Knowledge

Ethernet frame

Source πŸ“

634:= 0x4C11DB7, initial CRC = 0xFFFFFFFF, CRC is post complemented, verify value = 0x38FB2284) algorithm. The standard states that data is transmitted least significant bit (bit 0) first, while the FCS is transmitted most significant bit (bit 31) first. An alternative is to calculate a CRC using the right shifting CRC-32 (polynomial = 0xEDB88320, initial CRC = 0xFFFFFFFF, CRC is post complemented, verify value = 0x2144DF1C), which will result in a CRC that is a bit reversal of the FCS, and transmit both data and the CRC least significant bit first, resulting in identical transmissions. 897:
Ethernet 802.3 frame is 1500 octets (0x05DC). Thus if the field's value is greater than or equal to 1536, the frame must be an Ethernet II frame, with that field being a type field. If it's less than or equal to 1500, it must be an IEEE 802.3 frame, with that field being a length field. Values between 1500 and 1536, exclusive, are undefined. This convention allows software to determine whether a frame is an Ethernet II frame or an IEEE 802.3 frame, allowing the coexistence of both standards on the same physical medium.
876: 2387: 22: 2399: 1954: 1933: 627:(CRC) that allows detection of corrupted data within the entire frame as received on the receiver side. According to the standard, the FCS value is computed as a function of the protected MAC frame fields: source and destination address, length/type field, MAC client data and padding (that is, all fields except the FCS). 1957: 638:
result is non-zero because the CRC is post complemented during CRC generation). Since the data is received least significant bit first, and to avoid having to buffer octets of data, the receiver typically uses the right shifting CRC-32. This makes the "verify" value (sometimes called "magic check") 0x2144DF1C.
1956: 1961: 1960: 1955: 1962: 645:
as the basis for calculating the CRC, reversing the bits and resulting in a verify value of 0x38FB2284. Since the complementing of the CRC may be performed post calculation and during transmission, what remains in the hardware register is a non-complemented result, so the residue for a right shifting
558:
The EtherType field is two octets long and it can be used for two different purposes. Values of 1500 and below mean that it is used to indicate the size of the payload in octets, while values of 1536 and above indicate that it is used as an EtherType, to indicate which protocol is encapsulated in the
809:
The IEEE 802.1Q tag, if present, is placed between the Source Address and the EtherType or Length fields. The first two octets of the tag are the Tag Protocol Identifier (TPID) value of 0x8100. This is located in the same place as the EtherType/Length field in untagged frames, so an EtherType value
606:
Payload is a variable-length field. Its minimum size is governed by a requirement for a minimum frame transmission of 64 octets (bytes). With header and FCS taken into account, the minimum payload is 42 octets when an 802.1Q tag is present and 46 octets when absent. When the actual payload is less
896:
In order to allow some frames using Ethernet II framing and some using the original version of 802.3 framing to be used on the same Ethernet segment, EtherType values must be greater than or equal to 1536 (0x0600). That value was chosen because the maximum length of the payload field of an
637:
The standard states that the receiver should calculate a new FCS as data is received and then compare the received FCS with the FCS the receiver has calculated. An alternative is to calculate a CRC on both the received data and the FCS, which will result in a fixed non-zero "verify" value. (The
1276:
is a concept often confused with protocol efficiency. It considers only the use of the channel disregarding the nature of the data transmitted – either payload or overhead. At the physical layer, the link channel and equipment do not know the difference between data and control frames. We may
909:
Network Protocol over Ethernet. They did not use any LLC header but started the IPX packet directly after the length field. This does not conform to the IEEE 802.3 standard, but since IPX always has FF as the first two octets (while in IEEE 802.2 LLC that pattern is theoretically possible but
892:
header to follow the length and specify the type. Many years later, the 802.3x-1997 standard, and later versions of the 802.3 standard, formally approved of both types of framing. Ethernet II framing is the most common in Ethernet local area networks, due to its simplicity and lower overhead.
920:
used this frame type by default until the mid-nineties, and since NetWare was then very widespread, while IP was not, at some point in time most of the world's Ethernet traffic ran over "raw" 802.3 carrying IPX. Since NetWare 4.10, NetWare defaults to IEEE 802.2 with LLC (NetWare Frame Type
1936: 287:(SFD). The preamble bit values alternate 1 and 0, allowing receivers to synchronize their clock at the bit-level with the transmitter. The preamble is followed by the SFD which ends with a 1 instead of 0, to break the bit pattern of the preamble and signal the start of the actual frame. 1935: 1940: 1939: 1934: 1941: 1959: 995:(SAPs) in OSI terminology; when both source and destination SAP are set to the value 0xAA, the LLC header is followed by a SNAP header. The SNAP header allows EtherType values to be used with all IEEE 802 protocols, as well as supporting private protocol ID spaces. 1069: 1938: 1317: 1410:, which is where packet sniffers collect their data. There are layer-2 sniffers that can capture and display the preamble and start frame delimiter, but they are expensive and mainly used to detect problems related to physical connectivity. 1114: 1252: 1161:
for untagged frames, since the packet size is maximum 1500 octet payload + 8 octet preamble + 14 octet header + 4 octet trailer + minimum interpacket gap corresponding to 12 octets = 1538 octets. The maximum efficiency is:
1322:
The total time considers the round trip time along the channel, the processing time in the hosts and the time transmitting data and acknowledgements. The time spent transmitting data includes data and acknowledgements.
