Knowledge

HindIII

Source 📝

285: 29: 488:
and mapping. Unlike type I restriction enzymes, type II restriction endonucleases perform very specific cleaving of DNA. Type I restriction enzymes recognize specific sequences, but cleave DNA randomly at sites other than their recognition site whereas type II restriction enzymes cleave only at
417:
dIII. In a separate mutagenesis study it was shown that a mutation at residue 123 from Asp to Asn reduced enzymatic activity. Despite the fact that this residue is most likely responsible for the unwinding of DNA and coordination to water rather than direct interaction with the attacking
396:
sequence motif PD-(D/E)XK to coordinate Mg, a cation required to cleave DNA in most type II restriction endonucleases. The cofactor Mg is believed to bind water molecules and carry them to the catalytic sites of the enzymes, among other cations. Unlike most documented type II restriction
500:
Major uses of type II restriction enzymes include gene analysis and cloning. They have proven to be ideal modeling systems for the study of protein-nucleic acid interactions, structure-function relationships, and the mechanism of
464:
anion through to coordination of Mg. Furthermore, enzymatic function is dependent upon the correct position of the Asp-74 residue, suggesting has a role in increasing the nucleophilicity of the attacking water molecule.
452:
have led to the following proposed catalytic mechanism. It has been suggested that during the hydrolysis of DNA by EcoRV the catalytic residue Lys-92 stabilizes and orients the attacking water
445:
Despite the lack of evidence suggesting an exact mechanism for the cleavage of DNA by HindIII, site-mutagenesis analysis coupled with more detailed studies of metal ion-mediated catalysis in
472:, respectively. Lys-125 positions the attacking water molecule while Asp-108 improves its nucleophilicity. Asp-123 coordinates to Mg2+ which in turn stabilizes the leaving hydroxide ion. 468:
As a result of the site-mutagenesis experiments previously outlined, it is thus proposed that Lys-125, Asp-123, and Asp-108 of HindIII function similarly to Lys-92, Asp-90, and Asp-74 in
509:
by their ability to specifically cleave DNA to allow the removal or insertion of DNA. Through the use of restriction enzymes, scientists are able to modify, insert, or remove specific
846: 337: 347:
The structure of HindIII is complex, and consists of a homodimer. Like other type II restriction endonucleases, it is believed to contain a common structural core comprising four
413:
residues involved. In particular, substitutions of Asn for Lys at residue 125 and Leu for Asp at residue 108 significantly decreased DNA binding and the catalytic function of
489:
their specific recognition site. Since their discovery in the early 1970s, type II restriction enzymes have revolutionized the way scientists work with DNA, particularly in
118: 1148: 1143: 430:
While restriction enzymes cleave at specific DNA sequences, they are first required to bind non-specifically with the DNA backbone before localizing to the
1153: 1138: 1133: 320:
DNA. There is also evidence that suggests the restriction enzymes may act alongside modification enzymes as selfish elements, or may be involved in
171: 33:
Crystallographic structure of the HindIII restriction endonuclease dimer (cyan and green) complexed with double helical DNA (brown) based on the
1188: 1178: 1173: 1168: 1163: 1158: 636: 853: 1183: 1128: 397:
endonucleases, HindIII is unique in that it has little to no catalytic activity when Mg is substituted for other cofactors, such as Mn.
1120: 1016: 914: 442:, this bonding facilitates a conformational change of the DNA-enzyme complex which leads to the activation of catalytic centers. 176: 922: 938: 637:"Understanding the immutability of restriction enzymes: crystal structure of BglII and its DNA substrate at 1.5 A resolution" 138: 1229: 542:"Mutational analyses of restriction endonuclease-HindIII mutant E86K with higher activity and altered specificity" 862: 313: 405:
Despite the uncertainty concerning the structure-catalysis relationship of type II endonucleases, site-directed
126: 191: 1224: 839: 1219: 439: 122: 831: 481: 363:
and DNA technology, little information is available concerning the mechanism of DNA recognition and
316:. Their primary function is to protect the host genome against invasion by foreign DNA, primarily 215: 284: 367:
cleavage. However, it is believed that HindIII utilizes a common mechanism of recognition and
273: 1200: 321: 790: 325: 220: 105: 239: 8: 490: 364: 359:
and the predicted molecular mass is 34,950 Da. Despite the importance of this enzyme in
295:
The cleavage of this sequence between the AA's results in 5' overhangs on the DNA called
794: 277:
that cleaves the DNA palindromic sequence AAGCTT in the presence of the cofactor Mg via
866: 813: 778: 664: 291:
dIII restrictions process results in formation of overhanging palindromic sticky ends.
