Knowledge

Pseudoholomorphic curve

Source đź“ť

1836:
one can deduce that the surfaces are parametrized by pseudoholomorphic curves, and so the path integrals reduce to integrals over moduli spaces of pseudoholomorphic curves (or rather stable maps), which are finite-dimensional. In closed type IIA string theory, for example, these integrals are
1745:, and described the way in which pseudoholomorphic curves can degenerate when only finite energy is assumed. (The finite energy condition holds most notably for curves with a fixed homology class in a symplectic manifold where J is 1115: 325: 1637: 1832:, one wishes to compute certain integrals over the space of all such surfaces. Because such a space is infinite-dimensional, these path integrals are not mathematically well-defined in general. However, under the 1370: 988: 671:
A pseudoholomorphic curve is, by its definition, always parametrized. In applications one is often truly interested in unparametrized curves, meaning embedded (or immersed) two-submanifolds of
598: 518: 1201: 414: 1248: 1511: 640: 364: 225: 1783: 1763: 1704: 1684: 1462: 1421: 818: 691:, so one mods out by reparametrizations of the domain that preserve the relevant structure. In the case of Gromov–Witten invariants, for example, we consider only 662: 541: 440: 1724: 1664: 1534: 1441: 1398: 910: 890: 858: 838: 780: 753: 733: 713: 689: 460: 193: 169: 141: 121: 101: 999: 233: 1542: 1903: 1259: 922: 1786: 861: 1833: 1793:, makes possible the definition of Gromov–Witten invariants, which count pseudoholomorphic curves in symplectic manifolds. 1380:
Although they can be defined for any almost complex manifold, pseudoholomorphic curves are especially interesting when
1878: 549: 468: 56: 1123: 1937: 1887:, Pseudo holomorphic curves in symplectic manifolds. Inventiones Mathematicae vol. 82, 1985, pgs. 307-347. 52: 372: 1942: 1838: 1209: 64: 1472: 1932: 1884: 1820:
In type II string theory, one considers surfaces traced out by strings as they travel along paths in a
523:
to itself. For technical reasons, it is often preferable to introduce some sort of inhomogeneous term
1825: 1268: 1203:. After multiplying these matrices in two different orders, one sees immediately that the equation 665: 48: 607: 1947: 333: 198: 1768: 1748: 1731: 1689: 1669: 1447: 1406: 788: 783: 647: 526: 8: 1805: 60: 422: 1709: 1649: 1519: 1426: 1383: 895: 875: 843: 823: 765: 738: 718: 698: 674: 603:
A pseudoholomorphic curve satisfying this equation can be called, more specifically, a
445: 178: 154: 126: 106: 86: 1874: 1850: 1829: 1643: 1809: 1804:(and later authors, in greater generality) used to prove the famous conjecture of 1110:{\displaystyle df={\begin{bmatrix}du/dx&du/dy\\dv/dx&dv/dy\end{bmatrix}},} 1952: 1895: 1891: 1866: 1401: 692: 320:{\displaystyle {\bar {\partial }}_{j,J}f:={\frac {1}{2}}(df+J\circ df\circ j)=0.} 148: 144: 44: 1821: 1797: 913: 68: 1926: 1801: 1796:
Compact moduli spaces of pseudoholomorphic curves are also used to construct
1742: 1741:
of pseudoholomorphic curves (satisfying additional specified conditions) are
72: 1632:{\displaystyle (v,w)={\frac {1}{2}}\left(\omega (v,Jw)+\omega (w,Jv)\right)} 820:
is negative, there are only finitely many holomorphic reparametrizations of
1738: 1727: 1862: 17: 1790: 40: 1253:
written above is equivalent to the classical Cauchy–Riemann equations
867: 1365:{\displaystyle {\begin{cases}du/dx=dv/dy\\dv/dx=-du/dy.\end{cases}}} 983:{\displaystyle j=J={\begin{bmatrix}0&-1\\1&0\end{bmatrix}},} 543:
and to study maps satisfying the perturbed Cauchy–Riemann equation
25: 21: 59:, pseudoholomorphic curves have since revolutionized the study of 1873:, American Mathematical Society colloquium publications, 2004. 668:(particularly in Floer theory), but in general it need not be. 1734:
concerning symplectic embeddings of spheres into cylinders.