1583:
Opcodes are transmitted high-order octet first. Within each octet, bits are transmitted least-significant bit first. Each octet of the MAC frame, with the exception of the FCS, is transmitted least significant bit
293:(PHY for short) is required to connect the Ethernet MAC to the physical medium. The connection between a PHY and MAC is independent of the physical medium and uses a bus from the media independent interface family ( 1958: 887:
standardization process, the EtherType field was changed to a (data) length field in the new 802.3 standard. Since the recipient still needs to know how to interpret the frame, the standard required an
810:
of 0x8100 means the frame is tagged, and the true EtherType/Length is located after the Q-tag. The TPID is followed by two octets containing the Tag Control Information (TCI) (the IEEE 802.1p priority (
1937: 1847:)  β€” a classic series of Usenet postings by Novell's Don Provan that have found their way into numerous FAQs and are widely considered the definitive answer to the Novell Frame Type usage. 685:(IPG) is idle time between packets. After a packet has been sent, transmitters are required to transmit a minimum of 96 bits (12 octets) of idle line state before transmitting the next packet. 108:
The internal structure of an Ethernet frame is specified in IEEE 802.3. The table below shows the complete Ethernet packet and the frame inside, as transmitted, for the payload size up to the
1199: 1156: 1027: 25:
Ethernet packet. The SFD (start frame delimiter) marks the end of the packet preamble. It is immediately followed by the Ethernet frame, which starts with the destination MAC address.
1629: 1287: 998:
In IEEE 802.3x-1997, the IEEE Ethernet standard was changed to explicitly allow the use of the 16-bit field after the MAC addresses to be used as a length field or a type field.
598:
entifier (TPID) and double as the EtherType field indicating that the frame is either 802.1Q or 802.1ad tagged. 802.1Q uses a TPID of 0x8100. 802.1ad uses a TPID of 0x88a8.
991:
By examining the 802.2 LLC header, it is possible to determine whether it is followed by a SNAP header. The LLC header includes two eight-bit address fields, called
1084: 2173: 1420: 1217: 910:
extremely unlikely), in practice this usually coexists on the wire with other Ethernet implementations, with the notable exception of some early forms of
905:
Novell's "raw" 802.3 frame format was based on early IEEE 802.3 work. Novell used this as a starting point to create the first implementation of its own
965:
for encapsulating IPv4 traffic in IEEE 802.2 LLC SAP/SNAP frames. It is almost never implemented on Ethernet, although it is used on FDDI, Token Ring,
646:
implementation would be the complement of 0x2144DF1C = 0xDEBB20E3, and for a left shifting implementation, the complement of 0x38FB2284 = 0xC704DD7B.
759:
Ethernet II frame, or Ethernet Version 2, or DIX frame is the most common type in use today, as it is often used directly by the Internet Protocol.
1380:
as octet values, which in Ethernet are transmitted least significant bit(s) first). This notation matches the one used in the IEEE 802.3 standard.
670:
symbol or sequence to avoid ambiguity, especially where the carrier is continually sent between frames; an example is Gigabit Ethernet with its
798:
In addition, all four Ethernet frame types may optionally contain an IEEE 802.1Q tag to identify what VLAN it belongs to and its priority (
1840: 1331:
A runt frame is an Ethernet frame that is less than the IEEE 802.3's minimum length of 64 octets. Runt frames are most commonly caused by
1640: 939:, operate directly on top of IEEE 802.2 LLC encapsulation, which provides both connection-oriented and connectionless network services. 1441:
A version 1 Ethernet frame was used for early Ethernet prototypes and featured 8-bit MAC addresses and was never commercially deployed.
1376:
The bit patterns in the preamble and start of frame delimiter are written as bit strings, with the first bit transmitted on the left (
795:
values, but can coexist on the same physical medium. Differentiation between frame types is possible based on the table on the right.
256:
The optional 802.1Q tag consumes additional space in the frame. Field sizes for this option are shown in brackets in the table above.
662:, where the receiving station detects the end of a transmitted frame by loss of the carrier. Later physical layers use an explicit 1598:
IEEE Standard for Local and metropolitan area networks--Media Access Control (MAC) Bridges and Virtual Bridged Local Area Networks
101:
A data packet on the wire and the frame as its payload consist of binary data. Ethernet transmits data with the most-significant
75:
as its first two fields. The middle section of the frame is payload data including any headers for other protocols (for example,
2367: 607:
than the minimum, padding octets are added accordingly. IEEE standards specify a maximum payload of 1500 octets. Non-standard
1799: 1751: 1726: 1613: 1576: 1540: 1500: 1816: 658:
is usually indicated by the end-of-data-stream symbol at the physical layer or by loss of the carrier signal; an example is
642: 1450:
Original Ethernet frames define their length with the framing that surrounds it, rather than with an explicit length count.
942:
IEEE 802.2 LLC encapsulation is not in widespread use on common networks currently, with the exception of large corporate
2362: 1994: 950:. In the past, many corporate networks used IEEE 802.2 to support transparent translating bridges between Ethernet and 977:
LANs. IPv6 can also be transmitted over Ethernet using IEEE 802.2 LLC SAP/SNAP, but, again, that's almost never used.
1682: 1905: 1892:
IEEE Std 802.11-2016: Part 11: Wireless LAN Medium Access Control IEEE (MAC) and Physical Layer (PHY) Specifications
1064:{\displaystyle {\text{Protocol overhead}}={\frac {{\text{Packet size}}-{\text{Payload size}}}{\text{Packet size}}}} 1168: 1125: 2213: 1332: 631: 1312:{\displaystyle {\text{Channel utilization}}={\frac {\text{Time spent transmitting data}}{\text{Total time}}}} 1270:
for 100BASE-TX Ethernet is consequently 97.53 Mbit/s without 802.1Q, and 97.28 Mbit/s with 802.1Q.
