: 589: 584: 580: 556: 536: 516: 511: 507: 486: 466: 442: 437: 433: 412: 409: 406: 382: 362: 359: 357: 354: 291:local isometry 255: 252: 87: 26: 9: 6: 4: 3: 2: 20809: 20798: 20795: 20793: 20790: 20788: 20785: 20784: 20782: 20767: 20764: 20762: 20759: 20757: 20754: 20752: 20749: 20748: 20746: 20742: 20736: 20733: 20731: 20728: 20726: 20723: 20722: 20720: 20716: 20710: 20709:Schur's lemma 20707: 20705: 20702: 20700: 20697: 20695: 20692: 20690: 20687: 20685: 20684:Gauss's lemma 20682: 20680: 20677: 20676: 20674: 20670: 20664: 20661: 20659: 20656: 20654: 20651: 20649: 20646: 20645: 20643: 20639: 20633: 20630: 20628: 20625: 20623: 20620: 20618: 20615: 20611: 20607: 20604: 20602: 20599: 20597: 20594: 20592: 20589: 20588: 20587: 20586:Metric tensor 20584: 20582: 20581:Inner product 20579: 20577: 20574: 20572: 20569: 20565: 20562: 20560: 20557: 20555: 20552: 20550: 20547: 20546: 20545: 20542: 20541: 20539: 20535: 20530: 20526: 20519: 20514: 20512: 20507: 20505: 20500: 20499: 20496: 20484: 20481: 20479: 20478:Supermanifold 20476: 20474: 20471: 20469: 20466: 20462: 20459: 20458: 20457: 20454: 20452: 20449: 20447: 20444: 20442: 20439: 20437: 20434: 20432: 20429: 20427: 20424: 20423: 20421: 20417: 20411: 20408: 20406: 20403: 20401: 20398: 20396: 20393: 20391: 20388: 20386: 20383: 20382: 20380: 20376: 20366: 20363: 20361: 20358: 20356: 20353: 20351: 20348: 20346: 20343: 20341: 20338: 20336: 20333: 20331: 20328: 20326: 20323: 20321: 20318: 20317: 20315: 20313: 20309: 20303: 20300: 20298: 20295: 20293: 20290: 20288: 20285: 20283: 20280: 20278: 20275: 20273: 20269: 20265: 20263: 20260: 20258: 20255: 20253: 20249: 20245: 20243: 20240: 20238: 20235: 20233: 20230: 20228: 20225: 20223: 20220: 20218: 20215: 20214: 20212: 20210: 20206: 20200: 20199:Wedge product 20197: 20195: 20192: 20188: 20185: 20184: 20183: 20180: 20178: 20175: 20171: 20168: 20167: 20166: 20163: 20161: 20158: 20156: 20153: 20151: 20148: 20144: 20143:Vector-valued 20141: 20140: 20139: 20136: 20134: 20131: 20127: 20124: 20123: 20122: 20119: 20117: 20114: 20112: 20109: 20108: 20106: 20102: 20096: 20093: 20091: 20088: 20086: 20083: 20079: 20076: 20075: 20074: 20073:Tangent space 20071: 20069: 20066: 20064: 20061: 20059: 20056: 20055: 20053: 20049: 20046: 20044: 20040: 20034: 20031: 20029: 20025: 20021: 20019: 20016: 20014: 20010: 20006: 20002: 20000: 19997: 19995: 19992: 19990: 19987: 19985: 19982: 19980: 19977: 19975: 19972: 19970: 19967: 19963: 19960: 19959: 19958: 19955: 19953: 19950: 19948: 19945: 19943: 19940: 19938: 19935: 19933: 19930: 19928: 19925: 19923: 19920: 19918: 19915: 19913: 19910: 19908: 19904: 19900: 19898: 19894: 19890: 19888: 19885: 19884: 19882: 19876: 19870: 19867: 19865: 19862: 19860: 19857: 19855: 19852: 19850: 19847: 19845: 19842: 19838: 19837:in Lie theory 19835: 19834: 19833: 19830: 19828: 19825: 19821: 19818: 19817: 19816: 19813: 19811: 19808: 19807: 19805: 19803: 19799: 19793: 19790: 19788: 19785: 19783: 19780: 19778: 19775: 19773: 19770: 19768: 19765: 19763: 19760: 19758: 19755: 19753: 19750: 19749: 19747: 19744: 19740:Main results 19738: 19732: 19729: 19727: 19724: 19722: 19721:Tangent space 19719: 19717: 19714: 19712: 19709: 19707: 19704: 19702: 19699: 19697: 19694: 19690: 19687: 19685: 19682: 19681: 19680: 19677: 19673: 19670: 19669: 19668: 19665: 19664: 19662: 19658: 19653: 19649: 19642: 19637: 19635: 19630: 19628: 19623: 19622: 19619: 19612: 19608: 19607: 19602: 19597: 19596: 19585: 19581: 19577: 19573: 19568: 19563: 19559: 19555: 19554: 19549: 19545: 19541: 19537: 19533: 19529: 19525: 19520: 19515: 19511: 19507: 19502: 19498: 19494: 19490: 19486: 19481: 19476: 19472: 19468: 19463: 19459: 19455: 19451: 19447: 19442: 19438: 19434: 19430: 19426: 19422: 19416: 19412: 19408: 19404: 19400: 19396: 19392: 19388: 19384: 19380: 19376: 19372: 19366: 19362: 19358: 19354: 19350: 19346: 19341: 19337: 19331: 19327: 19323: 19319: 19315: 19311: 19307: 19303: 19299: 19296: 19292: 19291: 19286: 19282: 19278: 19274: 19270: 19266: 19262: 19258: 19256:0-8176-3898-9 19252: 19248: 19244: 19241: 19237: 19233: 19229: 19225: 19224: 19219: 19218:Gromov, Misha 19215: 19211: 19207: 19203: 19199: 19195: 19189: 19185: 19181: 19177: 19173: 19169: 19165: 19161: 19157: 19153: 19147: 19143: 19139: 19135: 19131: 19127: 19123: 19122:Cheeger, Jeff 19119: 19115: 19111: 19107: 19103: 19099: 19097:3-540-15279-2 19093: 19089: 19085: 19081: 19077: 19073: 19069: 19068: 19055: 19050: 19043: 19038: 19036: 19029:, Chapter 10. 19028: 19027:Petersen 2016 19023: 19021: 19019: 19012:, Section 7C. 19011: 19006: 19004: 18996: 18991: 18984: 18980: 18975: 18968: 18963: 18945: 18937: 18933: 18927: 18923: 18919: 18914: 18911: 18908: 18904: 18898: 18894: 18890: 18885: 18882: 18879: 18875: 18871: 18868: 18865: 18860: 18856: 18850: 18846: 18842: 18837: 18833: 18826: 18818: 18814: 18810: 18807: 18804: 18799: 18795: 18788: 18780: 18776: 18772: 18769: 18766: 18761: 18757: 18743: 18736: 18735:Petersen 2016 18731: 18724: 18723:Petersen 2016 18719: 18712: 18711:Petersen 2016 18708: 18703: 18696: 18691: 18684: 18679: 18672: 18667: 18660: 18655: 18653: 18645: 18640: 18633: 18628: 18621: 18616: 18609: 18604: 18597: 18592: 18585: 18580: 18573: 18572:do Carmo 1992 18568: 18561: 18556: 18549: 18544: 18537: 18532: 18525: 18520: 18518: 18516: 18508: 18503: 18496: 18491: 18484: 18479: 18472: 18467: 18460: 18455: 18448: 18443: 18436: 18431: 18425:, p. 39. 18424: 18419: 18413:, p. 11. 18412: 18407: 18401:, p. 20. 18400: 18395: 18393: 18386:, p. 16. 18385: 18380: 18374:, p. 15. 18373: 18368: 18366: 18358: 18353: 18347:, p. 31. 18346: 18341: 18335:, p. 30. 18334: 18329: 18327: 18320:, p. 12. 18319: 18314: 18312: 18305:, p. 26. 18304: 18299: 18293:, p. 13. 18292: 18287: 18285: 18278:, p. 38. 18277: 18276:do Carmo 1992 18272: 18270: 18263:, p. 37. 