103:
be an almost complex manifold with almost complex structure
1358: 1375: 1017: 943: 1771: 1751: 1712: 1692: 1672: 1652: 1545: 1522: 1475: 1450: 1429: 1409: 1386: 1262: 1212: 1126: 1002: 925: 898: 878: 846: 826: 791: 768: 741: 721: 701: 677: 650: 610: 552: 529: 471: 448: 425: 375: 336: 236: 201: 181: 157: 129: 109: 89: 868:
Analogy with the classical Cauchy–Riemann equations
1777: 1757: 1718: 1698: 1678: 1658: 1631: 1528: 1505: 1456: 1435: 1415: 1392: 1364: 1242: 1195: 1109: 982: 904: 884: 852: 840:that preserve the marked points. The domain curve 832: 812: 774: 747: 727: 707: 683: 656: 634: 592: 535: 512: 454: 434: 408: 358: 319: 219: 187: 163: 135: 115: 95: 1924: 593:{\displaystyle {\bar {\partial }}_{j,J}f=\nu .} 1904:Notices of the American Mathematical Society 1871:J-Holomorphic Curves and Symplectic Topology 227:that satisfies the Cauchy–Riemann equation 1815: 664:is sometimes assumed to be generated by a 1890: 1808:concerning the number of fixed points of 513:{\displaystyle T_{x}f(C)\subseteq T_{x}X} 419:which simply means that the differential 1925: 1896:"What Is...a Pseudoholomorphic Curve?" 1196:{\displaystyle f(x,y)=(u(x,y),v(x,y))} 862:Deligne–Mumford moduli space of curves 1536:. Tameness implies that the formula 409:{\displaystyle J\circ df=df\circ j,} 1376:Applications in symplectic topology 1243:{\displaystyle J\circ df=df\circ j} 13: 1666:. Gromov showed that, for a given 1506:{\displaystyle \omega (v,Jv)>0} 557: 366:, this condition is equivalent to 241: 63:. In particular, they lead to the 14: 1964: 1730:. He used this theory to prove a 1789:, now greatly generalized using 1516:for all nonzero tangent vectors 872:The classical case occurs when 71:, and play a prominent role in 1621: 1606: 1597: 1582: 1558: 1546: 1494: 1479: 1423:. An almost complex structure 1190: 1187: 1175: 1166: 1154: 1148: 1142: 1130: 629: 611: 560: 491: 485: 308: 278: 244: 211: 1: 1856: 78: 442:is complex-linear, that is, 7: 1844: 1737:Gromov showed that certain 916:plane. In real coordinates 782:. As soon as the punctured 10: 1969: 1885:Mikhail Leonidovich Gromov 1787:Gromov compactness theorem 635:{\displaystyle (j,J,\nu )} 1826:path integral formulation 151:) with complex structure 1839:Gromov–Witten invariants 462:maps each tangent space 359:{\displaystyle J^{2}=-1} 220:{\displaystyle f:C\to X} 65:Gromov–Witten invariants 55:. Introduced in 1985 by 1816:Applications in physics 1778:{\displaystyle \omega } 1758:{\displaystyle \omega } 1699:{\displaystyle \omega } 1679:{\displaystyle \omega } 1457:{\displaystyle \omega } 1416:{\displaystyle \omega } 173:pseudoholomorphic curve 53:Cauchy–Riemann equation 49:almost complex manifold 30:pseudoholomorphic curve 1824:3-fold. Following the 1779: 1759: 1720: 1700: 1680: 