830: 1403: 559:
payload of the frame. When used as EtherType, the length of the frame is determined by the location of the
2357: 2307: 2302: 1006: 861: 674:
encoding scheme that uses special symbols which are transmitted before and after a frame is transmitted.
461: 294: 814:) and VLAN id). The Q-tag is followed by the rest of the frame, using one of the types described above. 2352: 2150: 2140: 986: 853: 846: 784: 2403: 2342: 2264: 1972: 792: 341:
transmitted from left to right (used by Ethernet variants transmitting serial bits instead of larger
109: 856:
by the frame data. Most notably, an EtherType value of 0x0800 indicates that the frame contains an
280: 96: 64: 2326: 2073: 2037: 1263: 624: 171: 84: 45: 2208: 1987: 1837: 1832: 1674: 1109:{\displaystyle {\text{Protocol efficiency}}={\frac {\text{Payload size}}{\text{Packet size}}}} 2088: 378: 71:. Each Ethernet frame starts with an Ethernet header, which contains destination and source 2284: 2259: 2052: 1873: 1364: 850: 775: 641:
However, hardware implementation of a logically right shifting CRC may use a left shifting
620: 564: 167: 80: 543:
The header features destination and source MAC addresses (each six octets in length), the
105:(byte) first; within each octet, however, the least-significant bit is transmitted first. 8: 2279: 2269: 2249: 2244: 2228: 2135: 2047: 2042: 1828: 1278: 1273: 1766: 2145: 2007: 1667: 1267: 1266:
standard, and may be 10 Mbit/s, 100 Mbit/s, 1 Gbit/s or 10 Gbit/s.
1247:{\displaystyle {\text{Throughput}}={\text{Efficiency}}\times {\text{Net bit rate}}\,\!} 811: 799: 60: 41: 260:(Q-in-Q) allows for multiple tags in each frame. This option is not illustrated here. 2425: 2391: 2119: 1980: 1795: 1747: 1722: 1678: 1609: 1572: 1536: 1496: 1018: 962: 947: 185: 102: 76: 2254: 2057: 2032: 2022: 1863: 1820: 1787: 1714: 1601: 1564: 1528: 1488: 1389:
Payload can be 42 octets if an 802.1Q tag is present. Minimum is 46 octets without.
421: 113: 67:
and start frame delimiter (SFD), which are both part of the Ethernet packet at the
30: 2321: 2078: 1844: 1791: 1718: 1605: 1568: 1532: 1492: 1399: 1344: 1340: 682: 560: 177: 38: 1876: 1857: 875: 2316: 2274: 917: 68: 49: 2419: 2027: 1824: 1771:. The Institute of Electrical and Electronics Engineers, Inc. pp. 28–31. 465: 342: 869: 116:
and other higher-speed variants of Ethernet support larger frames, known as
1336: 1259: 970: 803: 630:
Per the standard, this computation is done using the left shifting CRC-32 (
575: 552: 257: 1767:
LAN MAN Standards Committee of the IEEE Computer Society (20 March 1997).
2294: 2098: 1407: 1119:
Maximum efficiency is achieved with largest allowed payload size and is:
966: 608: 583: 579: 571: 548: 527: 154: 117: 72: 313:). The preamble and SFD representation depends on the width of the bus: 2347: 2114: 1208: 951: 930: 889: 849:, preceded by destination and source MAC addresses, that identifies an 781: 772: 766: 158: 2002: 1859:
A Standard for the Transmission of IP Datagrams over IEEE 802 Networks
317:
Preamble and SFD representations as bits, decimal, bytes, and nibbles
2223: 2218: 2193: 2188: 2183: 2083: 1868: 1002: 936: 842: 544: 150: 1402:
software because these bits are stripped away at OSI layer 1 by the
2155: 2003: 1419:
Minimum payload size is dictated by the 512-bit slot time used for
974: 659: 274: 53: 2203: 2198: 2178: 1636: 943: 239: 220: 21: 2312: 1432:
Both 42 and 46 octet minimums are valid when 802.1Q is present.
911: 841:, the major participants in its design), defines the two-octet 762: 671: 455: 144: 838: 834: 611:
allow for larger payloads on networks built to support them.
469: 310: 306: 302: 2372: 1710: 1560: 1524: 1484: 955: 884: 865: 857: 806:
specification and increases the maximum frame by 4 octets.