18262: 18261:do Carmo 1992 18257: 18255: 18247: 18246:do Carmo 1992 18242: 18238: 18222: 18219: 18217: 18214: 18212: 18209: 18207: 18204: 18202: 18201:Metric tensor 18199: 18197: 18194: 18192: 18189: 18187: 18184: 18182: 18179: 18177: 18174: 18173: 18166: 18152: 18143: 18139: 18123: 18119: 18095: 18092: 18089: 18078: 18074: 18048: 18042: 18039: 18017: 18013: 17989: 17986: 17983: 17958: 17954: 17933: 17925: 17908: 17904: 17883: 17863: 17855: 17854: 17853: 17851: 17847: 17844:, called the 17829: 17825: 17798: 17795: 17786: 17783: 17780: 17777: 17772: 17768: 17733: 17727: 17724: 17714: 17708: 17705: 17699: 17693: 17682: 17676: 17672: 17666: 17662: 17658: 17652: 17649: 17646: 17638: 17634: 17626: 17625: 17611: 17603: 17597: 17593: 17589: 17583: 17577: 17574: 17571: 17568: 17565: 17545: 17539: 17533: 17530: 17525: 17521: 17517: 17514: 17511: 17508: 17489: 17483: 17477: 17474: 17471: 17468: 17448: 17440: 17424: 17418: 17415: 17393: 17389: 17367: 17364: 17356: 17340: 17320: 17317: 17309: 17308:vector fields 17305: 17301: 17282: 17276: 17273: 17250: 17247: 17244: 17233: 17218: 17215: 17212: 17209: 17206: 17203: 17200: 17177: 17174: 17171: 17165: 17159: 17156: 17153: 17145: 17141: 17120: 17117: 17112: 17108: 17087: 17067: 17064: 17061: 17058: 17050: 17049:Hilbert space 17027: 17024: 17021: 17014: 17011: 17000: 16999: 16978: 16958: 16938: 16933: 16929: 16906: 16902: 16881: 16873: 16869: 16855: 16852: 16847: 16843: 16814: 16809: 16805: 16801: 16798: 16793: 16789: 16785: 16780: 16776: 16755: 16752: 16749: 16729: 16718: 16715: 16712: 16709: 16706: 16703: 16700: 16680: 16672: 16668: 16667: 16666: 16658: 16656: 16652: 16648: 16644: 16628: 16623: 16601: 16598: 16590: 16580: 16576: 16570: 16569: 16563: 16559: 16555: 16550: 16541: 16540: 16532: 16530: 16526: 16518: 16514: 16510: 16509:Marcel Berger 16506: 16502: 16498: 16494: 16489: 16487: 16483: 16479: 16475: 16471: 16466: 16464: 16460: 16456: 16452: 16448: 16444: 16440: 16436: 16428: 16424: 16408: 16407: 16400: 16396: 16388: 16378: 16350: 16335: 16331: 16327: 16322: 16310: 16306: 16302: 16285: 16281: 16277: 16272: 16257: 16250: 16242: 16229: 16227: 16223: 16222:group actions 16195: 16194: 16187: 16183: 16171: 16169: 16165: 16161: 16156: 16152: 16148: 16143: 16141: 16133: 16125: 16119: 16115: 16109: 16107: 16102: 16092: 16088: 16081: 16077: 16053: 16044: 16034: 16031: 16027: 16022: 16018: 16015: 16009: 15999: 15996: 15992: 15987: 15983: 15975: 15971: 15967: 15961: 15958: 15955: 15947: 15943: 15935: 15934: 15933: 15925: 15921: 15916: 15912: 15893: 15891: 15887: 15881: 15877: 15873: 15869: 15865: 15859: 15857: 15853: 15849: 15845: 15836: 15832: 15828: 15816: 15808: 15801: 15795: 15790: 15782: 15778: 15773: 15770: 15754: 15753: 15748: 15744: 15740: 15739: 15734: 15730: 15726: 15725: 15719: 15713: 15685: 15672: 15667: 15663: 15659: 15656: 15653: 15648: 15643: 15639: 15630: 15627: 15622: 15619: 15609: 15604: 15600: 15596: 15593: 15590: 15587: 15582: 15577: 15573: 15569: 15559: 15558: 15557: 15555: 15551: 15542: 15538: 15534: 15529: 15523: 15519: 15515: 15510: 15506: 15501: 15482: 15474: 15471: 15467: 15461: 15458: 15454: 15450: 15445: 15442: 15438: 15432: 15429: 15425: 15418: 15415: 15410: 15407: 15404: 15401: 15397: 15389: 15388: 15387: 15385: 15384:metric tensor 15381: 15373: 15366: 15365: 15353: 15343: 15341: 15337: 15321: 15313: 15294: 15274: 15271: 15268: 15265: 15262: 15259: 15252: 15251: 15250: 15249: 15245: 15242:is called an 15229: 15221: 15217: 15201: 15198: 15195: 15185: 15175: 15161: 15135: 15129: 15126: 15123: 15117: 15111: 15105: 15102: 15099: 15093: 15090: 15087: 15081: 15078: 15075: 15068: 15067: 15066: 15064: 15063: 15046: 15016: 15006: 14989: 14986: 14983: 14972: 14953: 14950: 14947: 14921: 14913: 14910: 14907: 14896: 14893: 14888: 14878: 14870: 14867: 14862: 14852: 14844: 14841: 14835: 14832: 14829: 14823: 14816: 14815: 14814: 14797: 14778: 14765: 14759: 14746: 14740: 14727: 14724: 14716: 14715: 14698: 14669: 14664: 14654: 14652: 14648: 14623: 14619: 14615: 14612: 14607: 14603: 14599: 14588: 14565: 14561: 14557: 14552: 14548: 14544: 14539: 14535: 14531: 14520: 14506: 14490: 14486: 14482: 14479: 14474: 14470: 14466: 14444: 14440: 14436: 14430: 14426: 14422: 14417: 14413: 14409: 14406: 14401: 14397: 14393: 14390: 14385: 14381: 14377: 14369: 14350: 14347: 14344: 14338: 14333: 14319: 14314: 14300: 14280: 14260: 14240: 14220: 14215: 14211: 14190: 14185: 14181: 14177: 14174: 14154: 14151: 14145: 14139: 14119: 14116: 14110: 14104: 14084: 14075: 14072: 14069: 14063: 14060: 14040: 14037: 14034: 14029: 14025: 14016: 14003: 13982: 13962: 13953: 13951: 13942: 13937: 13912: 13905: 13890: 13882: 13879: 13861: 13857: 13848: 13827: 13823: 13819: 13816: 13805: 13804: 13803: 13786: 13783: 13780: 13769: 13765: 13763: 13758: 13719: 13716: 13713: 13707: 13704: 13681: 13678: 13675: 13669: 13666: 13644: 13611: 13608: 13605: 13596: 13591: 13577: 13559: 13526: 13520: 13509: 13508: 13491: 13442: 13439: 13436: 13430: 13427: 13404: 13401: 13398: 13392: 13389: 13363: 13360: 13357: 13343: 13327: 13322: 13309: 13308:great circles 13291: 13287: 13278: 13261: 13246: 13245: 13239: 13225: 13205: 13196: 13193: 13190: 13184: 13181: 13172: 13158: 13155: 13149: 13142: 13139: 13118: 13115: 13109: 13103: 13095: 13079: 13076: 13070: 13063: 13060: 13039: 13036: 13030: 13024: 13004: 12984: 12981: 12975: 12968: 12965: 12944: 12941: 12935: 12929: 12909: 12889: 12883: 12880: 12877: 12857: 12852: 12848: 12844: 12841: 12821: 12818: 12815: 12806: 12804: 12788: 12768: 12748: 12745: 12741: 12738: 12732: 12728: 12707: 12686: 12683: 12677: 12673: 12664: 12651: 12629: 12620: 12617: 12614: 12608: 12605: 12585: 12556: 12553: 12544: 12543:great circles 12526: 12522: 12499: 12478: 12469: 12459: 12428: 12417: 12410: 12407: 12398: 12392: 12386: 12381: 12377: 12356: 12330: 12319: 12305: 12302: 12297: 12293: 12288: 12285: 12282: 12278: 12275: 12271: 12265: 12262: 12254: 12250: 12242: 12228: 12225: 12220: 12216: 12211: 12208: 12205: 12200: 12196: 12191: 12188: 12182: 12179: 12176: 12173: 12170: 12162: 12158: 12150: 12149: 12148: 12147:, such that: 12146: 12133: 12124:, called the 12108: 12089: 12076: 12071: 12067: 12046: 12037: 12034: 12031: 12025: 12022: 12002: 11973: 11971: 11958: 11951:extension of 11949:is called an 11930: 11902: 11896: 11886: 11879: 11873: 11867: 11847: 11821: 11798: 11778: 11755: 11749: 11736: 11733: 11710: 11704: 11698: 11692: 11689: 11683: 11674: 11671: 11661: 11660: 11659: 11634: 11631: 11628: 11622: 11619: 11599: 11579: 11556: 11523: 11520: 11517: 11511: 11508: 11488: 11480: 11474: 11470: 11466: 11460: 11454: 11434: 11431: 11422: 11419: 11416: 11410: 11407: 11399: 11386: 11364: 11355: 11352: 11349: 11343: 11340: 11326: 11312: 11303: 11298: 11296: 11277: 11274: 11271: 11245: 11239: 11236: 11233: 11227: 11224: 11219: 11211: 11208: 11203: 11191: 11190: 11189: 11187: 11164:A connection 11145: 11140: 11132: 11129: 11123: 11120: 11114: 11111: 11108: 11103: 11092: 11089: 11076: 11073: 11070: 11064: 11054: 11047: 11046: 11045: 11043: 11020:A connection 11018: 11016: 11010: 11000: 10998: 10985: 10965: 10943: 10938: 10909: 10904: 10895: 10892: 10889: 10883: 10877: 10874: 10871: 10868: 10863: 10850: 10836: 10833: 10826: 10822: 10810: 10806: 10802: 10799: 10792: 10788: 10776: 10772: 10768: 10765: 10758: 10754: 10748: 10744: 10740: 10735: 10731: 10725: 10721: 10692: 10680: 10676: 10673: 10665: 10664: 10663: 10649: 10644: 10630: 