1660: 1633: 1530: 1507: 1458: 1437: 1417: 1394: 1366: 1244: 1197: 1111: 984: 906: 886: 854: 834: 814: 813:{\displaystyle 2-2g-n} 776: 749: 729: 709: 685: 658: 636: 594: 537: 514: 456: 436: 410: 360: 321: 221: 189: 165: 137: 117: 97: 1780: 1760: 1732:non-squeezing theorem 1721: 1701: 1681: 1661: 1634: 1531: 1508: 1459: 1438: 1418: 1395: 1367: 1245: 1198: 1112: 985: 907: 887: 860:is an element of the 855: 835: 815: 777: 750: 730: 710: 686: 659: 637: 595: 538: 515: 457: 437: 411: 361: 322: 222: 190: 166: 138: 118: 98: 1785:-compatible). This 1769: 1749: 1710: 1690: 1670: 1650: 1543: 1520: 1473: 1448: 1427: 1407: 1384: 1260: 1210: 1124: 1000: 923: 912:are both simply the 896: 876: 844: 824: 789: 784:Euler characteristic 766: 739: 719: 699: 675: 657:{\displaystyle \nu } 648: 608: 550: 536:{\displaystyle \nu } 527: 469: 446: 423: 373: 334: 234: 199: 179: 155: 127: 107: 87: 61:symplectic manifolds 1938:Symplectic topology 1892:Donaldson, Simon K. 644:. The perturbation 51:that satisfies the 1943:Algebraic geometry 1775: 1755: 1716: 1696: 1676: 1656: 1629: 1526: 1503: 1454: 1433: 1413: 1390: 1362: 1357: 1240: 1193: 1107: 1098: 980: 971: 902: 882: 850: 830: 810: 772: 745: 725: 705: 681: 654: 642:-holomorphic curve 632: 590: 533: 510: 452: 435:{\displaystyle df} 432: 406: 356: 317: 217: 185: 161: 133: 113: 93: 37:-holomorphic curve 20:, specifically in 1933:Complex manifolds 1851:Holomorphic curve 1830:quantum mechanics 1810:Hamiltonian flows 1719:{\displaystyle J} 1659:{\displaystyle X} 1644:Riemannian metric 1572: 1529:{\displaystyle v} 1436:{\displaystyle J} 1400:interacts with a 1393:{\displaystyle J} 905:{\displaystyle C} 885:{\displaystyle X} 853:{\displaystyle C} 833:{\displaystyle C} 775:{\displaystyle C} 748:{\displaystyle n} 735:and we introduce 728:{\displaystyle g} 708:{\displaystyle C} 684:{\displaystyle X} 563: 455:{\displaystyle J} 276: 247: 188:{\displaystyle X} 164:{\displaystyle j} 136:{\displaystyle C} 116:{\displaystyle J} 96:{\displaystyle X} 1960: 1919: 1917: 1916: 1900: 1894:(October 2005). 1806:Vladimir Arnol'd 1784: 1782: 1781: 1776: 1764: 1762: 1761: 1756: 1726:is nonempty and 1725: 1723: 1722: 1717: 1705: 1703: 1702: 1697: 1685: 1683: 1682: 1677: 1665: 1663: 1662: 1657: 1638: 1636: 1635: 1630: 1628: 1624: 1573: 1565: 1535: 1533: 1532: 1527: 1512: 1510: 1509: 1504: 1463: 1461: 1460: 1455: 1442: 1440: 1439: 1434: 1422: 1420: 1419: 1414: 1399: 1397: 1396: 1391: 1371: 1369: 1368: 1363: 1361: 1360: 1345: 1322: 1301: 1281: 1249: 1247: 1246: 1241: 1202: 1200: 1199: 1194: 1116: 1114: 1113: 1108: 1103: 1102: 1089: 1070: 1049: 1030: 989: 987: 986: 981: 976: 975: 911: 909: 908: 903: 891: 889: 888: 883: 859: 857: 856: 851: 839: 837: 836: 831: 819: 817: 816: 811: 781: 779: 778: 773: 754: 752: 751: 746: 734: 