417: 298: 883:
As this industry-developed standard went through a formal
1514: 1512: 1021:
for Ethernet as a percentage (packet size including IPG)
946:
installations that have not yet migrated to NetWare over
906: 586:
priority. The first two octets of the tag are called the
290: 1741: 1398:
Preamble and start frame delimiter are not displayed by
1509: 578:
tag, if present, is a four-octet field that indicates
279:
An Ethernet packet starts with a seven-octet (56-bit)
1290: 1220: 1171: 1128: 1087: 1030: 791:
The different frame types have different formats and
268: 1862:. Network Working Group of the IETF. February 1988. 1947:
Video which explains how to build an Ethernet Frame
1664: 677: 526:The SFD is immediately followed by the destination 263: 1666: 1311: 1246: 1193: 1150: 1108: 1063: 87:used to detect any in-transit corruption of data. 56:link transports an Ethernet frame as its payload. 1630:"Specification of CRC Routines V4.5.0 R4.1 Rev 3" 1243: 530:, which is the first field in an Ethernet frame. 2417: 1889: 649: 935:Some protocols, such as those designed for the 879:The most common Ethernet frame format, type II 79:) carried in the frame. The frame ends with a 1988: 1769:IEEE Std 802.3x-1997 and IEEE Std 802.3y-1997 1335:; other possible causes are a malfunctioning 1009:") uses IEEE 802.2 LLC + SNAP encapsulation. 1744:Drew Heywood's Windows 2000 Network Services 1475: 1473: 1471: 1469: 1467: 1194:{\displaystyle {\frac {1500}{1542}}=97.28\%} 1151:{\displaystyle {\frac {1500}{1538}}=97.53\%} 755:There are several types of Ethernet frames: 1705:"40.1.3.1 Physical Coding Sublayer (PCS)". 1563:. 14 June 2018. Section 3.3 and annex 31A. 1995: 1981: 1968:Minimum Frame Length in Ethernet explained 1814: 533: 124:802.3 Ethernet packet and frame structure 1867: 1464: 1242: 900: 874: 802:). This encapsulation is defined in the 112:of 1500 octets. Some implementations of 48:transport mechanisms. In other words, a 20: 1784:802.3-2018 – IEEE Standard for Ethernet 1707:802.3-2018 – IEEE Standard for Ethernet 1557:802.3-2018 – IEEE Standard for Ethernet 1521:802.3-2018 – IEEE Standard for Ethernet 1481:802.3-2018 – IEEE Standard for Ethernet 614: 2418: 1211:may be calculated from the efficiency 1976: 1665:Charles E. Spurgeon (February 2000). 1012: 973:, where it uses EtherType) and other 2398: 1406:(NIC) before being passed on to the 1367:(FCS) uses a different bit ordering. 291:Physical layer transceiver circuitry 1742:Drew Heywood; Zubair Ahmad (2001). 1262:(the wire bit rate) depends on the 16:Unit of data on an Ethernet network 13: 2058:200, 400, 800 and 1600 Gbit/s 1924: 1894:. New York, NY: IEEE. p. 249. 1204:when 802.1Q VLAN tagging is used. 1188: 1145: 980: 864:datagram, and 0x86DD indicates an 269:Preamble and start frame delimiter 14: 2437: 1423:in the Ethernet LAN architecture. 924: 2397: 2386: 2385: 1952: 1931: 1815:Don Provan (17 September 1993). 1005:v2 protocol suite on Ethernet (" 921:Ethernet_802.2) when using IPX. 678:Interpacket gap – physical layer 264:Ethernet packet – physical layer 1898: 1890:Computer Society, IEEE (2016). 1883: 1850: 1808: 1775: 1760: 1735: 1698: 1658: 1622: 1444: 1435: 1426: 694:Ethernet frame differentiation 1669:Ethernet: The Definitive Guide 1589: 1549: 1413: 1392: 1383: 1370: 1357: 1326: 860:datagram, 0x0806 indicates an 817: 643:Linear Feedback Shift Register 1: 1457: 650:End of frame – physical layer 1792:10.1109/IEEESTD.2018.8457469 1719:10.1109/IEEESTD.2018.8457469 1639:. p. 24. Archived from 1606:10.1109/IEEESTD.2011.6009146 1569:10.1109/IEEESTD.2018.8457469 1533:10.1109/IEEESTD.2018.8457469 1493:10.1109/IEEESTD.2018.8457469 1404:network interface controller 1302:Time spent transmitting data 914:which got confused by this. 769:non-standard variation frame 90: 7: 1782:"3.2.6 Length/Type field". 