Knowledge

Concrete category

Source πŸ“

1663:. Originally published in: The Steenrod Algebra and its Applications, Springer Lecture Notes in Mathematics Vol. 168. Republished in a free on-line journal: Reprints in Theory and Applications of Categories, No. 6 (2004), with the permission of Springer-Verlag. 1387:
of continuous functions, is an example of a category that is not concretizable. While the objects are sets (with additional structure), the morphisms are not actual functions between them, but rather classes of functions. The fact that there does not exist
606: 1059: 1288: 984: 641: 854: 802: 676:, and one morphism for each element of the group. This would not be counted as concrete according to the intuitive notion described at the top of this article. But every faithful 938: 906: 674: 555: 397:
that a category may or may not satisfy, but rather a structure with which a category may or may not be equipped. In particular, a category
1568: 39:(or sometimes to another category). This functor makes it possible to think of the objects of the category as sets with additional 989: 47:
as structure-preserving functions. Many important categories have obvious interpretations as concrete categories, for example the
1375: 1364:
to the set containing its objects and morphisms. Functors can be simply viewed as functions acting on the objects and morphisms.
56: 214:, the homomorphisms of a concrete category may be formally identified with their underlying functions (i.e., their images under 420:
In practice, however, the choice of faithful functor is often clear and in this case we simply speak of the "concrete category
1622: 462:
may map different objects to the same set and, if this occurs, it will also map different morphisms to the same function.
1240: 1651: 1360:
whose objects are small categories and whose morphisms are functors can be made concrete by sending each category
1070: 943: 611: 48: 815: 458:
be faithful means that it maps different morphisms between the same objects to different functions. However,
1328: 748: 911: 552:
Similarly, any set with four elements can be given two non-isomorphic group structures: one isomorphic to
677: 28: 1505: 1690: 210:(e.g., group homomorphisms, ring homomorphisms, etc.) Because of the faithfulness of the functor 1404:. In the same article, Freyd cites an earlier result that the category of "small categories and 1460: 870: 218:); the homomorphisms then regain the usual interpretation as "structure-preserving" functions. 66:
A concrete category, when defined without reference to the notion of a category, consists of a
40: 861: 394: 1658: 884: 659: 1085:
and their sup-preserving maps. Conversely, starting from this equivalence we can recover
8: 1405: 1671: 1504:. The category of models for this signature then contains a full subcategory which is 67: 52: 1647: 1618: 1606: 1501: 1380: 1182:
It follows from the previous example that the opposite of any concretizable category
1082: 866: 688: 192: 1610: 1291: 1062: 441: 180: 36: 32: 1425: 1641: 545:, but they have the same underlying function, namely the identity function on 1684: 1324: 1521: 1498: 1331:
is often equipped not with the "obvious" forgetful functor but the functor
601:{\displaystyle \mathbb {Z} /2\mathbb {Z} \times \mathbb {Z} /2\mathbb {Z} } 1169: 1401: 1168:
is concretizable. The forgetful functor which arises in this way is the
1065:
under inclusion, those functions between them arising from some relation
55:, and trivially also the category of sets itself. On the other hand, the 20: 1448: 497:
of topological spaces and continuous maps, but mapped to the same set
1350: 656:
may be regarded as an "abstract" category with one arbitrary object,
63:, i.e. it does not admit a faithful functor to the category of sets. 1567:. For example, it may be useful to think of the models of a theory 1384: 266: 44: 1640:
AdΓ‘mek, JiΕ™Γ­, Herrlich, Horst, & Strecker, George E.; (1990).
385:
section exhibits two large categories that are not concretizable.
16:
Category equipped with a faithful functor to the category of sets
707: 206:
It is customary to call the morphisms in a concrete category
1411: 1221:
is any small category, then there exists a faithful functor
1054:{\displaystyle \rho (A)=\{y\in Y\mid \exists \,x\in A:xRy\}} 713:
may be regarded as an abstract category with a unique arrow
703:
can be made into a concrete category in at least one way.