732: 731: 726: 714: 712: 711: 706: 690: 688: 687: 682: 663: 661: 660: 655: 641: 639: 638: 633: 599: 597: 596: 591: 577: 576: 565: 564: 556: 542: 540: 539: 534: 519: 517: 516: 511: 506: 505: 481: 480: 461: 459: 458: 453: 441: 439: 438: 433: 415: 413: 412: 407: 365: 363: 362: 357: 346: 345: 326: 324: 323: 318: 277: 269: 261: 260: 249: 248: 240: 226: 224: 223: 218: 194: 192: 191: 186: 170: 168: 167: 162: 142: 140: 139: 134: 122: 120: 119: 114: 102: 100: 99: 94: 1968: 1967: 1963: 1962: 1961: 1959: 1958: 1957: 1923: 1922: 1914: 1912: 1898: 1867:Dietmar Salamon 1859: 1847: 1818: 1770: 1767: 1766: 1750: 1747: 1746: 1711: 1708: 1707: 1691: 1688: 1687: 1686:, the space of 1671: 1668: 1667: 1651: 1648: 1647: 1578: 1574: 1564: 1544: 1541: 1540: 1521: 1518: 1517: 1474: 1471: 1470: 1466:if and only if 1449: 1446: 1445: 1428: 1425: 1424: 1408: 1405: 1404: 1402:symplectic form 1385: 1382: 1381: 1378: 1356: 1355: 1341: 1318: 1309: 1308: 1297: 1277: 1264: 1263: 1261: 1258: 1257: 1211: 1208: 1207: 1125: 1122: 1121: 1097: 1096: 1085: 1077: 1066: 1057: 1056: 1045: 1037: 1026: 1013: 1012: 1001: 998: 997: 970: 969: 964: 958: 957: 949: 939: 938: 924: 921: 920: 897: 894: 893: 877: 874: 873: 870: 845: 842: 841: 825: 822: 821: 790: 787: 786: 767: 764: 763: 740: 737: 736: 720: 717: 716: 715:of fixed genus 700: 697: 696: 676: 673: 672: 649: 646: 645: 609: 606: 605: 566: 555: 554: 553: 551: 548: 547: 528: 525: 524: 501: 497: 476: 472: 470: 467: 466: 447: 444: 443: 424: 421: 420: 374: 371: 370: 341: 337: 335: 332: 331: 268: 250: 239: 238: 237: 235: 232: 231: 200: 197: 196: 180: 177: 176: 156: 153: 152: 147:(also called a 145:Riemann surface 128: 125: 124: 108: 105: 104: 88: 85: 84: 81: 45:Riemann surface 12: 11: 5: 1966: 1956: 1955: 1950: 1945: 1940: 1935: 1921: 1920: 1911:(9): 1026–1027 1888: 1882: 1858: 1855: 1854: 1853: 1846: 1843: 1837:precisely the 1817: 1814: 1798:Floer homology 1774: 1754: 1715: 1695: 1675: 1655: 1640: 1639: 1627: 1623: 1620: 1617: 1614: 1611: 1608: 1605: 1602: 1599: 1596: 1593: 1590: 1587: 1584: 1581: 1577: 1571: 1568: 1563: 1560: 1557: 1554: 1551: 1548: 1525: 1514: 1513: 1502: 1499: 1496: 1493: 1490: 1487: 1484: 1481: 1478: 1453: 1443:is said to be 1432: 1412: 1389: 1377: 1374: 1373: 1372: 1359: 1354: 1351: 1348: 1344: 1340: 1337: 1334: 1331: 1328: 1325: 1321: 1317: 1314: 1311: 1310: 1307: 1304: 1300: 1296: 1293: 1290: 1287: 1284: 1280: 1276: 1273: 1270: 1269: 1267: 1251: 1250: 1239: 1236: 1233: 1230: 1227: 1224: 1221: 1218: 1215: 1192: 1189: 1186: 1183: 1180: 1177: 1174: 1171: 1168: 1165: 1162: 1159: 1156: 1153: 1150: 1147: 1144: 1141: 1138: 1135: 1132: 1129: 1118: 1117: 1106: 1101: 1095: 1092: 1088: 1084: 1081: 1078: 1076: 1073: 1069: 1065: 1062: 1059: 1058: 1055: 1052: 1048: 1044: 1041: 1038: 1036: 1033: 1029: 