969:(with the exception of the 135:Start frame delimiter (SFD) 10: 2442: 1906:"Troubleshooting Ethernet" 987:Subnetwork Access Protocol 984: 928: 785:Subnetwork Access Protocol 601: 547:field and, optionally, an 472:for gigabit transceivers) 324: 272: 242:Ethernet packet & IPG 178:Interpacket gap (IPG) 94: 2381: 2335: 2293: 2237: 2166: 2128: 2107: 2066: 2015: 1258:where the physical layer 538: 448: 445: 442: 439: 436: 433: 430: 427: 404: 401: 398: 395: 392: 389: 386: 383: 368: 365: 362: 359: 356: 353: 350: 347: 329: 244: 228: 225: 83:(FCS), which is a 32-bit 2308:SFP/SFP+/QSFP/QSFP+/OSFP 1350: 705:Payload start two bytes 688: 326:56-bit (7-byte) Preamble 234:(not part of the frame) 97:Physical Coding Sublayer 44:and uses the underlying 1519:"3.1.1 Packet format". 1264:Ethernet physical layer 870:EtherType Β§ Values 625:cyclic redundancy check 534:Frame – data link layer 460:for 4-bit wide busses ( 226:(not part of the frame) 85:cyclic redundancy check 46:Ethernet physical layer 2053:40 and 100 Gbit/s 1838:HTML-formatted version 1313: 1248: 1195: 1152: 1110: 1065: 880: 623:(FCS) is a four-octet 582:(VLAN) membership and 454:hexadecimal LSb-first 414:for 8-bit wide busses 410:hexadecimal LSb-first 283:and one-octet (8-bit) 26: 2048:25 and 50 Gbit/s 2038:2.5 and 5 Gbit/s 1843:18 April 2015 at the 1673:. O'Reilly. pp.  1314: 1249: 1196: 1153: 1111: 1074:We may calculate the 1066: 1017:We may calculate the 993:service access points 901:Novell raw IEEE 802.3 878: 845:field in an Ethernet 721:Novell raw IEEE 802.3 285:start frame delimiter 24: 1746:. Sams. p. 53. 1365:frame check sequence 1347:or software issues. 1288: 1218: 1169: 1126: 1085: 1028: 851:upper layer protocol 776:Logical Link Control 621:frame check sequence 615:Frame check sequence 565:frame check sequence 337:uncoded on-the-wire 168:Frame check sequence 81:frame check sequence 1421:collision detection 1293:Channel utilization 1279:channel utilization 1274:Channel utilization 1090:Protocol efficiency 1076:protocol efficiency 823:Ethernet II framing 702:Ethertype or length 695: 318: 250:← 12 octets β†’ 125: 31:computer networking 2008:local area network 1817:"Ethernet Framing" 1309: 1268:Maximum throughput 1244: 1191: 1148: 1106: 1061: 1013:Maximum throughput 881: 812:quality of service 800:quality of service 693: 316: 246:← 72–1530 octets β†’ 230:← 64–1522 octets β†’ 157:) or length ( 123: 42:protocol data unit 27: 2413: 2412: 2265:Energy Efficiency 2120:Ethernet Alliance 1963: 1942: 1801:978-1-5044-5090-4 1753:978-0-672-31741-5 1728:978-1-5044-5090-4 1615:978-0-7381-6708-4 1578:978-1-5044-5090-4 1542:978-1-5044-5090-4 1502:978-1-5044-5090-4 1307: 1306: 1303: 1294: 1240: 1232: 1224: 1180: 1137: 1104: 1103: 1100: 1091: 1059: 1058: 1053: 1045: 1034: 1033:Protocol overhead 1019:protocol overhead 963:Internet standard 753: 752: 524: 523: 254: 253: 77:Internet Protocol 63:is preceded by a 2433: 2401: 2400: 2389: 2388: 1997: 1990: 1983: 1974: 1973: 1965: 1964: 1944: 1943: 1918: 1917: 1915: 1913: 1902: 1896: 1895: 1887: 1881: 1880: 1871: 1869:10.17487/RFC1042 1854: 1848: 1835: 1812: 1806: 1805: 1786:. 14 June 2018. 1779: 1773: 1772: 1764: 1758: 1757: 1739: 1733: 1732: 1713:. 14 June 2018. 1702: 1696: 1695: 1693: 1691: 1672: 1662: 1656: 1655: 1653: 1651: 1645: 1634: 1626: 1620: 1619: 1593: 1587: 1586: 1553: 1547: 1546: 1527:. 14 June 2018. 1516: 1507: 1506: 1487:. 14 June 2018. 