10627: 10624: 10601: 10575: 10556: 10543: 10537: 10524: 10514: 10513: 10512: 10511: 10495: 10487: 10486:vector fields 10468: 10449: 10446: 10440: 10425: 10423: 10397: 10393: 10389: 10386: 10375: 10374: 10373: 10351: 10348: 10345: 10342: 10337: 10333: 10307: 10303: 10299: 10296: 10285: 10264: 10260: 10256: 10253: 10242: 10223: 10217: 10214: 10211: 10208: 10205: 10202: 10196: 10193: 10190: 10182: 10178: 10168: 10160: 10156: 10152: 10149: 10143: 10140: 10133: 10132: 10131: 10112: 10108: 10104: 10101: 10090: 10089: 10078: 10064: 10039: 10035: 10031: 10028: 10017: 10013: 9992: 9988: 9984: 9981: 9968: 9951: 9948: 9945: 9914: 9911: 9908: 9905: 9900: 9896: 9875: 9853: 9849: 9834: 9820: 9795: 9791: 9787: 9784: 9773: 9768: 9755: 9752: 9747: 9742: 9736: 9730: 9722: 9704: 9694: 9688: 9679: 9656: 9653: 9650: 9640: 9633: 9630: 9621: 9616: 9612: 9606: 9601: 9595: 9589: 9582: 9581: 9580: 9566: 9560: 9557: 9554: 9531: 9511: 9502: 9489: 9486: 9480: 9474: 9468: 9448: 9445: 9442: 9436: 9430: 9410: 9407: 9404: 9396: 9392: 9376: 9367: 9364: 9361: 9355: 9352: 9326: 9320: 9317: 9311: 9303: 9299: 9295: 9292: 9289: 9286: 9272: 9253: 9230: 9227: 9222: 9218: 9214: 9211: 9191: 9188: 9185: 9163: 9155: 9149: 9146: 9140: 9137: 9134: 9128: 9108: 9088: 9080: 9058: 9038: 9035: 9032: 9024: 9002: 8982: 8979: 8976: 8956: 8953: 8950: 8947: 8927: 8924: 8918: 8912: 8889: 8886: 8883: 8871: 8869: 8865: 8861: 8857: 8852: 8848: 8844: 8839: 8825: 8822: 8816: 8813: 8810: 8802: 8798: 8777: 8774: 8771: 8763: 8742: 8738: 8734: 8731: 8719: 8718: 8702: 8677: 8673: 8669: 8666: 8638: 8634: 8630: 8627: 8615: 8614: 8610: 8596: 8571: 8567: 8563: 8560: 8549: 8545: 8524: 8520: 8516: 8513: 8503: 8485: 8479: 8476: 8470: 8464: 8461: 8458: 8455: 8449: 8443: 8435: 8432: 8426: 8420: 8411: 8405: 8402: 8399: 8391: 8387: 8379: 8378: 8377: 8357: 8354: 8345: 8342: 8339: 8336: 8331: 8327: 8318: 8302: 8299: 8296: 8269: 8266: 8263: 8254: 8248: 8237: 8230: 8227: 8218: 8213: 8209: 8205: 8199: 8193: 8186: 8185: 8184: 8170: 8161: 8158: 8155: 8149: 8146: 8123: 8117: 8094: 8091: 8088: 8060: 8054: 8043: 8036: 8033: 8023: 8003: 7995: 7989: 7985: 7981: 7975: 7968: 7965: 7944: 7935: 7932: 7929: 7923: 7920: 7912: 7902: 7900: 7883: 7880: 7858: 7831: 7823: 7807: 7785: 7772: 7769: 7766: 7746: 7740: 7737: 7734: 7723: 7707: 7687: 7679: 7669: 7655: 7633: 7629: 7606: 7602: 7598: 7590: 7586: 7579: 7576: 7556: 7534: 7524: 7517: 7512: 7508: 7485: 7481: 7458: 7448: 7422: 7418: 7409: 7379: 7373: 7368: 7364: 7341: 7308: 7284: 7275: 7269: 7264: 7260: 7256: 7251: 7241: 7230: 7229: 7228: 7209: 7199: 7192: 7187: 7183: 7177: 7174: 7171: 7167: 7163: 7160: 7153: 7152: 7151: 7137: 7117: 7108: 7094: 7091: 7088: 7066: 7062: 7058: 7050: 7046: 7039: 7036: 7028: 7010: 7007: 7004: 6994: 6990: 6977: 6961: 6951: 6943: 6939: 6930: 6926: 6917: 6913: 6909: 6904: 6900: 6879: 6876: 6871: 6867: 6858: 6855: 6837: 6834: 6831: 6818: 6814: 6810: 6805: 6801: 6774: 6765: 6764: 6758: 6757: 6753: 6751: 6747: 6743: 6737: 6735: 6726: 6713: 6710: 6688: 6684: 6678: 6674: 6670: 6667: 6664: 6659: 6655: 6649: 6645: 6624: 6602: 6598: 6594: 6591: 6588: 6583: 6579: 6558: 6555: 6533: 6529: 6525: 6522: 6519: 6514: 6510: 6495: 6479: 6425: 6422: 6419: 6406: 6405: 6386: 6382: 6359: 6355: 6332: 6328: 6324: 6321: 6318: 6313: 6309: 6305: 6300: 6296: 6288: 6274: 6248: 6243: 6235: 6231: 6225: 6218: 6211: 6207: 6200: 6195: 6187: 6184: 6177: 6174: 6145: 6141: 6137: 6131: 6127: 6123: 6117: 6114: 6107: 6104: 6095: 6092: 6088: 6084: 6078: 6075: 6065: 6064: 6044: 6041: 6038: 6032: 6029: 6026: 6023: 5997: 5994: 5968: 5965: 5962: 5952:in the chart 5939: 5917: 5913: 5889: 5886: 5883: 5873:in the chart 5860: 5838: 5834: 5813: 5810: 5807: 5804: 5778: 5775: 5772: 5766: 5763: 5760: 5757: 5734: 5711: 5708: 5705: 5682: 5659: 5656: 5653: 5642: 5626: 5618: 5614: 5610: 5605: 5601: 5592: 5588: 5584: 5576: 5572: 5568: 5563: 5559: 5550: 5546: 5542: 5531: 5527: 5523: 5518: 5514: 5507: 5499: 5495: 5491: 5486: 5482: 5470: 5467: 5464: 5457: 5454: 5443: 5442: 5428: 5425: 5420: 5416: 5412: 5409: 5404: 5400: 5396: 5390: 5387: 5384: 5373: 5370: 5367: 5360: 5351: 5350: 5349: 5335: 5332: 5329: 5326: 5303: 5300: 5277: 5257: 5237: 5234: 5231: 5224: 5205: 5202: 5199: 5173: 5170: 5167: 5150: 5146: 5136: 5127: 5113: 5099: 5094: 5090: 5086: 5077: 5066: 5065: 5060: 5059: 5055:is called an 5042: 5036: 5033: 5030: 5004: 4981: 4969: 4950: 4947: 4924: 4916: 4897: 4894: 4871: 4862: 4859: 4833: 4830: 4827: 4816: 4799: 4796: 4793: 4756: 4746: 4743: 4735: 4731: 4730: 4712: 4697: 4696: 4678: 4674: 4671: 4664: 4660: 4654: 4650: 4644: 4637: 4633: 4627: 4623: 4617: 4610: 4606: 4600: 4596: 4590: 4585: 4575: 4572: 4568: 4560: 4559: 4558: 4542: 4539: 4536: 4533: 4530: 4522: 4521: 4517: 4513: 4495: 4491: 4468: 4465: 4462: 4447: 4446: 4426: 4423: 4418: 4408: 4405: 4402: 4398: 4391: 4388: 4385: 4380: 4370: 4366: 4359: 4354: 4351: 4348: 4338: 4335: 4329: 4324: 4320: 4312: 4311: 4310: 4296: 4287: 4286: 4285: 4282: 4269: 4266: 4246: 4238: 4219: 4211: 4207: 4203: 4180: 4167: 4159: 4155: 4151: 4148: 4142: 4134: 4130: 4126: 4111: 4105: 4101: 4097: 4091: 4088: 4085: 4077: 4073: 4067: 4063: 4055: 4054: 4053: 4039: 4034: 4030: 4009: 3989: 3969: 3964: 3960: 3939: 3936: 3930: 3924: 3904: 3898: 3895: 3892: 3872: 3869: 3866: 3857: 3840: 3837: 3834: 3823: 3804: 3799: 3795: 3791: 3788: 3765: 3745: 3725: 3720: 3716: 3708: 3692: 3684: 3680: 3664: 3658: 3655: 3652: 3629: 3626: 3623: 3594: 3591: 3588: 3559: 3555: 3547: 3533: 3523: 3518: 3508: 3506: 3481: 3477: 3472: 3439: 3434: 3428: 3423: 3418: 3413: 3406: 3401: 3396: 3391: 3384: 3379: 3374: 3369: 3362: 3357: 3352: 3347: 3341: 3336: 3323: 3320: 3316: 3305: 3304: 3303: 3298: 3280: 3277: 3273: 3250: 3247: 3243: 3239: 3229: 3226: 3222: 3214: 3213: 3212: 3193: 3183: 3179: 3175: 3169: 3166: 3163: 3158: 3148: 3144: 3140: 3134: 3125: 3117: 3116: 3115: 3096: 3092: 3086: 3082: 3076: 3072: 3068: 3064: 3055: 3051: 3036: 3032: 3026: 3022: 3018: 3010: 3006: 2991: 2987: 2981: 2977: 2972: 2962: 2954: 2953: 2952: 2932: 2924: 2908: 2903: 2874: 2870: 2866: 2863: 2860: 2855: 2851: 2831: 2815: 2811: 2807: 2802: 2798: 2789: 2776: 2766: 2750: 2730: 2722: 2718: 2700: 2696: 2692: 2685: 2671: 2663:has a unique 2647: 2644: 2641: 2618: 2604: 2587: 2581: 2575: 2572: 2569: 2549: 2529: 2526: 2523: 2515: 2499: 2496: 2490: 2487: 2484: 2475: 2461: 2458: 2453: 2449: 2445: 2442: 2439: 2436: 2416: 2413: 2410: 2381: 2373: 2369: 2365: 2362: 2356: 2348: 2344: 2340: 2329: 2323: 2319: 2315: 2309: 2306: 2303: 2295: 2291: 2283: 2282: 2281: 2267: 2262: 2258: 2254: 2251: 2243: 2240:is called an 2227: 2221: 2218: 2215: 2208: 2189: 2186: 2183: 