268: 728:"Metal ion-mediated substrate-assisted catalysis in type II restriction endonucleases" 818: 759: 754: 727: 708: 656: 617: 612: 587: 563: 506: 494: 360: 183: 113: 35: 668: 67: 808: 798: 749: 739: 698: 648: 607: 599: 553: 431: 101: 79: 249: 558: 541: 485: 435: 409:
of the restriction endonuclease HindIII has provided much insight into the key
1213: 744: 603: 317: 803: 885: 880: 822: 712: 660: 621: 567: 513:, a very powerful tool especially when it comes to modifying an organism's 763: 890: 457: 453: 419: 406: 356: 336: 309: 296: 203: 703: 686: 348: 267:(pronounced "Hin D Three") is a type II site-specific deoxyribonuclease 861: 410: 393: 343:
II catalytic site, showing the coordination of Asp 84 and Mg with water
278: 198: 352: 188: 39: 502: 461: 368: 779:"How restriction enzymes became the workhorses of molecular biology" 973: 438:
with the bases of the recognition sequence. With the aid of other
74: 652: 946: 930: 687:"Site-directed mutagenesis of restriction endonuclease HindIII" 585: 514: 133: 1040: 1032: 1024: 1008: 954: 588:"Structure and function of type II restriction endonucleases" 510: 469: 446: 386: 379: 372: 308:
Restriction endonucleases are used as defense mechanisms in
1107: 1088: 1080: 1072: 1064: 1056: 1000: 981: 906: 95: 62: 28: 434:. On average, the restriction enzyme will form 15-20 725: 776: 484:are very useful in modern science, particularly in 1211: 371:of DNA found in other type II enzymes such as 847: 400: 854: 840: 586:Pingoud, Alfred; Jeltsch, Albert. (2001). 505:. They make good assays for the study of 27: 812: 802: 753: 743: 702: 611: 581: 579: 577: 557: 153:hindIIIR type II restriction endonuclease 335: 283: 726:Horton N, Newberry K, Perona J (1999). 539: 1212: 770: 680: 678: 634: 574: 535: 533: 531: 529: 835: 719: 628: 425: 684: 422:, its specific function is unknown. 675: 526: 475: 13: 14: 1241: 480:HindIII as well as other type II 460:of Asp-90 stabilizes the leaving 22:HindIII restriction endonuclease 863:Restriction modification system 314:restriction modification system 635:Lukacs C, et al. (2000). 1: 540:Tang, D; et al. (2000). 520: 392:. These enzymes contain the 355:. Each subunit contains 300 90:Available protein structures: 777:Roberts, Richard J. (2005). 685:Tang D, et al. (1999). 331: 7: 691:Biosci. Biotechnol. Biochem 305:3'-T T C G A| A-5' 302:5'-A |A G C T T-3' 10: 1246: 1230:Enzymes of known structure 1199:* means cleavage produces 783:Proc. Natl. Acad. Sci. USA 732:Proc. Natl. Acad. Sci. USA 440:van der Waals interactions 1197: 1119: 1100: 993: 966: 899: 873: 482:restriction endonucleases 401:Site-directed mutagenesis 245: 235: 230: 226: 214: 209: 197: 182: 170: 162: 157: 152: 132: 112: 94: 89: 85: 73: 61: 53: 48: 26: 21: 1101:Recognition sequence 8bp 994:Recognition sequence 6bp 967:Recognition sequence 5bp 900:Recognition sequence 4bp 745:10.1073/pnas.95.23.13489 559:10.1093/protein/13.4.283 804:10.1073/pnas.0500923102 604:10.1093/nar/29.18.3705 592:Nucleic Acids Research 344: 292: 274:Haemophilus influenzae 339: 322:genetic recombination 287: 43:​ coordinates. 