1497:
ranging over the class of all cardinal numbers, forms a
1408:-classes of functors" also fails to be concretizable. 1646:(4.2MB PDF). Originally publ. John Wiley & Sons. 1243: 1124:
by representing each set as itself and each function
992: 946: 914: 887: 818: 751: 662: 614: 558: 1077:
is equivalent to a full subcategory of the category
1536:. For this reason, it makes sense to call a pair ( 729:. This can be made concrete by defining a functor 405:. Hence there may be several concrete categories ( 1283:{\displaystyle \coprod _{c\in \mathrm {ob} C}X(c)} 1282: 1053: 978: 932: 900: 848: 796: 668: 635: 600: 381:in less elementary language via presheaves.) The 249:. All small categories are concretizable: define 102:, the identity function on the underlying set of 1682: 1605: 1520:In some parts of category theory, most notably 699:. Since every group acts faithfully on itself, 199:its "underlying set", and to every morphism in 473:are two different topologies on the same set 393:Contrary to intuition, concreteness is not a 114:, and the composition of a homomorphism from 1668:Concrete categories and infinitary languages 1048: 1008: 979:{\displaystyle \rho :2^{X}\rightarrow 2^{Y}} 791: 767: 293:), and its morphism part maps each morphism 237:); i.e., if there exists a faithful functor 1582:In this context, a concrete category over 1349:which maps a Banach space to its (closed) 636:{\displaystyle \mathbb {Z} /4\mathbb {Z} } 179:(the category of sets and functions) is a 1412:Implicit structure of concrete categories 1026: 629: 616: 594: 581: 573: 560: 413:) all corresponding to the same category 401:may admit several faithful functors into 253:so that its object part maps each object 1515: 1485:-ary operations of a concrete category ( 849:{\displaystyle D(x)\hookrightarrow D(y)} 424:". For example, "the concrete category 1524:, it is common to replace the category 797:{\displaystyle D(x)=\{a\in P:a\leq x\}} 683:(equivalently, every representation of 541:) are considered distinct morphisms in 493:) are distinct objects in the category 57:homotopy category of topological spaces 1683: 382: 374: 229:if there exists a concrete category ( 1575:as forming a concrete category over 1316:For technical reasons, the category 933:{\displaystyle R\subseteq X\times Y} 509:. Moreover, the identity morphism ( 1673:Journal of Pure and Applied Algebra 1368: 1202:may be equipped with the composite 646: 195:, which assigns to every object of 13: 1259: 1256: 1023: 14: 1702: 1186:is again concretizable, since if 1643:Abstract and Concrete Categories 691:) determines a faithful functor 273:(i.e. all morphisms of the form 122:followed by a homomorphism from 98:. Furthermore, for every object 1305:one obtains a faithful functor 873:can be made concrete by taking 261:to the set of all morphisms of 1599: 1290:. By composing this with the 1277: 1271: 1170:contravariant powerset functor 1061:. Noting that power sets are 1002: 996: 963: 843: 837: 831: 828: 822: 761: 755: 608:, and the other isomorphic to 49:category of topological spaces 1: 1654:. (now free on-line edition). 1633: 1617:(3rd ed.), AMS Chelsea, 1101:of the forgetful functor for 525:) and the identity morphism ( 141: 90:, from the underlying set of 1144:formed as the set of pairs ( 1069:in this way are exactly the 130:must be a homomorphism from 106:must be a homomorphism from 7: 1416:Given a concrete category ( 203:its "underlying function". 86:a set of functions, called 10: 1707: 1528:with a different category 388: 78:; and for any two objects 501:by the forgetful functor 333:) which maps each member 191:is to be thought of as a 94:to the underlying set of 1666:RosickΓ½, JiΕ™Γ­; (1981). 