2157: 2154: 2151: 2139: 2137: 2127: 2113: 2108: 2104: 2083: 2080: 2072: 2050: 2047: 2044: 2036: 2032: 2022: 2019: 2016: 2006: 2005: 2004: 1990: 1983:. Namely, if 1982: 1978: 1959: 1956: 1953: 1944: 1936: 1930: 1920: 1906: 1898: 1893: 1891: 1887: 1869: 1866: 1862: 1853: 1837: 1817: 1811: 1808: 1805: 1774: 1771: 1766: 1763: 1759: 1750: 1734: 1706: 1701: 1697: 1693: 1690: 1685: 1681: 1677: 1671: 1668: 1664: 1658: 1655: 1652: 1648: 1644: 1641: 1634: 1633: 1632: 1613: 1609: 1605: 1602: 1599: 1596: 1591: 1587: 1583: 1573: 1569: 1564: 1550: 1542: 1539: 1521: 1517: 1496: 1476: 1473: 1470: 1442: 1439: 1434: 1431: 1427: 1404: 1400: 1374: 1368: 1363: 1355: 1351: 1334: 1329: 1324: 1316: 1312: 1294: 1288: 1284: 1280: 1275: 1263: 1260: 1256: 1248: 1247: 1246: 1232: 1212: 1209: 1206: 1186: 1181: 1177: 1152: 1146: 1129: 1125: 1112: 1109: 1106: 1101: 1084: 1080: 1066: 1058: 1057: 1056: 1042: 1034: 1016: 1003: 1000: 992: 988: 984: 981: 978: 973: 969: 951: 949: 944: 942: 941:metric tensor 923: 920: 917: 906: 890: 870: 845: 842: 839: 831: 827: 821: 816: 808: 777: 772: 768: 764: 759: 751: 720: 715: 711: 707: 704: 699: 695: 691: 686: 682: 673: 657: 637: 617: 610: 605: 603: 602:inner product 587: 582: 578: 568: 554: 534: 514: 509: 505: 497:. Vectors in 484: 464: 456: 455:tangent space 440: 435: 431: 410: 407: 404: 396: 380: 367: 353: 351: 347: 343: 339: 335: 331: 329: 325: 321: 317: 313: 309: 307: 303: 299: 294: 292: 287: 285: 281: 277: 273: 265: 260: 251: 249: 245: 241: 237: 233: 229: 225: 221: 217: 213: 209: 205: 201: 197: 195: 191: 187: 183: 182:group actions 179: 175: 171: 166: 162: 158: 157:ambient space 153: 150: 146: 145:tangent space 142: 141:inner product 138: 134: 130: 125: 123: 119: 115: 111: 107: 103: 99: 85: 76: 72: 68: 64: 56: 55:tangent plane 52: 48: 44: 39: 33: 19: 20744:Applications 20672:Main results 20621: 20405:Moving frame 20400:Morse theory 20390:Gauge theory 20182:Tensor field 20111:Closed/Exact 20090:Vector field 20058:Distribution 20012: 19999:Hypercomplex 19994:Quaternionic 19731:Vector field 19700: 19689:Smooth atlas 19604: 19557: 19551: 19544:Milnor, John 19519:math/0409303 19509: 19505: 19470: 19466: 19449: 19445: 19398: 19344: 19321: 19318:Lee, John M. 19289: 19222: 19179: 19129: 19075: 19049: 18990: 18974: 18962: 18742: 18730: 18718: 18702: 18690: 18678: 18666: 18661:, Chapter 2. 18639: 18627: 18615: 18603: 18591: 18579: 18567: 18555: 18543: 18531: 18502: 18490: 18478: 18466: 18454: 18442: 18430: 18418: 18406: 18379: 18352: 18340: 18298: 18241: 18144: 18140: 18076: 18075: 18072: 17850:pseudometric 17845: 17759: 17381: 16871: 16670: 16664: 16608: 16593: 16584: 16573:Please help 16565: 16492: 16490: 16478:Cayley plane 16467: 16454: 16435:identity map 16427:differential 16405: 16398: 16394: 16390: 16351: 16333: 16329: 16325: 16320: 16308: 16304: 16283: 16279: 16275: 16270: 16230: 16192: 16185: 16181: 16177: 16144: 16140:bi-invariant 16139: 16117: 16113: 16110: 16105: 16100: 16090: 16086: 16079: 16075: 16068: 15923: 15919: 15904: 15879: 15868:Möbius strip 15864:Klein bottle 15860: 15844:group theory 15834: 15830: 15793: 15774: 15750: 15746: 15742: 15736: 15722: 15720: 15705: 15540: 15536: 15532: 15521: 15517: 15513: 15508: 15504: 15502:is given by 15497: 15362: 15360: 15311: 15309: 15247: 15243: 15187: 15153: 15060: 15018: 14936: 14712: 14670: 14666: 14650: 14646: 14644: 14315: 13995: 13954: 13947: 13903:are compact, 13767: 13766: 13759: 13545:. The plane 13505: 13483: 13174:Every curve 13173: 13093: 12807: 12802: 12801:is called a 12643: 12557: 12550: 12125: 11974: 11950: 11770: 11378: 11332: 11301: 11299: 11260: 11186:torsion-free 11185: 11163: 11041: 11019: 11012: 10957: 10925: 10593: 10509: 10450: 10442: 10421: 10418: 10238: 10087: 10084: 10012:metric space 9969: 9840: 9771: 9769: 9720: 9671: 9503: 9394: 9390: 9270: 8872: 8867: 8863: 8859: 8855: 8850: 8846: 8842: 8840: 8720: 8544:metric space 8501: 8500: 8286: 8284: 7910: 7908: 7675: 7299: 7226: 7109: 6978: 6766: 6738: 6733: 6732: 6501: 6402: 6265: 5156: 5062: 5056: 4973: 4515: 4512:round metric 4511: 4283: 4195: 3917:is given by 3858: 3821: 3612: 3511:Submanifolds 3504: 3454: 3301: 3210: 3113: 2951:is given by 2922: 2842: 2768: 2716: 2611:An oriented 2610: 2513: 2476: 2402: 2241: 2140: 2135: 2133: 2068: 1932: 1894: 1851: 1748: 1726: 1565: 1391: 1168: 957: 948:metric space 945: 904: 608: 606: 569: 372: 332: 326:defined the 310: 306:Hermann Weyl 295: 288: 269: 224:gauge theory 218:(especially 198: 154: 132: 128: 127:Formally, a 126: 66: 60: 20350:Levi-Civita 20340:Generalized 20312:Connections 20262:Lie algebra 20194:Volume form 20095:Vector flow 20068:Pushforward 20063:Lie bracket 19962:Lie algebra 19927:G-structure 19716:Pushforward 19696:Submanifold 19512:: 217–245. 19452:: 273–296. 18983:Milnor 1976 17355:volume form 17133:The metric 16661:Definitions 16579:introducing 16493:irreducible 16459:Élie Cartan 16423:fixed point 16301:coset space 16256:Lie algebra 16193:homogeneous 16132:Lie algebra 15852:lens spaces 15825:, with the 14813:defined by 14717:is the map 13880:converges), 11295:Lie bracket 11040:is said to 10433:Connections 6746:paracompact 4237:pushforward 2715:called the 1031:are smooth 798:defined by 453:called the 324:Levi-Civita 312:Élie Cartan 236:cartography 161:submanifold 131:(or just a 114:paraboloids 43:dot product 20781:Categories 20704:Ricci flow 20653:Hyperbolic 20473:Stratifold 20431:Diffeology 20227:Associated 20028:Symplectic 20013:Riemannian 19942:Hyperbolic 19869:Submersion 19777:Hopf–Rinow 19711:Submersion 19706:Smooth map 19584:0341.53030 19480:1910.06430 19437:1216.53003 19387:1417.53001 19310:0119.37502 19273:0953.53002 19210:0752.53001 19168:1142.53003 19114:0613.53001 19010:Besse 1987 18228:References 17441:, denoted 16247:, fix any 16155:collapsing 16130:, and the 15815:eigenvalue 15809:possesses 15775:Using the 12808:For every 11860:such that 11539:. The set 11447:such that 10662:such that 9423:such that 9121:such that 8546:, and the 6404:flat torus 5149:flat torus 4284:Examples: 3885:, the map 3503:is called 2769:volume of 2562:such that 2130:Isometries 1890:measurable 1749:continuous 1572:dual basis 1543:matrix at 1419:functions 907:, denoted 356:Definition 320:connection 174:Lie groups 110:ellipsoids 20648:Hermitian 20601:Signature 20564:Sectional 20544:Curvature 20355:Principal 20330:Ehresmann 20287:Subbundle 20277:Principal 20252:Fibration 20232:Cotangent 20104:Covectors 19957:Lie group 19937:Hermitian 19880:manifolds 19849:Immersion 19844:Foliation 19782:Noether's 19767:Frobenius 19762:De Rham's 19757:Darboux's 19648:Manifolds 19611:EMS