1025: 1022: 1019: 1018: 1016: 1011: 1008: 1005: 991: 990: 979: 974: 968: 965: 963: 960: 959: 956: 953: 950: 948: 945: 944: 942: 937: 934: 931: 928: 914:complex number 901: 881: 869: 866: 849: 829: 809: 806: 803: 800: 797: 794: 771: 744: 724: 704: 680: 653: 631: 628: 625: 622: 619: 616: 613: 601: 600: 589: 586: 583: 580: 575: 572: 569: 562: 559: 532: 521: 520: 509: 504: 500: 496: 493: 490: 487: 484: 479: 475: 451: 431: 428: 417: 416: 405: 402: 399: 396: 393: 390: 387: 384: 381: 378: 355: 352: 349: 344: 340: 328: 327: 316: 313: 310: 307: 304: 301: 298: 295: 292: 289: 286: 283: 280: 275: 272: 267: 264: 259: 256: 253: 246: 243: 216: 213: 210: 207: 204: 184: 160: 132: 112: 92: 80: 77: 69:Floer homology 57:Mikhail Gromov 9: 6: 4: 3: 2: 1965: 1954: 1951: 1949: 1948:String theory 1946: 1944: 1941: 1939: 1936: 1934: 1931: 1930: 1928: 1910: 1906: 1905: 1897: 1893: 1889: 1886: 1883: 1880: 1879:0-8218-3485-1 1876: 1872: 1868: 1864: 1861: 1860: 1852: 1849: 1848: 1842: 1840: 1835: 1831: 1827: 1823: 1813: 1811: 1807: 1803: 1802:Andreas Floer 1799: 1794: 1792: 1788: 1772: 1752: 1744: 1740: 1739:moduli spaces 1735: 1733: 1729: 1713: 1693: 1673: 1653: 1645: 1625: 1618: 1615: 1612: 1609: 1603: 1600: 1594: 1591: 1588: 1585: 1579: 1575: 1569: 1566: 1561: 1555: 1552: 1549: 1539: 1538: 1537: 1523: 1500: 1497: 1491: 1488: 1485: 1482: 1476: 1469: 1468: 1467: 1465: 1451: 1430: 1410: 1403: 1387: 1352: 1349: 1346: 1342: 1338: 1335: 1332: 1329: 1326: 1323: 1319: 1315: 1312: 1305: 1302: 1298: 1294: 1291: 1288: 1285: 1282: 1278: 1274: 1271: 1265: 1256: 1255: 1254: 1237: 1234: 1231: 1228: 1225: 1222: 1219: 1216: 1213: 1206: 1205: 1204: 1184: 1181: 1178: 1172: 1169: 1163: 1160: 1157: 1151: 1145: 1139: 1136: 1133: 1127: 1104: 1099: 1093: 1090: 1086: 1082: 1079: 1074: 1071: 1067: 1063: 1060: 1053: 1050: 1046: 1042: 1039: 1034: 1031: 1027: 1023: 1020: 1014: 1009: 1006: 1003: 996: 995: 994: 977: 972: 966: 961: 954: 951: 946: 940: 935: 932: 929: 926: 919: 918: 917: 915: 899: 879: 865: 863: 847: 827: 807: 804: 801: 798: 795: 792: 785: 769: 761: 757: 756:marked points 742: 722: 702: 694: 678: 669: 667: 651: 643: 626: 623: 620: 617: 614: 587: 584: 581: 578: 573: 570: 567: 546: 545: 544: 530: 507: 502: 498: 494: 488: 482: 477: 473: 465: 464: 463: 449: 429: 426: 403: 400: 397: 394: 391: 388: 385: 382: 379: 376: 369: 368: 367: 353: 350: 347: 342: 338: 314: 311: 305: 302: 299: 296: 293: 290: 287: 284: 281: 273: 270: 265: 262: 257: 254: 251: 230: 229: 228: 214: 208: 205: 202: 182: 174: 158: 150: 149:complex curve 146: 130: 110: 90: 76: 74: 73:string theory 70: 66: 62: 58: 54: 50: 46: 42: 38: 36: 31: 27: 23: 19: 1913:. Retrieved 1908: 1902: 1870: 1819: 1795: 1736: 1728:contractible 1641: 1515: 1444: 1379: 1252: 1119: 992: 871: 759: 755: 670: 604: 602: 522: 