1477: 1451: 1448: 1442: 1439: 1433: 1430: 1424: 1417: 1411: 1396: 1390: 1387: 1381: 1374: 1368: 1361: 1318: 1316: 1315: 1310: 1308: 1304: 1301: 1300: 1295: 1292: 1253: 1251: 1250: 1245: 1241: 1238: 1233: 1230: 1225: 1222: 1200: 1198: 1197: 1192: 1181: 1173: 1157: 1155: 1154: 1149: 1138: 1130: 1115: 1113: 1112: 1107: 1105: 1101: 1098: 1097: 1092: 1089: 1070: 1068: 1067: 1062: 1060: 1056: 1055: 1054: 1051: 1046: 1043: 1040: 1035: 1032: 961:There exists an 696: 692: 422:Gigabit Ethernet 381:-first ordering 319: 315: 247: 231: 155:Ethernet II 126: 122: 114:Gigabit Ethernet 2441: 2440: 2436: 2435: 2434: 2432: 2431: 2430: 2416: 2415: 2414: 2409: 2377: 2331: 2289: 2233: 2162: 2124: 2103: 2079:Autonegotiation 2062: 2028:100 Mbit/s 2011: 2001: 1969: 1966: 1953: 1948: 1945: 1932: 1927: 1925:Further reading 1922: 1921: 1911: 1909: 1908:. Cisco Systems 1904: 1903: 1899: 1888: 1884: 1856: 1855: 1851: 1845:Wayback Machine 1825:comp.sys.novell 1813: 1809: 1802: 1781: 1780: 1776: 1765: 1761: 1754: 1740: 1736: 1729: 1704: 1703: 1699: 1689: 1687: 1685: 1663: 1659: 1649: 1647: 1646:on 11 June 2020 1643: 1632: 1628: 1627: 1623: 1616: 1595: 1594: 1590: 1579: 1555: 1554: 1550: 1543: 1518: 1517: 1510: 1503: 1479: 1478: 1465: 1460: 1455: 1454: 1449: 1445: 1440: 1436: 1431: 1427: 1418: 1414: 1400:packet sniffing 1397: 1393: 1388: 1384: 1375: 1371: 1362: 1358: 1353: 1345:duplex mismatch 1341:buffer underrun 1329: 1299: 1291: 1289: 1286: 1285: 1237: 1229: 1221: 1219: 1216: 1215: 1172: 1170: 1167: 1166: 1129: 1127: 1124: 1123: 1096: 1088: 1086: 1083: 1082: 1050: 1042: 1041: 1039: 1031: 1029: 1026: 1025: 1015: 989: 983: 981:IEEE 802.2 SNAP 933: 927: 903: 825:(also known as 820: 743:IEEE 802.2 SNAP 691: 683:Interpacket gap 680: 652: 617: 604: 561:interpacket gap 541: 536: 322:Representation 277: 271: 266: 245: 229: 223:Ethernet frame 159:IEEE 802.3 138:MAC destination 99: 93: 39:data link layer 17: 12: 11: 5: 2439: 2429: 2428: 2411: 2410: 2408: 2407: 2395: 2382: 2379: 2378: 2376: 2375: 2370: 2365: 2360: 2355: 2350: 2345: 2339: 2337: 2333: 2332: 2330: 2329: 2324: 2319: 2310: 2305: 2299: 2297: 2291: 2290: 2288: 2287: 2282: 2277: 2272: 2267: 2262: 2257: 2252: 2247: 2241: 2239: 2235: 2234: 2232: 2231: 2226: 2221: 2216: 2211: 2206: 2201: 2196: 2191: 2186: 2181: 2176: 2170: 2168: 2164: 2163: 2161: 2160: 2159: 2158: 2148: 2143: 2138: 2132: 2130: 2126: 2125: 2123: 2122: 2117: 2111: 2109: 2105: 2104: 2102: 2101: 2096: 2091: 2086: 2081: 2076: 2074:Physical layer 2070: 2068: 2064: 2063: 2061: 2060: 2055: 2050: 2045: 2043:10 Gbit/s 2040: 2035: 2030: 2025: 2023:10 Mbit/s 2019: 2017: 2013: 2012: 2000: 1999: 1992: 1985: 1977: 1971: 1970: 1967: 1951: 1949: 1946: 1930: 1926: 1923: 1920: 1919: 1897: 1882: 1849: 1807: 1800: 1774: 1759: 1752: 1734: 1727: 1697: 1683: 1657: 1621: 1614: 1588: 1577: 1548: 1541: 1508: 1501: 1462: 1461: 1459: 1456: 1453: 1452: 1443: 1434: 1425: 1412: 1391: 1382: 1369: 1355: 1354: 1352: 1349: 1328: 1325: 1320: 1319: 1298: 1277:calculate the 1256: 1255: 1236: 1228: 1202: 1201: 1190: 1187: 1184: 1179: 1176: 1159: 1158: 1147: 1144: 1141: 1136: 1133: 1117: 1116: 1095: 1072: 1071: 1049: 1038: 1014: 1011: 985:Main article: 982: 979: 929:Main article: 926: 925:IEEE 802.2 LLC 923: 918:Novell NetWare 902: 899: 868:datagram. See 829:, named after 819: 816: 789: 788: 779: 770: 760: 751: 750: 747: 744: 740: 739: 736: 733: 732:IEEE 802.2 LLC 729: 728: 725: 722: 718: 717: 714: 711: 707: 706: 703: 700: 690: 687: 679: 676: 656:end of a frame 651: 648: 616: 613: 603: 600: 540: 537: 535: 532: 522: 521: 518: 515: 512: 509: 506: 503: 500: 497: 494: 491: 488: 485: 482: 479: 476: 473: 451: 450: 447: 444: 441: 438: 435: 432: 429: 426: 424:transceivers) 407: 406: 403: 400: 397: 394: 391: 388: 385: 382: 371: 370: 367: 364: 361: 358: 355: 352: 349: 346: 334: 333: 328: 323: 270: 267: 265: 262: 252: 251: 248: 243: 236: 235: 232: 227: 224: 217: 216: 213: 210: 207: 204: 201: 198: 195: 192: 189: 181: 180: 175: 165: 162: 148: 147:tag (optional) 142: 139: 136: 133: 130: 92: 89: 69:physical layer 35:Ethernet frame 15: 9: 6: 4: 3: 2: 2438: 2427: 2424: 2423: 2421: 2406: 2405: 2396: 2394: 2393: 2384: 2383: 2380: 2374: 2371: 2369: 2366: 2364: 2361: 2359: 2356: 2354: 2351: 2349: 2346: 2344: 2341: 2340: 2338: 2334: 2328: 2325: 2323: 2320: 2318: 2314: 2311: 2309: 2306: 2304: 2301: 2300: 2298: 2296: 2292: 2286: 2283: 2281: 2278: 2276: 2273: 2271: 2268: 2266: 2263: 2261: 2258: 2256: 2253: 2251: 2248: 2246: 2243: 2242: 2240: 2236: 2230: 2227: 