Press 19497:204578276 19458:1076-9803 19236:S. Semmes 18912:− 18883:− 18869:… 18808:… 18789:⋅ 18770:… 18683:Wolf 2011 18671:Wolf 2011 18659:Wolf 2011 18043:⁡ 17802:∞ 17790:→ 17784:× 17728:μ 17663:∫ 17590:∈ 17569:∈ 17558:Then for 17534:⁡ 17518:∈ 17478:⁡ 17472:∈ 17419:⁡ 17341:μ 17304:Lie group 17277:⁡ 17216:∈ 17181:⟩ 17169:⟨ 17062:∈ 17032:⟩ 17028:⋅ 17022:⋅ 17018:⟨ 16818:→ 16802:× 16753:∈ 16722:→ 16713:× 16587:July 2024 16406:symmetric 16032:− 15997:− 15911:Lie group 15729:connected 15657:⋯ 15628:κ 15591:⋯ 15451:− 15419:κ 15370:if every 15338:with the 15295:λ 15272:λ 15115:↦ 15106:⁡ 15027:∇ 14901:∇ 14897:− 14885:∇ 14875:∇ 14871:− 14859:∇ 14849:∇ 14785:→ 14766:× 14747:× 14679:∇ 14620:θ 14562:θ 14487:θ 14441:θ 14339:∖ 14281:γ 14241:γ 14178:∈ 14140:γ 14105:γ 14082:→ 14061:γ 14004:γ 13983:γ 13597:∖ 13530:∞ 13524:∞ 13521:− 13349:∖ 13226:γ 13203:→ 13182:γ 13140:γ 13104:γ 13061:γ 13025:γ 12966:γ 12930:γ 12887:→ 12878:γ 12845:∈ 12819:∈ 12789:γ 12739:γ 12708:γ 12684:γ 12652:γ 12627:→ 12606:γ 12566:∇ 12552:Geodesics 12452:Geodesics 12432:~ 12408:γ 12403:∇ 12334:~ 12134:γ 12109:γ 12096:→ 12090:γ 12044:→ 12023:γ 11983:∇ 11934:~ 11897:γ 11890:~ 11848:γ 11825:~ 11799:γ 11750:γ 11737:∈ 11641:→ 11600:γ 11580:γ 11557:γ 11512:∈ 11475:γ 11467:∈ 11429:→ 11387:γ 11362:→ 11341:γ 11278:⋅ 11272:⋅ 11216:∇ 11212:− 11200:∇ 11172:∇ 11137:∇ 11100:∇ 11028:∇ 10935:∇ 10901:∇ 10860:∇ 10818:∇ 10784:∇ 10717:∇ 10685:∞ 10677:∈ 10641:∇ 10637:↦ 10563:→ 10544:× 10522:∇ 10355:→ 10349:× 10215:∈ 10144:⁡ 9918:→ 9912:× 9748:λ 9743:≥ 9737:γ 9695:⊂ 9686:∂ 9647:‖ 9631:γ 9627:‖ 9622:δ 9613:∫ 9607:λ 9602:≥ 9596:γ 9561:δ 9532:γ 9512:γ 9484:∂ 9481:∈ 9475:δ 9469:γ 9443:∉ 9437:δ 9431:γ 9405:δ 9374:→ 9353:γ 9318:⊂ 9257:‖ 9254:⋅ 9251:‖ 9215:∈ 9189:∈ 9160:‖ 9153:‖ 9150:λ 9147:≥ 9109:λ 9084:¯ 9033:⊂ 9028:¯ 8980:∋ 8951:∉ 8775:≠ 8465:γ 8444:γ 8436:γ 8427:γ 8361:∞ 8349:→ 8343:× 8249:γ 8245:‖ 8228:γ 8224:‖ 8210:∫ 8200:γ 8168:→ 8147:γ 8124:γ 8055:γ 8051:‖ 8034:γ 8030:‖ 8027:↦ 7990:γ 7982:∈ 7966:γ 7942:→ 7921:γ 7800:for some 7776:→ 7680:to embed 7634:α 7607:α 7599:⊆ 7591:α 7587:τ 7580:⁡ 7535:α 7528:~ 7518:⋅ 7513:α 7509:τ 7486:α 7459:α 7452:~ 7423:α 7419:φ 7374:∗ 7369:α 7365:φ 7270:∗ 7265:α 7261:φ 7252:α 7245:~ 7210:α 7203:~ 7193:⋅ 7188:α 7184:τ 7175:∈ 7172:α 7168:∑ 7092:∈ 7089:α 7067:α 7059:⊆ 7051:α 7047:τ 7040:⁡ 7008:∈ 7005:α 6995:α 6991:τ 6952:⊆ 6944:α 6931:α 6927:φ 6923:→ 6918:α 6910:: 6905:α 6901:φ 6877:⊆ 6872:α 6835:∈ 6832:α 6819:α 6815:φ 6806:α 6742:Hausdorff 6668:… 6592:… 6523:… 6426:× 6423:⋯ 6420:× 6325:× 6322:⋯ 6319:× 6178:~ 6108:~ 6089:∑ 6079:~ 6027:× 5998:~ 5808:× 5761:× 5458:~ 5413:⊕ 5397:≅ 5388:× 5330:× 5304:~ 5235:× 5095:∗ 5081:~ 5040:→ 5008:~ 4951:~ 4898:~ 4869:→ 4863:~ 4762:→ 4576:∈ 4557:ellipsoid 4389:⋯ 4339:∈ 4068:∗ 4035:∗ 3965:∗ 3902:→ 3870:⊆ 3800:∗ 3721:∗ 3662:→ 3424:⋯ 3407:⋮ 3402:⋱ 3397:⋮ 3392:⋮ 3380:⋯ 3358:⋯ 3274:δ 3244:δ 3167:⋯ 3073:∑ 3048:∂ 3044:∂ 3023:∑ 3003:∂ 2999:∂ 2978:∑ 2864:… 2799:∫ 2579:→ 2527:∈ 2516:if every 2494:→ 2446:∈ 2414:∈ 2263:∗ 2225:→ 2136:isometric 2109:∗ 2051:⋅ 2029:↦ 1963:⟩ 1960:⋅ 1951:⟨ 1948:↦ 1937:given by 1886:Lipschitz 1778:→ 1691:⊗ 1649:∑ 1600:… 1538:symmetric 1474:× 1446:→ 1348:∂ 1344:∂ 1309:∂ 1305:∂ 1210:∈ 1122:∂ 1118:∂ 1110:… 1077:∂ 1073:∂ 1007:→ 982:… 813:‖ 806:‖ 781:→ 756:‖ 752:⋅ 749:‖ 724:→ 708:× 570:However, 408:∈ 350:spacetime 270:In 1827, 165:John Nash 143:for each 118:manifolds 20663:Kenmotsu 20576:Geodesic 20529:Glossary 20451:Orbifold 20446:K-theory 20436:Diffiety 20160:Pullback 19974:Oriented 19952:Kenmotsu 19932:Hadamard 19878:Types of 19827:Geodesic 19652:Glossary 19546:(1976). 19397:(2011). 19320:(2018). 19287:(1963). 19232:P. Pansu 19220:(1999). 19178:(1992). 19128:(2008). 19074:(1987). 18979:Lee 2018 18967:Lee 2018 18644:Lee 2018 18632:Lee 2018 18620:Lee 2018 18608:Lee 2018 18596:Lee 2018 18584:Lee 2018 18560:Lee 2018 18548:Lee 2018 18536:Lee 2018 18524:Lee 2018 18507:Lee 2018 18495:Lee 2018 18483:Lee 2018 18471:Lee 2018 18459:Lee 2018 18447:Lee 2018 18423:Lee 2018 18411:Lee 2018 18399:Lee 2018 18384:Lee 2018 18372:Lee 2018 18357:Lee 2018 18345:Lee 2018 18333:Lee 2018 18318:Lee 2018 18303:Lee 2018 18291:Lee 2018 18169:See also 17300:see here 17193:for all 16996:Examples 16525:geometry 16447:parallel 16166:with an 16160:Einstein 15876:cylinder 15854:and the 15800:subgroup 15544:, where 15526:and the 13847:complete 13768:Theorem: 13242:Examples 13143:′ 13064:′ 12969:′ 12803:geodesic 12761:for all 12742:′ 12687:′ 12458:Geodesic 12411:′ 12279:′ 11501:for all 10284:complete 10088:diameter 10081:Diameter 10014:and the 9634:′ 9461:clearly 9204:and any 9178:for any 8790:implies 8502:Theorem: 8231:′ 8037:′ 7969:′ 7822:pullback 7437:. While 7408:pullback 7081:for all 6859:so that 6734:Theorem: 5905:and let 5116:Products 4884:, where 3707:pullback 2834:Examples 2403:for all 2242:isometry 1979:and the 1199:for any 20730:Hilbert 20725:Finsler 20395:History 20378:Related 20292:Tangent 20270:)  20250:)  20217:Adjoint 20209:Bundles 20187:density 20085:Torsion 20051:Vectors 20043:Tensors 20026:)  20011:)  20007:,  20005:Pseudo− 19984:Poisson 19917:Finsler 19912:Fibered 19907:Contact 19905:)  19897:Complex 19895:)  19864:Section 19576:0425012 19429:2742530 19379:3469435 19302:0152974 19265:1699320 19228:M. Katz 19202:1138207 19160:2394158 19106:0867684 19064:Sources 18077:Theorem 17896:, then 16647:Fréchet 16575:improve 16433:is the 16295:, then 16254:of the 15518:κg 15220:gravity 14969:is the 13849:(every 12369:, then 11920:, then 11293:is the 9273:denote 7406:is its 6637:, then 5747:, then 4913:is the 4309:-sphere 4235:is the 3546:-sphere 3295:is the 2765:compact 2721:measure 254:History 216:physics 135:) on a 98:-sphere 20658:Kähler 20554:Scalar 20549:tensor 20360:Vector 20345:Koszul 20325:Cartan 20320:Affine 20302:Vector 20297:Tensor 20282:Spinor 20272:Normal 20268:Stable 20222:Affine 20126:bundle 20078:bundle 20024:Almost 19947:Kähler 19903:Almost 19893:Almost 19887:Closed 19787:Sard's 19743:(list) 19582:  19574:  19534:  19495:  19456:  19435:  19427:  19417:  19385:  19377:  19367:  19332:  19308:  19300:  19271:  19263:  19253:  19234:, and 19208:  19200:  19190:  19166:  19158:  19148:  19112:  19104:  19094:  18079:: Let 16653:, and 16651:Banach 16527:, and 16476:, and 16122:, the 15874:, the 15870:, the 15866:, the 15813:as an 15763:, and 15716:κ 15708:κ 15541:κ 15376:κ 15368:κ 15154:where 15059:. The 14937:where 14711:. The 14233:along 12700:along 12598:. Let 11261:where 10922:holds. 