1225:Restriction enzymes 795:2005PNAS..102.5905R 704:10.1271/bbb.63.1703 546:Protein Engineering 491:genetic engineering 365:phosphodiester bond 867:restriction enzyme 426:Proposed mechanism 345: 293: 269:restriction enzyme 1220:Bacterial enzymes 1207: 1206: 641:Nat. Struct. Biol 507:genetic mutations 495:molecular biology 361:molecular biology 312:organisms in the 259: 258: 255: 254: 148: 147: 144: 143: 139:structure summary 1237: 856: 849: 842: 833: 832: 827: 826: 816: 806: 774: 768: 767: 757: 747: 738:(23): 13489–94. 723: 717: 716: 706: 682: 673: 672: 632: 626: 625: 615: 583: 572: 571: 561: 537: 476:Uses in research 432:restriction site 228: 227: 150: 149: 87: 86: 42: 31: 19: 18: 1245: 1244: 1240: 1239: 1238: 1236: 1235: 1234: 1210: 1209: 1208: 1203: 1193: 1115: 1096: 989: 962: 895: 869: 860: 830: 775: 771: 724: 720: 683: 676: 633: 629: 598:(18): 3705–27. 584: 575: 538: 527: 523: 478: 428: 403: 334: 192:More structures 44: 34: 17: 12: 11: 5: 1243: 1233: 1232: 1227: 1222: 1205: 1204: 1198: 1195: 1194: 1192: 1191: 1186: 1181: 1176: 1171: 1166: 1161: 1156: 1151: 1146: 1141: 1136: 1131: 1125: 1123: 1117: 1116: 1114: 1113: 1104: 1102: 1098: 1097: 1095: 1094: 1086: 1078: 1070: 1062: 1054: 1046: 1038: 1030: 1022: 1014: 1006: 997: 995: 991: 990: 988: 987: 979: 970: 968: 964: 963: 961: 960: 952: 944: 936: 928: 920: 912: 903: 901: 897: 896: 894: 893: 888: 883: 877: 875: 871: 870: 859: 858: 851: 844: 836: 829: 828: 789:(17): 5905–8. 769: 718: 697:(10): 1703–7. 674: 627: 573: 524: 522: 519: 486:DNA sequencing 477: 474: 436:hydrogen bonds 427: 424: 402: 399: 333: 330: 271:isolated from 257: 256: 253: 252: 247: 243: 242: 237: 233: 232: 224: 223: 218: 212: 211: 207: 206: 201: 195: 194: 186: 180: 179: 174: 168: 167: 164: 160: 159: 155: 154: 146: 145: 142: 141: 136: 130: 129: 116: 110: 109: 99: 92: 91: 83: 82: 77: 71: 70: 65: 59: 58: 55: 51: 50: 46: 45: 32: 24: 23: 15: 9: 6: 4: 3: 2: 1242: 1231: 1228: 1226: 1223: 1221: 1218: 1217: 1215: 1202: 1196: 1190: 1187: 1185: 1182: 1180: 1177: 1175: 1172: 1170: 1167: 1165: 1162: 1160: 1157: 1155: 1152: 1150: 1147: 1145: 1142: 1140: 1137: 1135: 1132: 1130: 1127: 1126: 1124: 1122: 1118: 1112: 1110: 1106: 1105: 1103: 1099: 1093: 1091: 1087: 1085: 1083: 1079: 1077: 1075: 1071: 1069: 1067: 1063: 1061: 1059: 1055: 1053: 1051: 1047: 1045: 1043: 1039: 1037: 1035: 1031: 1029: 1027: 1023: 1021: 1019: 1015: 1013: 1011: 1007: 1005: 1003: 999: 998: 996: 992: 986: 984: 980: 978: 976: 972: 971: 969: 965: 959: 957: 953: 951: 949: 945: 943: 941: 937: 935: 933: 929: 927: 925: 921: 919: 917: 913: 911: 909: 905: 904: 902: 898: 892: 889: 887: 884: 882: 879: 878: 876: 874:Basic Concept 872: 868: 864: 857: 852: 850: 845: 843: 838: 837: 834: 824: 820: 815: 810: 805: 800: 796: 792: 788: 784: 780: 773: 765: 761: 756: 751: 746: 741: 737: 733: 729: 722: 714: 710: 705: 700: 696: 692: 688: 681: 679: 670: 666: 662: 658: 654: 653:10.1038/72405 650: 647:(2): 134–40. 