2225: 2222: 2220: 2217: 2215: 2212: 2210: 2207: 2205: 2202: 2200: 2197: 2195: 2192: 2190: 2187: 2185: 2182: 2180: 2177: 2175: 2172: 2171: 2169: 2165: 2157: 2154: 2153: 2152: 2149: 2147: 2144: 2142: 2139: 2137: 2134: 2133: 2131: 2127: 2121: 2118: 2116: 2113: 2112: 2110: 2108:Organizations 2106: 2100: 2097: 2095: 2092: 2090: 2087: 2085: 2082: 2080: 2077: 2075: 2072: 2071: 2069: 2065: 2059: 2056: 2054: 2051: 2049: 2046: 2044: 2041: 2039: 2036: 2034: 2033:1 Gbit/s 2031: 2029: 2026: 2024: 2021: 2020: 2018: 2014: 2009: 2005: 1998: 1993: 1991: 1986: 1984: 1979: 1978: 1975: 1950: 1929: 1928: 1907: 1901: 1893: 1886: 1878: 1875: 1870: 1865: 1861: 1860: 1853: 1846: 1842: 1839: 1833: 1830: 1826: 1822: 1818: 1811: 1803: 1797: 1793: 1789: 1785: 1778: 1770: 1763: 1755: 1749: 1745: 1738: 1730: 1724: 1720: 1716: 1712: 1708: 1701: 1686: 1684:9780596552824 1680: 1676: 1671: 1670: 1661: 1642: 1638: 1631: 1625: 1617: 1611: 1607: 1603: 1599: 1592: 1585: 1580: 1574: 1570: 1566: 1562: 1558: 1552: 1544: 1538: 1534: 1530: 1526: 1522: 1515: 1513: 1504: 1498: 1494: 1490: 1486: 1482: 1476: 1474: 1472: 1470: 1468: 1463: 1447: 1438: 1429: 1422: 1416: 1409: 1405: 1401: 1395: 1386: 1379: 1373: 1366: 1360: 1356: 1348: 1346: 1342: 1338: 1334: 1324: 1296: 1284: 1283: 1282: 1280: 1275: 1271: 1269: 1265: 1261: 1234: 1226: 1214: 1213: 1212: 1210: 1205: 1185: 1182: 1177: 1174: 1165: 1164: 1163: 1142: 1139: 1134: 1131: 1122: 1121: 1120: 1093: 1081: 1080: 1079: 1078:for Ethernet 1077: 1047: 1036: 1024: 1023: 1022: 1020: 1010: 1008: 1004: 999: 996: 994: 988: 978: 976: 972: 968: 964: 959: 957: 953: 949: 945: 940: 938: 932: 922: 919: 915: 913: 908: 898: 894: 891: 886: 877: 873: 871: 867: 863: 859: 855: 852: 848: 844: 840: 836: 832: 828: 824: 815: 813: 807: 805: 801: 796: 794: 786: 783: 780: 777: 774: 771: 768: 764: 761: 758: 757: 756: 748: 745: 742: 741: 737: 734: 731: 730: 726: 723: 720: 719: 715: 712: 709: 708: 704: 701: 698: 697: 686: 684: 675: 673: 669: 668:end of stream 665: 661: 657: 647: 644: 639: 635: 633: 628: 626: 622: 612: 610: 599: 597: 593: 589: 585: 581: 577: 573: 568: 566: 562: 556: 554: 550: 546: 531: 529: 519: 516: 513: 510: 507: 504: 501: 498: 495: 492: 489: 486: 483: 480: 477: 474: 471: 467: 466:Fast Ethernet 463: 459: 458: 453: 452: 425: 423: 419: 413: 409: 408: 380: 376: 373: 372: 344: 340: 336: 335: 332: 327: 321: 320: 314: 312: 308: 304: 300: 296: 292: 288: 286: 282: 276: 261: 259: 249: 241: 238: 237: 233: 222: 219: 218: 214: 211: 208: 205: 202: 199: 196: 193: 190: 187: 183: 182: 179: 176: 173: 169: 166: 163: 160: 156: 152: 149: 146: 143: 140: 137: 134: 131: 128: 127: 121: 119: 115: 111: 106: 104: 98: 88: 86: 82: 78: 74: 73:MAC addresses 70: 66: 62: 57: 55: 51: 47: 43: 40: 36: 32: 23: 19: 2402: 2390: 2295:Transceivers 2238:Applications 2141:Twisted pair 2093: 2089:Flow control 2010:technologies 1910:. Retrieved 1900: 1891: 1885: 1858: 1852: 1810: 1783: 1777: 1768: 1762: 1743: 1737: 1706: 1700: 1688:. Retrieved 1668: 1660: 1648:. Retrieved 1641:the original 1624: 1597: 1591: 1582: 1556: 1551: 1520: 1480: 1446: 1437: 1428: 1415: 1394: 1385: 1377: 1372: 1359: 1337:network card 1330: 1321: 1272: 1260:net bit rate 1257: 1239:Net bit rate 1206: 1203: 1160: 1118: 1099:Payload size 1075: 1073: 1052:Payload size 1016: 1000: 997: 992: 990: 971:5.9 GHz band 960: 941: 934: 916: 904: 895: 882: 854:encapsulated 827:DIX Ethernet 826: 822: 821: 808: 804:IEEE 802.3ac 797: 790: 787:(SNAP) frame 754: 681: 667: 663: 655: 653: 640: 636: 629: 618: 609:jumbo frames 605: 595: 591: 587: 576:IEEE 802.1ad 569: 557: 553:IEEE 802.1ad 542: 525: 456: 415: 411: 377:in Ethernet 374: 338: 330: 325: 289: 284: 278: 258:IEEE 802.1ad 255: 118:jumbo frames 107: 100: 59:An Ethernet 58: 34: 28: 18: 2285:Synchronous 2260:Data center 1596:"Annex G". 