9243:where 7569:since 7410:along 7227:where 6287:-torus 6160:where 4555:. The 4196:where 3778:, and 3705:. The 3681:or an 3677:be an 3265:where 2767:, the 2607:Volume 1852:smooth 1392:These 246:, and 234:, and 210:, and 133:metric 104:, and 77:, the 47:sphere 20559:Ricci 20468:Sheaf 20242:Fiber 20018:Rizza 19989:Prime 19820:Local 19810:Curve 19672:Atlas 19536:69260 19532:S2CID 19514:arXiv 19493:S2CID 19475:arXiv 18233:Notes 17353:be a 17100:with 17047:is a 16951:. If 16560:, or 16421:as a 15909:be a 15872:torus 14647:along 14097:with 12720:. If 11811:. If 10508:. An 10010:is a 9389:from 9015:with 8542:is a 7300:Here 6857:atlas 5145:torus 5067:) if 4734:graph 2684:-form 903:is a 393:be a 69:is a 20335:Form 20237:Dual 20170:flow 20033:Tame 20009:Sub− 19922:Flat 19802:Maps 19454:ISSN 19415:ISBN 19365:ISBN 19330:ISBN 19251:ISBN 19188:ISBN 19146:ISBN 19092:ISBN 18040:Diff 17531:Diff 17475:Diff 17416:Diff 17380:The 17333:Let 17274:Diff 17234:Let 16445:are 16441:and 16373:and 16200:and 15905:Let 15796:+ 1) 15731:and 15539:– 1) 15516:– 1) 14132:and 13770:Let 13760:The 13131:and 13052:and 12957:and 12834:and 11771:Let 11726:for 10451:Let 10239:The 10141:diam 10085:The 9408:> 9290:> 8969:Let 8940:and 8823:> 7577:supp 7356:and 7037:supp 6979:Let 6767:Let 6744:and 6502:Let 5826:Let 5695:and 5270:and 5189:and 5157:Let 5061:(or 4732:The 4288:The 3613:Let 3525:The 2843:Let 2429:and 2173:and 1935:dual 373:Let 222:and 188:and 176:and 112:and 65:, a 41:The 20257:Jet 19580:Zbl 19562:doi 19524:doi 19485:doi 19471:148 19433:Zbl 19407:doi 19383:Zbl 19357:doi 19306:Zbl 19269:Zbl 19243:doi 19206:Zbl 19164:Zbl 19138:doi 19110:Zbl 19084:doi 18145:If 17926:If 17856:If 17357:on 17310:on 17001:If 16874:on 16673:on 16429:at 16413:of 16341:of 16328:): 16291:of 16278:): 16258:of 16243:of 16216:to 16204:in 16126:of 16098:to 15882:× ℝ 15749:or 15530:is 15512:= ( 15386:as 15246:if 15065:is 15039:on 14691:on 14017:if 13845:is 12578:on 12320:If 11995:on 11333:If 11188:if 11184:is 11044:if 10594:on 10488:on 10443:An 10422:any 10376:If 10282:is 10172:sup 10130:is 10018:on 9833:. 9579:So 9544:to 9393:to 9281:sup 8862:to 8849:to 8550:on 8415:inf 8376:by 7909:An 7873:is 7824:by 7313:can 7280:can 7150:by 7130:on 6752:. 6571:If 6063:is 5643:If 5319:on 4917:of 4817:If 4514:or 4259:by 4239:of 4052:is 3824:of 3738:of 3685:of 3486:can 3329:can 3235:can 3130:can 2967:can 2937:can 2790:is 2763:is 2723:on 2244:if 1850:is 1747:is 1245:by 1035:on 958:If 630:on 547:at 477:at 457:of 226:), 61:In 20783:: 20248:Co 19609:, 19603:, 19578:. 19572:MR 19570:. 19558:21 19556:. 19550:. 19530:. 19522:. 19510:10 19508:. 19491:. 19483:. 19469:. 19450:21 19448:. 19431:. 19425:MR 19423:. 19413:. 19405:. 19381:. 19375:MR 19373:. 19363:. 19355:. 19347:. 19328:. 19324:. 19304:. 19298:MR 19283:; 19267:. 19261:MR 19259:. 19249:. 19230:, 19204:. 19198:MR 19196:. 19186:. 19162:. 19156:MR 19154:. 19144:. 19136:. 19124:; 19108:. 19102:MR 19100:. 19090:. 19082:. 19034:^ 19017:^ 19002:^ 18651:^ 18514:^ 18391:^ 18364:^ 18325:^ 18310:^ 18283:^ 18268:^ 18253:^ 17624:, 16870:A 16669:A 16657:. 16649:, 16564:, 16556:, 16519:, 16515:, 16397:, 16332:→ 16318:ad 16282:→ 16268:ad 16184:, 16170:. 16101:xy 16089:→ 16073:, 15892:. 15858:. 15833:/ 15792:O( 15765:–1 15759:, 15721:A 15522:jk 15509:jk 15342:. 15162:tr 15103:tr 14651:on 14313:. 13757:. 13697:, 13420:, 12805:. 12781:, 11972:. 11658:: 11325:. 11300:A 11297:. 11017:. 10999:. 10708:, 10077:. 8609:. 7107:. 6852:a 5143:A 3856:. 3507:. 2830:. 2126:. 1563:. 1281::= 943:. 670:a 607:A 567:. 322:. 308:. 250:. 242:, 230:, 206:, 196:. 100:, 20608:/ 20531:) 20527:( 20517:e 20510:t 20503:v 20266:( 20246:( 20022:( 20003:( 19901:( 19891:( 19654:) 19650:( 19640:e 19633:t 19626:v 19586:. 19564:: 19538:. 19526:: 19516:: 19499:. 19487:: 19477:: 19460:. 19439:. 19409:: 19389:. 19359:: 19338:. 19312:. 19275:. 19245:: 19212:. 19170:. 19140:: 19116:. 19086:: 19056:. 19044:. 18985:. 18946:. 18943:) 18938:n 18934:y 18928:n 18924:x 18920:, 18915:1 18909:n 18905:x 18899:n 18895:y 18891:+ 18886:1 18880:n 18876:x 18872:, 18866:, 18861:1 18857:x 18851:n 18847:y 18843:+ 18838:1 18834:x 18830:( 18827:= 18824:) 18819:n 18815:y 18811:, 18805:, 18800:1 18796:y 18792:( 18786:) 18781:n 18777:x 18773:, 18767:, 18762:1 18758:x 18754:( 18153:g 18124:g 18120:d 18099:) 18096:g 18093:, 18090:M 18087:( 18052:) 18049:M 18046:( 18018:2 18014:L 17993:) 17990:g 17987:, 17984:M 17981:( 17959:g 17955:d 17934:g 17909:g 17905:d 17884:M 17864:g 17830:g 17826:d 17805:) 17799:, 17796:0 17793:[ 17787:M 17781:M 17778:: 17773:g 17769:d 17749:. 17737:) 17734:x 17731:( 17725:d 17721:) 17718:) 17715:x 17712:( 17709:v 17706:, 17703:) 17700:x 17697:( 17694:u 17691:( 17686:) 17683:x 17680:( 17677:f 17673:g 17667:M 17659:= 17656:) 17653:v 17650:, 17647:u 17644:( 17639:f 17635:G 17612:M 17607:) 17604:x 17601:( 17598:f 17594:T 17587:) 17584:x 17581:( 17578:u 17575:, 17572:M 17566:x 17546:. 17543:) 17540:M 17537:( 17526:f 17522:T 17515:v 17512:, 17509:u 17490:, 17487:) 17484:M 17481:( 17469:f 17449:G 17428:) 17425:M 17422:( 17394:2 17390:L 17368:. 17365:M 17321:. 17318:M 17286:) 17283:M 17280:( 17254:) 17251:g 17248:, 17245:M 17242:( 17219:H 17213:v 17210:, 17207:u 17204:, 17201:x 17178:v 17175:, 17172:u 17166:= 17163:) 17160:v 17157:, 17154:u 17151:( 17146:x 17142:g 17121:. 17118:H 17113:x 17109:T 17088:H 17068:, 17065:H 17059:x 17035:) 17025:, 17015:, 17012:H 17009:( 16979:M 16959:g 16939:M 16934:x 16930:T 16907:x 16903:g 16882:M 16856:. 16853:M 16848:x 16844:T 16822:R 16815:M 16810:x 16806:T 16799:M 16794:x 16790:T 16786:: 16781:x 16777:g 16756:M 16750:x 16730:, 16726:R 16719:M 16716:T 16710:M 16707:T 16704:: 16701:g 16681:M 16629:. 16624:n 16619:R 16600:) 16594:( 16589:) 16585:( 16571:. 16523:2 16521:G 16431:p 16419:p 16415:M 16411:p 16401:) 16399:g 16395:M 16393:( 16375:W 16371:K 16367:G 16363:G 16359:W 16354:K 16347:G 16343:K 16339:k 16334:W 16330:W 16326:k 16324:( 16321:G 16314:W 16309:K 16307:/ 16305:G 16297:G 16293:K 16289:k 16284:W 16280:W 16276:k 16274:( 16271:G 16264:G 16260:K 16252:W 16245:G 16237:K 16233:G 16218:y 16214:x 16210:f 16206:M 16202:y 16198:x 16188:) 16186:g 16182:M 16180:( 16136:G 16128:G 16118:e 16114:g 16096:y 16091:G 16087:G 16080:x 16076:L 16071:x 16054:, 16051:) 16048:) 16045:v 16042:( 16035:1 16028:p 16023:L 16019:d 16016:, 16013:) 16010:u 16007:( 16000:1 15993:p 15988:L 15984:d 15981:( 15976:e 15972:g 15968:= 15965:) 15962:v 15959:, 15956:u 15953:( 15948:p 15944:g 15930:p 15924:e 15920:g 15907:G 15880:S 15840:1 15835:G 15831:S 15823:G 15819:n 15811:1 15803:G 15794:n 15785:n 15761:0 15757:1 15686:2 15682:) 15678:) 15673:2 15668:n 15664:x 15660:+ 15654:+ 15649:2 15644:1 15640:x 15636:( 15631:4 15623:+ 15620:1 15617:( 15610:2 15605:n 15601:x 15597:d 15594:+ 15588:+ 15583:2 15578:1 15574:x 15570:d 15546:n 15537:n 15535:( 15533:n 15514:n 15505:R 15483:. 