646: 642: 638: 631: 623: 619: 614: 609: 605: 601: 597: 593: 589: 582: 580: 578: 569: 565: 560: 555: 551: 547: 543: 536: 534: 532: 530: 525: 518: 516: 512: 508: 504: 498: 496: 492: 487: 483: 473: 471: 466: 463: 459: 455: 451: 449: 443: 441: 437: 433: 423: 421: 416: 412: 408: 398: 395: 391: 389: 384: 382: 377: 375: 370: 366: 362: 358: 354: 351:and a single 350: 342: 338: 329: 327: 326:transposition 323: 319: 318:bacteriophage 315: 311: 306: 303: 300: 298: 290: 286: 282: 280: 276: 275: 270: 266: 264: 251: 248: 244: 241: 238: 234: 229: 225: 222: 219: 217: 213: 208: 205: 202: 200: 196: 193: 190: 187: 185: 181: 178: 175: 173: 169: 165: 161: 156: 151: 140: 137: 135: 131: 128: 124: 120: 117: 115: 111: 107: 103: 100: 97: 93: 88: 84: 81: 78: 76: 72: 69: 66: 64: 60: 56: 52: 47: 41: 37: 30: 25: 20: 1108: 1089: 1081: 1073: 1065: 1057: 1049: 1048: 1041: 1033: 1025: 1017: 1009: 1001: 982: 974: 955: 947: 939: 931: 923: 915: 907: 886:Neoschizomer 881:Isoschizomer 786: 782: 772: 735: 731: 721: 694: 690: 644: 640: 630: 595: 591: 552:(4): 283–9. 549: 545: 499: 479: 467: 456:, while the 447: 444: 429: 414: 404: 387: 380: 373: 346: 340: 307: 304: 301: 294: 288: 272: 262: 261: 260: 891:Isocaudomer 458:carboxylate 454:nucleophile 420:nucleophile 407:mutagenesis 357:amino acids 310:prokaryotic 297:sticky ends 240:Swiss-model 158:Identifiers 49:Identifiers 1214:Categories 1201:blunt ends 521:References 411:amino acid 394:amino acid 279:hydrolysis 236:Structures 231:Search for 210:Other data 102:structures 57:RE_Hindiii 503:evolution 462:hydroxide 369:catalysis 332:Structure 216:EC number 172:NCBI gene 80:IPR019043 823:15840723 713:10586498 669:20478739 661:10655616 622:11557805 568:10810160 349:β-sheets 250:InterPro 221:3.1.21.4 166:hindIIIR 119:RCSB PDB 75:InterPro 1149:Bsp–Bss 1144:Bsa–Bso 814:1087929 791:Bibcode 764:9811827 353:α-helix 246:Domains 199:UniProt 68:PF09518 1154:Bst–Bv 821:  811:  762:  752:  711:  667:  659:  620:  610:  566:  515:genome 385:, and 204:P43870 177:950303 163:Symbol 134:PDBsum 108:  98:  54:Symbol 16:Enzyme 1139:Bd–Bp 1134:Ba–Bc 1121:Lists 755:24846 665:S2CID 613:55916 511:genes 470:EcoRV 1050:Hind 934:III* 819:PMID 760:PMID 709:PMID 657:PMID 618:PMID 564:PMID 493:and 324:and 265:dIII 189:2e52 127:PDBj 123:PDBe 106:ECOD 96:Pfam 63:Pfam 40:2E52 1189:T-Z 1179:O-R 1174:L-N 1169:G-K 1164:E-F 1159:C-D 1109:Not 1090:Nde 1082:Pst 1074:Sac 1066:Xho 1058:Xba 1052:III 1042:Bam 1034:Eco 1028:RV* 1026:Eco 1020:II* 1018:Pov 1010:Bgl 1002:Aaa 983:Fok 977:RII 975:Eco 956:Hpa 950:III 948:Nla 940:Dpn 932:Hae 924:Alu 916:Sau 908:Taq 809:PMC 799:doi 787:102 750:PMC 740:doi 699:doi 649:doi 608:PMC 600:doi 554:doi 448:Eco 415:Hin 388:Bgl 381:Bam 374:Eco 341:Bgl 289:Hin 263:Hin 184:PDB 114:PDB 36:PDB 1216:: 1044:HI 1036:RI 1012:II 958:II 942:II 926:I* 918:3A 865:: 817:. 807:. 797:. 785:. 781:. 758:. 748:. 736:95 734:. 730:. 707:. 695:63 693:. 689:. 677:^ 663:. 655:. 643:. 639:. 616:. 606:. 596:29 594:. 590:. 576:^ 562:. 550:13 548:. 544:. 528:^ 517:. 497:. 450:RV 390:II 383:HI 378:, 376:RI 328:. 299:: 281:. 125:; 121:; 104:/ 38:: 1184:S 1129:A 1111:I 1092:I 1084:I 1076:I 1068:I 1060:I 1004:I 985:I 910:I 855:e 848:t 841:v 825:. 801:: 793:: 766:. 742:: 715:. 701:: 671:. 651:: 645:7 624:. 602:: 570:. 556::

Index


PDB
2E52
Pfam
PF09518
InterPro
IPR019043
Pfam
structures
ECOD
PDB
RCSB PDB
PDBe
PDBj
PDBsum
structure summary
NCBI gene
950303
PDB
2e52
More structures
UniProt
P43870
EC number
3.1.21.4
Swiss-model
InterPro
restriction enzyme
Haemophilus influenzae
hydrolysis

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.