1408:OSI layer 2 1327:Runt frames 1102:Packet size 1057:Packet size 1044:Packet size 967:IEEE 802.11 818:Ethernet II 778:(LLC) frame 710:Ethernet II 664:end of data 584:IEEE 802.1p 580:virtual LAN 572:IEEE 802.1Q 549:IEEE 802.1Q 528:MAC address 339:bit pattern 2336:Interfaces 2270:Industrial 2250:Automotive 2229:Long Reach 2151:First mile 2115:IEEE 802.3 2006:family of 1650:30 January 1458:References 1333:collisions 1305:Total time 1231:Efficiency 1223:Throughput 1209:throughput 958:networks. 952:Token Ring 931:IEEE 802.2 890:IEEE 802.2 872:for more. 782:IEEE 802.2 773:IEEE 802.2 767:IEEE 802.3 699:Frame type 632:polynomial 563:and valid 273:See also: 141:MAC source 95:See also: 2224:LattisNet 2219:100BaseVG 2194:10BASE-FL 2189:10BASE-FB 2184:10BROAD36 2084:EtherType 1912:13 August 1821:Newsgroup 1235:× 1189:% 1146:% 1048:− 1007:EtherTalk 1003:AppleTalk 937:OSI stack 843:EtherType 545:EtherType 369:10101011 366:10101010 363:10101010 360:10101010 357:10101010 354:10101010 351:10101010 348:10101010 151:Ethertype 91:Structure 50:data unit 2426:Ethernet 2420:Category 2392:Category 2167:Historic 2156:10G-EPON 2004:Ethernet 1841:Archived 975:IEEE 802 660:10BASE-T 594:rotocol 418:GMII bus 331:SFD byte 281:preamble 275:Syncword 184:Length ( 170:(32‑bit 132:Preamble 65:preamble 54:Ethernet 2404:Commons 2255:Carrier 2204:10BASE2 2199:10BASE5 2179:StarLAN 2174:CSMA/CD 2146:Coaxial 2067:General 1829:Usenet: 1823::  1690:30 June 1637:AUTOSAR 944:NetWare 749:0xAAAA 727:0xFFFF 602:Payload 574:tag or 567:(FCS). 551:tag or 462:MII bus 457:nibbles 375:decimal 343:symbols 240:Layer 1 221:Layer 2 209:42–1500 164:Payload 2313:XENPAK 2099:Jumbos 2094:Frames 2016:Speeds 1831:  1798:  1750:  1725:  1681:  1677:, 47. 1612:  1584:first. 1575:  1539:  1499:  912:DECnet 763:Novell 746:≀ 1500 738:Other 735:≀ 1500 724:≀ 1500 713:β‰₯ 1536 672:8b/10b 539:Header 186:octets 145:802.1Q 52:on an 2368:XGMII 2280:Power 2275:Metro 2245:Audio 2214:FOIRL 2136:Fiber 2129:Media 1644:(PDF) 1633:(PDF) 1351:Notes 1186:97.28 1143:97.53 847:frame 839:Xerox 835:Intel 689:Types 555:tag. 470:RGMII 449:0xD5 446:0x55 443:0x55 440:0x55 437:0x55 434:0x55 431:0x55 428:0x55 412:bytes 311:XGMII 307:SGMII 303:RGMII 129:Layer 103:octet 61:frame 37:is a 33:, an 2373:XAUI 2363:GMII 2303:GBIC 1914:2016 1877:1042 1796:ISBN 1748:ISBN 1723:ISBN 1711:IEEE 1692:2014 1679:ISBN 1652:2020 1610:ISBN 1573:ISBN 1561:IEEE 1537:ISBN 1525:IEEE 1497:ISBN 1485:IEEE 1363:The 1207:The 1178:1542 1175:1500 1135:1538 1132:1500 1001:The 956:FDDI 885:IEEE 866:IPv6 858:IPv4 837:and 765:raw 716:Any 654:The 619:The 570:The 520:0xD 517:0x5 514:0x5 511:0x5 508:0x5 505:0x5 502:0x5 499:0x5 496:0x5 493:0x5 490:0x5 487:0x5 484:0x5 481:0x5 478:0x5 475:0x5 464:for 420:for 405:213 299:GMII 2358:MII 2353:MDI 2348:EAD 2343:AUI 2327:CFP 2322:XFP 2209:MAU 1874:RFC 1864:doi 1788:doi 1715:doi 1602:doi 1565:doi 1529:doi 1489:doi 1378:not 954:or 907:IPX 862:ARP 831:DEC 793:MTU 666:or 590:ag 468:or 402:85 399:85 396:85 393:85 390:85 387:85 384:85 379:LSb 295:MII 215:12 203:(4) 172:CRC 110:MTU 29:In 2422:: 2317:X2 1872:. 1827:. 1819:. 1794:. 1721:. 1709:. 1675:41 1635:. 1608:. 1600:. 1581:. 1571:. 1559:. 1535:. 1523:. 1511:^ 1495:. 1483:. 1466:^ 1343:, 1339:, 1281:: 948:IP 833:, 596:ID 345:) 309:, 305:, 301:, 297:, 188:) 120:. 2315:/ 1996:e 1989:t 1982:v 1916:. 1879:. 1866:: 1836:( 1834:. 1804:. 1790:: 1756:. 1731:. 1717:: 1694:. 1654:. 1618:. 1604:: 1567:: 1545:. 1531:: 1505:. 1491:: 1297:= 1254:, 1227:= 1183:= 1140:= 1094:= 1037:= 592:P 588:T 416:( 212:4 206:2 200:6 197:6 194:1 191:7 174:) 161:) 153:(

Index


computer networking
data link layer
protocol data unit
Ethernet physical layer
data unit
Ethernet
frame
preamble
physical layer
MAC addresses
Internet Protocol
frame check sequence
cyclic redundancy check
Physical Coding Sublayer
octet
MTU
Gigabit Ethernet
jumbo frames
802.1Q
Ethertype
Ethernet II
IEEE 802.3
Frame check sequence
CRC
Interpacket gap (IPG)
octets
Layer 2
Layer 1
IEEE 802.1ad

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