15480:) 15475:l 15472:j 15468:g 15462:k 15459:i 15455:g 15446:k 15443:j 15439:g 15433:l 15430:i 15426:g 15422:( 15416:= 15411:l 15408:k 15405:j 15402:i 15398:R 15322:n 15275:g 15269:= 15266:c 15263:i 15260:R 15230:g 15202:c 15199:i 15196:R 15139:) 15136:Y 15133:) 15130:X 15127:, 15124:Z 15121:( 15118:R 15112:Z 15109:( 15100:= 15097:) 15094:Y 15091:, 15088:X 15085:( 15082:c 15079:i 15076:R 15047:M 14993:) 14990:3 14987:, 14984:1 14981:( 14957:] 14954:Y 14951:, 14948:X 14945:[ 14922:Z 14917:] 14914:Y 14911:, 14908:X 14905:[ 14894:Z 14889:X 14879:Y 14868:Z 14863:Y 14853:X 14845:= 14842:Z 14839:) 14836:Y 14833:, 14830:X 14827:( 14824:R 14801:) 14798:M 14795:( 14790:X 14782:) 14779:M 14776:( 14771:X 14763:) 14760:M 14757:( 14752:X 14744:) 14741:M 14738:( 14733:X 14728:: 14725:R 14699:M 14638:. 14624:2 14616:d 14613:+ 14608:2 14604:r 14600:d 14580:. 14566:2 14558:d 14553:2 14549:r 14545:+ 14540:2 14536:r 14532:d 14491:2 14483:d 14480:+ 14475:2 14471:r 14467:d 14445:2 14437:d 14431:2 14427:r 14423:+ 14418:2 14414:r 14410:d 14407:= 14402:2 14398:y 14394:d 14391:+ 14386:2 14382:x 14378:d 14354:} 14351:0 14348:, 14345:0 14342:{ 14334:2 14329:R 14301:q 14261:v 14221:M 14216:q 14212:T 14191:M 14186:p 14182:T 14175:v 14155:q 14152:= 14149:) 14146:1 14143:( 14120:p 14117:= 14114:) 14111:0 14108:( 14085:M 14079:] 14076:1 14073:, 14070:0 14067:[ 14064:: 14041:0 14038:= 14035:V 14030:t 14026:D 13963:V 13913:M 13891:M 13876:- 13862:g 13858:d 13833:) 13828:g 13824:d 13820:, 13817:M 13814:( 13790:) 13787:g 13784:, 13781:M 13778:( 13744:R 13723:) 13720:1 13717:, 13714:1 13711:( 13708:= 13705:v 13685:) 13682:1 13679:, 13676:1 13673:( 13670:= 13667:p 13645:2 13640:R 13618:} 13615:) 13612:0 13609:, 13606:0 13603:( 13600:{ 13592:2 13587:R 13560:2 13555:R 13533:) 13527:, 13518:( 13492:M 13480:. 13467:R 13446:) 13443:1 13440:, 13437:1 13434:( 13431:= 13428:v 13408:) 13405:1 13402:, 13399:1 13396:( 13393:= 13390:p 13370:} 13367:) 13364:0 13361:, 13358:0 13355:( 13352:{ 13344:2 13339:R 13292:2 13288:S 13262:2 13257:R 13206:M 13200:] 13197:1 13194:, 13191:0 13188:[ 13185:: 13159:v 13156:= 13153:) 13150:0 13147:( 13119:p 13116:= 13113:) 13110:0 13107:( 13080:v 13077:= 13074:) 13071:0 13068:( 13040:p 13037:= 13034:) 13031:0 13028:( 13005:I 12985:v 12982:= 12979:) 12976:0 12973:( 12945:p 12942:= 12939:) 12936:0 12933:( 12910:I 12890:M 12884:I 12881:: 12858:M 12853:p 12849:T 12842:v 12822:M 12816:p 12769:t 12749:0 12746:= 12733:t 12729:D 12678:t 12674:D 12630:M 12624:] 12621:1 12618:, 12615:0 12612:[ 12609:: 12586:M 12545:. 12527:n 12523:S 12500:n 12495:R 12447:. 12429:X 12421:) 12418:t 12415:( 12399:= 12396:) 12393:t 12390:( 12387:X 12382:t 12378:D 12357:X 12331:X 12306:, 12303:X 12298:t 12294:D 12289:f 12286:+ 12283:X 12276:f 12272:= 12269:) 12266:X 12263:f 12260:( 12255:t 12251:D 12229:, 12226:Y 12221:t 12217:D 12212:b 12209:+ 12206:X 12201:t 12197:D 12192:a 12189:= 12186:) 12183:Y 12180:b 12177:+ 12174:X 12171:a 12168:( 12163:t 12159:D 12112:) 12106:( 12101:X 12093:) 12087:( 12082:X 12077:: 12072:t 12068:D 12047:M 12041:] 12038:1 12035:, 12032:0 12029:[ 12026:: 12003:M 11959:X 11931:X 11906:) 11903:t 11900:( 11887:X 11880:= 11877:) 11874:t 11871:( 11868:X 11822:X 11779:X 11756:. 11753:) 11747:( 11742:X 11734:X 11714:) 11711:t 11708:( 11705:X 11702:) 11699:t 11696:( 11693:f 11690:= 11687:) 11684:t 11681:( 11678:) 11675:X 11672:f 11669:( 11645:R 11638:] 11635:1 11632:, 11629:0 11626:[ 11623:: 11620:f 11560:) 11554:( 11549:X 11527:] 11524:1 11521:, 11518:0 11515:[ 11509:t 11489:M 11484:) 11481:t 11478:( 11471:T 11464:) 11461:t 11458:( 11455:X 11435:M 11432:T 11426:] 11423:1 11420:, 11417:0 11414:[ 11411:: 11408:X 11365:M 11359:] 11356:1 11353:, 11350:0 11347:[ 11344:: 11313:g 11281:] 11275:, 11269:[ 11246:, 11243:] 11240:Y 11237:, 11234:X 11231:[ 11228:= 11225:X 11220:Y 11209:Y 11204:X 11149:) 11146:Z 11141:X 11133:, 11130:Y 11127:( 11124:g 11121:+ 11118:) 11115:Z 11112:, 11109:Y 11104:X 11096:( 11093:g 11090:= 11085:) 11080:) 11077:Z 11074:, 11071:Y 11068:( 11065:g 11060:( 11055:X 10986:X 10966:Y 10944:Y 10939:X 10910:Y 10905:X 10896:f 10893:+ 10890:Y 10887:) 10884:f 10881:( 10878:X 10875:= 10872:Y 10869:f 10864:X 10837:, 10834:Y 10827:2 10823:X 10811:2 10807:f 10803:+ 10800:Y 10793:1 10789:X 10777:1 10773:f 10769:= 10766:Y 10759:2 10755:X 10749:2 10745:f 10741:+ 10736:1 10732:X 10726:1 10722:f 10696:) 10693:M 10690:( 10681:C 10674:f 10650:Y 10645:X 10634:) 10631:Y 10628:, 10625:X 10622:( 10602:M 10579:) 10576:M 10573:( 10568:X 10560:) 10557:M 10554:( 10549:X 10541:) 10538:M 10535:( 10530:X 10525:: 10496:M 10472:) 10469:M 10466:( 10461:X 10403:) 10398:g 10394:d 10390:, 10387:M 10384:( 10359:R 10352:M 10346:M 10343:: 10338:g 10334:d 10313:) 10308:g 10304:d 10300:, 10297:M 10294:( 10270:) 10265:g 10261:d 10257:, 10254:M 10251:( 10224:. 10221:} 10218:M 10212:q 10209:, 10206:p 10203:: 10200:) 10197:q 10194:, 10191:p 10188:( 10183:g 10179:d 10175:{ 10169:= 10166:) 10161:g 10157:d 10153:, 10150:M 10147:( 10118:) 10113:g 10109:d 10105:, 10102:M 10099:( 10065:M 10045:) 10040:g 10036:d 10032:, 10029:M 10026:( 9998:) 9993:g 9989:d 9985:, 9982:M 9979:( 9955:) 9952:g 9949:, 9946:M 9943:( 9922:R 9915:M 9909:M 9906:: 9901:g 9897:d 9876:M 9854:g 9850:d 9821:M 9801:) 9796:g 9792:d 9788:, 9785:M 9782:( 9772:g 9756:. 9753:R 9740:) 9734:( 9731:L 9721:R 9705:n 9700:R 9692:) 9689:V 9683:( 9680:x 9657:. 9654:t 9651:d 9644:) 9641:t 9638:( 9617:0 9599:) 9593:( 9590:L 9567:. 9564:] 9558:, 9555:0 9552:[ 9490:. 9487:V 9478:) 9472:( 9449:; 9446:V 9440:) 9434:( 9411:0 9395:q 9391:p 9377:M 9371:] 9368:1 9365:, 9362:0 9359:[ 9356:: 9333:} 9330:) 9327:V 9324:( 9321:x 9315:) 9312:0 9309:( 9304:r 9300:B 9296:: 9293:0 9287:r 9284:{ 9271:R 9231:, 9228:M 9223:r 9219:T 9212:X 9192:V 9186:r 9164:2 9156:X 9144:) 9141:X 9138:, 9135:X 9132:( 9129:g 9089:, 9081:V 9059:g 9039:. 9036:U 9025:V 9003:U 8983:x 8977:V 8957:. 8954:U 8948:q 8928:0 8925:= 8922:) 8919:p 8916:( 8913:x 8893:) 8890:x 8887:, 8884:U 8881:( 8868:g 8864:q 8860:p 8856:p 8851:q 8847:p 8843:p 8826:0 8820:) 8817:q 8814:, 8811:p 8808:( 8803:g 8799:d 8778:q 8772:p 8748:) 8743:g 8739:d 8735:, 8732:M 8729:( 8703:M 8683:) 8678:g 8674:d 8670:, 8667:M 8664:( 8644:) 8639:g 8635:d 8631:, 8628:M 8625:( 8597:M 8577:) 8572:g 8568:d 8564:, 8561:M 8558:( 8530:) 8525:g 8521:d 8517:, 8514:M 8511:( 8486:. 8483:} 8480:q 8477:= 8474:) 8471:1 8468:( 8462:, 8459:p 8456:= 8453:) 8450:0 8447:( 8433:: 8430:) 8424:( 8421:L 8418:{ 8412:= 8409:) 8406:q 8403:, 8400:p 8397:( 8392:g 8388:d 8364:) 8358:, 8355:0 8352:[ 8346:M 8340:M 8337:: 8332:g 8328:d 8306:) 8303:g 8300:, 8297:M 8294:( 8270:. 