418: 329: 172: 143:be a smooth 82: 34: 33: 29: 15: 1863:Dusa McDuff 1791:stable maps 666:Hamiltonian 18:mathematics 1927:Categories 1915:2008-01-17 1857:References 1822:Calabi–Yau 1642:defines a 79:Definition 41:smooth map 1773:ω 1765:-tame or 1753:ω 1694:ω 1674:ω 1604:ω 1580:ω 1477:ω 1452:ω 1411:ω 1333:− 1235:∘ 1217:∘ 952:− 805:− 796:− 760:punctures 652:ν 627:ν 585:ν 561:¯ 558:∂ 531:ν 495:⊆ 398:∘ 380:∘ 351:− 303:∘ 294:∘ 245:¯ 242:∂ 212:→ 195:is a map 1845:See also 1800:, which 695:domains 47:into an 26:geometry 22:topology 1834:A-twist 1743:compact 43:from a 39:) is a 1953:Curves 1877:  1706:-tame 1120:where 693:closed 330:Since 123:. Let 1899:(PDF) 1464:-tame 762:) on 1875:ISBN 1865:and 1498:> 993:and 892:and 758:(or 171:. A 83:Let 67:and 32:(or 28:, a 24:and 1828:of 1646:on 175:in 16:In 1929:: 1909:52 1907:. 1901:. 1869:, 1841:. 1812:. 864:. 315:0. 266::= 75:. 1918:. 1881:. 1714:J 1654:X 1626:) 1622:) 1619:v 1616:J 1613:, 1610:w 1607:( 1601:+ 1598:) 1595:w 1592:J 1589:, 1586:v 1583:( 1576:( 1570:2 1567:1 1562:= 1559:) 1556:w 1553:, 1550:v 1547:( 1524:v 1501:0 1495:) 1492:v 1489:J 1486:, 1483:v 1480:( 1431:J 1388:J 1353:. 1350:y 1347:d 1343:/ 1339:u 1336:d 1330:= 1327:x 1324:d 1320:/ 1316:v 1313:d 1306:y 1303:d 1299:/ 1295:v 1292:d 1289:= 1286:x 1283:d 1279:/ 1275:u 1272:d 1266:{ 1238:j 1232:f 1229:d 1226:= 1223:f 1220:d 1214:J 1191:) 1188:) 1185:y 1182:, 1179:x 1176:( 1173:v 1170:, 1167:) 1164:y 1161:, 1158:x 1155:( 1152:u 1149:( 1146:= 1143:) 1140:y 1137:, 1134:x 1131:( 1128:f 1105:, 1100:] 1094:y 1091:d 1087:/ 1083:v 1080:d 1075:x 1072:d 1068:/ 1064:v 1061:d 1054:y 1051:d 1047:/ 1043:u 1040:d 1035:x 1032:d 1028:/ 1024:u 1021:d 1015:[ 1010:= 1007:f 1004:d 978:, 973:] 967:0 962:1 955:1 947:0 941:[ 936:= 933:J 930:= 927:j 900:C 880:X 848:C 828:C 808:n 802:g 799:2 793:2 770:C 743:n 723:g 703:C 679:X 630:) 624:, 621:J 618:, 615:j 612:( 588:. 582:= 579:f 574:J 571:, 568:j 508:X 503:x 499:T 492:) 489:C 486:( 483:f 478:x 474:T 450:J 430:f 427:d 404:, 401:j 395:f 392:d 389:= 386:f 383:d 377:J 354:1 348:= 343:2 339:J 312:= 309:) 306:j 300:f 297:d 291:J 288:+ 285:f 282:d 279:( 274:2 271:1 263:f 258:J 255:, 252:j 215:X 209:C 206:: 203:f 183:X 159:j 131:C 111:J 91:X 35:J

Index

mathematics
topology
geometry
smooth map
Riemann surface
almost complex manifold
Cauchy–Riemann equation
Mikhail Gromov
symplectic manifolds
Gromov–Witten invariants
Floer homology
string theory
Riemann surface
complex curve
Hamiltonian
closed
Euler characteristic
Deligne–Mumford moduli space of curves
complex number
symplectic form
Riemannian metric
contractible
non-squeezing theorem
moduli spaces
compact
Gromov compactness theorem
stable maps
Floer homology
Andreas Floer
Vladimir Arnol'd

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