8267:t 8264:d 8258:) 8255:t 8252:( 8241:) 8238:t 8235:( 8219:1 8214:0 8206:= 8203:) 8197:( 8194:L 8171:M 8165:] 8162:1 8159:, 8156:0 8153:[ 8150:: 8127:) 8121:( 8118:L 8098:] 8095:1 8092:, 8089:0 8086:[ 8064:) 8061:t 8058:( 8047:) 8044:t 8041:( 8024:t 8004:M 7999:) 7996:t 7993:( 7986:T 7979:) 7976:t 7973:( 7945:M 7939:] 7936:1 7933:, 7930:0 7927:[ 7924:: 7884:. 7881:g 7859:N 7854:R 7832:F 7808:N 7786:N 7781:R 7773:M 7770:: 7767:F 7747:, 7744:) 7741:g 7738:, 7735:M 7732:( 7708:M 7688:M 7656:g 7630:U 7603:U 7596:) 7583:( 7557:M 7525:g 7482:U 7449:g 7391:n 7388:a 7385:c 7380:g 7342:n 7337:R 7309:g 7285:. 7276:g 7257:= 7242:g 7200:g 7178:A 7164:= 7161:g 7138:M 7118:g 7095:A 7063:U 7056:) 7043:( 7011:A 7001:} 6987:{ 6962:n 6957:R 6949:) 6940:U 6936:( 6914:U 6880:M 6868:U 6838:A 6828:} 6824:) 6811:, 6802:U 6798:( 6795:{ 6775:M 6714:. 6711:M 6689:k 6685:g 6679:k 6675:f 6671:+ 6665:+ 6660:1 6656:g 6650:1 6646:f 6625:M 6603:k 6599:f 6595:, 6589:, 6584:1 6580:f 6559:. 6556:M 6534:k 6530:g 6526:, 6520:, 6515:1 6511:g 6480:n 6475:R 6452:R 6430:R 6416:R 6387:n 6383:T 6360:1 6356:S 6333:1 6329:S 6314:1 6310:S 6306:= 6301:n 6297:T 6275:n 6249:. 6244:) 6236:V 6232:h 6226:0 6219:0 6212:U 6208:g 6201:( 6196:= 6193:) 6188:j 6185:i 6175:g 6168:( 6146:j 6142:x 6138:d 6132:i 6128:x 6124:d 6118:j 6115:i 6105:g 6096:j 6093:i 6085:= 6076:g 6051:) 6048:) 6045:y 6042:, 6039:x 6036:( 6033:, 6030:V 6024:U 6021:( 5995:g 5972:) 5969:y 5966:, 5963:V 5960:( 5940:h 5918:V 5914:h 5893:) 5890:x 5887:, 5884:U 5881:( 5861:g 5839:U 5835:g 5814:. 5811:N 5805:M 5785:) 5782:) 5779:y 5776:, 5773:x 5770:( 5767:, 5764:V 5758:U 5755:( 5735:N 5715:) 5712:y 5709:, 5706:V 5703:( 5683:M 5663:) 5660:x 5657:, 5654:U 5651:( 5627:. 5624:) 5619:2 5615:v 5611:, 5606:2 5602:u 5598:( 5593:q 5589:h 5585:+ 5582:) 5577:1 5573:v 5569:, 5564:1 5560:u 5556:( 5551:p 5547:g 5543:= 5540:) 5537:) 5532:2 5528:v 5524:, 5519:1 5515:v 5511:( 5508:, 5505:) 5500:2 5496:u 5492:, 5487:1 5483:u 5479:( 5476:( 5471:q 5468:, 5465:p 5455:g 5429:, 5426:N 5421:q 5417:T 5410:M 5405:p 5401:T 5394:) 5391:N 5385:M 5382:( 5377:) 5374:q 5371:, 5368:p 5365:( 5361:T 5336:, 5333:N 5327:M 5301:g 5278:h 5258:g 5238:N 5232:M 5209:) 5206:h 5203:, 5200:N 5197:( 5177:) 5174:g 5171:, 5168:M 5165:( 5100:g 5091:i 5087:= 5078:g 5043:M 5037:N 5034:: 5031:i 5005:g 4982:N 4948:M 4925:M 4895:M 4872:M 4860:M 4837:) 4834:g 4831:, 4828:M 4825:( 4800:1 4797:+ 4794:n 4789:R 4766:R 4757:n 4752:R 4747:: 4744:f 4727:. 4713:3 4708:R 4679:} 4675:1 4672:= 4665:2 4661:c 4655:2 4651:z 4645:+ 4638:2 4634:b 4628:2 4624:y 4618:+ 4611:2 4607:a 4601:2 4597:x 4591:: 4586:3 4581:R 4573:x 4569:{ 4543:c 4540:, 4537:b 4534:, 4531:a 4518:. 4496:n 4492:S 4469:1 4466:+ 4463:n 4458:R 4430:} 4427:1 4424:= 4419:2 4415:) 4409:1 4406:+ 4403:n 4399:x 4395:( 4392:+ 4386:+ 4381:2 4377:) 4371:1 4367:x 4363:( 4360:: 4355:1 4352:+ 4349:n 4344:R 4336:x 4333:{ 4330:= 4325:n 4321:S 4297:n 4270:. 4267:i 4247:v 4223:) 4220:v 4217:( 4212:p 4208:i 4204:d 4181:, 4176:) 4171:) 4168:w 4165:( 4160:p 4156:i 4152:d 4149:, 4146:) 4143:v 4140:( 4135:p 4131:i 4127:d 4122:( 4115:) 4112:p 4109:( 4106:i 4102:g 4098:= 4095:) 4092:w 4089:, 4086:v 4083:( 4078:p 4074:g 4064:i 4040:g 4031:i 4010:N 3990:g 3970:g 3961:i 3940:x 3937:= 3934:) 3931:x 3928:( 3925:i 3905:M 3899:N 3896:: 3893:i 3873:M 3867:N 3844:) 3841:g 3838:, 3835:M 3832:( 3808:) 3805:g 3796:i 3792:, 3789:N 3786:( 3766:N 3746:g 3726:g 3717:i 3693:M 3665:M 3659:N 3656:: 3653:i 3633:) 3630:g 3627:, 3624:M 3621:( 3609:. 3595:1 3592:+ 3589:n 3584:R 3560:n 3556:S 3534:n 3491:) 3482:g 3478:, 3473:n 3468:R 3463:( 3440:. 3435:) 3429:1 3419:0 3414:0 3385:0 3375:1 3370:0 3363:0 3353:0 3348:1 3342:( 3337:= 3334:) 3324:j 3321:i 3317:g 3313:( 3281:j 3278:i 3251:j 3248:i 3240:= 3230:j 3227:i 3223:g 3194:2 3190:) 3184:n 3180:x 3176:d 3173:( 3170:+ 3164:+ 3159:2 3155:) 3149:1 3145:x 3141:d 3138:( 3135:= 3126:g 3097:i 3093:b 3087:i 3083:a 3077:i 3069:= 3065:) 3056:j 3052:x 3037:j 3033:b 3027:j 3019:, 3011:i 3007:x 2992:i 2988:a 2982:i 2973:( 2963:g 2933:g 2909:. 2904:n 2899:R 2875:n 2871:x 2867:, 2861:, 2856:1 2852:x 2816:g 2812:V 2808:d 2803:M 2777:M 2751:M 2731:M 2701:g 2697:V 2693:d 2672:n 2651:) 2648:g 2645:, 2642:M 2639:( 2619:n 2591:) 2588:U 2585:( 2582:f 2576:U 2573:: 2570:f 2550:U 2530:M 2524:p 2500:, 2497:N 2491:M 2488:: 2485:f 2462:. 2459:M 2454:p 2450:T 2443:v 2440:, 2437:u 2417:M 2411:p 2388:) 2385:) 2382:v 2379:( 2374:p 2370:f 2366:d 2363:, 2360:) 2357:u 2354:( 2349:p 2345:f 2341:d 2338:( 2333:) 2330:p 2327:( 2324:f 2320:h 2316:= 2313:) 2310:v 2307:, 2304:u 2301:( 2296:p 2292:g 2268:h 2259:f 2255:= 2252:g 2228:N 2222:M 2219:: 2216:f 2193:) 2190:h 2187:, 2184:N 2181:( 2161:) 2158:g 2155:, 2152:M 2149:( 2114:M 2105:T 2084:M 2081:T 2054:) 2048:, 2045:v 2042:( 2037:p 2033:g 2026:) 2023:v 2020:, 2017:p 2014:( 1991:g 1957:, 1954:v 1945:v 1907:g 1870:j 1867:i 1863:g 1838:g 1818:. 1815:) 1812:x 1809:, 1806:U 1803:( 1782:R 1775:U 1772:: 1767:j 1764:i 1760:g 1735:g 1707:. 1702:j 1698:x 1694:d 1686:i 1682:x 1678:d 1672:j 1669:i 1665:g 1659:j 1656:, 1653:i 1645:= 1642:g 1619:} 1614:n 1610:x 1606:d 1603:, 1597:, 1592:1 1588:x 1584:d 1581:{ 1551:p 1522:p 1518:g 1497:U 1477:n 1471:n 1450:R 1443:U 1440:: 1435:j 1432:i 1428:g 1405:2 1401:n 1388:. 1375:) 1369:p 1364:| 1356:j 1352:x 1335:, 1330:p 1325:| 1317:i 1313:x 1295:( 1289:p 1285:g 1276:p 1271:| 1264:j 1261:i 1257:g 1233:p 1213:U 1207:p 1187:M 1182:p 1178:T 1153:} 1147:p 1141:| 1130:n 1126:x 1113:, 1107:, 1102:p 1096:| 1085:1 1081:x 1067:{ 1043:M 1017:n 1012:R 1004:U 1001:: 998:) 993:n 989:x 985:, 979:, 974:1 970:x 966:( 927:) 924:g 921:, 918:M 915:( 891:g 871:M 849:) 846:v 843:, 840:v 837:( 832:p 828:g 822:= 817:p 809:v 785:R 778:M 773:p 769:T 765:: 760:p 728:R 721:M 716:p 712:T 705:M 700:p 696:T 692:: 687:p 683:g 658:p 638:M 618:g 588:M 583:p 579:T 555:p 535:M 515:M 510:p 506:T 485:p 465:M 441:M 436:p 432:T 411:M 405:p 381:M 266:. 86:n 34:. 20:)

Index

Riemannian metric
Riemann surface

dot product
sphere
3-dimensional Euclidean space
tangent plane
differential geometry
geometric space
Euclidean space
n {\displaystyle n} -sphere
hyperbolic space
smooth surfaces
ellipsoids
paraboloids
manifolds
Bernhard Riemann
smooth manifold
inner product
tangent space
differential and integral calculus
ambient space
submanifold
John Nash
projective space
Lie groups
homogeneous spaces
group actions
constant scalar curvature metrics
Kähler–Einstein metrics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.