1660:Homotopy is not concrete 1593: 1379:, where the objects are 1071:supremum-preserving maps 869:and whose morphisms are 74:, each equipped with an 31:that is equipped with a 1105:with this embedding of 741:which maps each object 1657:Freyd, Peter; (1970). 1586:is sometimes called a 1562:concrete category over 1461:natural transformation 1392:faithful functor from 1383:and the morphisms are 1284: 1233:which maps a presheaf 1190:is a faithful functor 1055: 980: 934: 902: 850: 798: 670: 637: 602: 1676:, Volume 22, Issue 3. 1516:Relative concreteness 1285: 1136:as the relation from 1120:can be embedded into 1056: 981: 935: 903: 901:{\displaystyle 2^{X}} 851: 812:to the inclusion map 799: 689:group of permutations 671: 669:{\displaystyle \ast } 638: 603: 454:The requirement that 353:) to the composition 1481:-ary predicates and 1400:was first proven by 1241: 990: 944: 912: 885: 816: 749: 660: 612: 556: 1552:a faithful functor 1406:natural equivalence 1329:linear contractions 377:expresses the same 1607:Mac Lane, Saunders 1548:is a category and 1381:topological spaces 1280: 1267: 1051: 976: 930: 908:and each relation 898: 865:whose objects are 846: 794: 666: 633: 598: 428:" means the pair ( 373:). (Item 6 under 165:is a category, and 53:category of groups 1624:978-0-8218-1646-2 1611:Birkhoff, Garrett 1532:, often called a 1477:The class of all 1244: 1237:to the coproduct 1089:as the composite 1083:complete lattices 1063:complete lattices 881:to its power set 193:forgetful functor 148:concrete category 25:concrete category 1698: 1628: 1627: 1603: 1385:homotopy classes 1369:Counter-examples 1292:Yoneda embedding 1289: 1287: 1286: 1281: 1266: 1262: 1060: 1058: 1057: 1052: 985: 983: 982: 977: 975: 974: 962: 961: 940:to the function 939: 937: 936: 931: 907: 905: 904: 899: 897: 896: 877:to map each set 855: 853: 852: 847: 803: 801: 800: 795: 675: 673: 672: 667: 647:Further examples 642: 640: 639: 634: 632: 624: 619: 607: 605: 604: 599: 597: 589: 584: 576: 568: 563: 465:For example, if 442:identity functor 383:Counter-examples 375:Further examples 309:to the function 181:faithful functor 37:category of sets 33:faithful functor 1706: 1705: 1701: 1700: 1699: 1697: 1696: 1695: 1691:Category theory 1681: 1680: 1679: 1636: 1631: 1625: 1604: 1600: 1596: 1518: 1472:N-ary operation 1457:N-ary predicate 1435:be the functor 1426:cardinal number 1414: 1371: 1344: 1337: 1322: 1255: 1248: 1242: 1239: 1238: 991: 988: 987: 970: 966: 957: 953: 945: 942: 941: 913: 910: 909: 892: 888: 886: 883: 882: 817: 814: 813: 804:and each arrow 750: 747: 746: 706:Similarly, any 661: 658: 657: 649: 628: 620: 615: 613: 610: 609: 593: 585: 580: 572: 564: 559: 557: 554: 553: 391: 285:for any object 144: 17: 12: 11: 5: 1704: 1694: 1693: 1678: 1677: 1664: 1655: 1637: 1635: 1632: 1630: 1629: 1623: 1597: 1595: 1592: 1517: 1514: 1443:determined by 1413: 1410: 1370: 1367: 1366: 1365: 1354: 1342: 1335: 1320: 1314: 1279: 1276: 1273: 1270: 1265: 1261: 1258: 1254: 1251: 1247: 1215: 1180: 1114: 1050: 1047: 1044: 1041: 1038: 1035: 1032: 1029: 1025: 1022: 1019: 1016: 1013: 1010: 1007: 1004: 1001: 998: 995: 973: 969: 965: 960: 956: 952: 949: 929: 926: 923: 920: 917: 895: 891: 857: 845: 842: 839: 836: 833: 830: 827: 824: 821: 793: 790: 787: 784: 781: 778: 775: 772: 769: 766: 763: 760: 757: 754: 704: 665: 648: 645: 631: 627: 623: 618: 596: 592: 588: 583: 579: 575: 571: 567: 562: 390: 387: 365:, a member of 185: 184: 166: 143: 140: 76:underlying set 15: 9: 6: 4: 3: 2: 1703: 1692: 1689: 1688: 1686: 1675: 1674: 1669: 1665: 1662: 1661: 1656: 1653: 1652:0-471-60922-6 1649: 1645: 1644: 1639: 1638: 1626: 1620: 1616: 1612: 1608: 1602: 1598: 1591: 1589: 1585: 1580: 1578: 1574: 1572: 1566: 1563: 1559: 1555: 1551: 1547: 1543: 1539: 1535: 1534:base category 1531: 1527: 1523: 1513: 1511: 1507: 1503: 1500: 1496: 1492: 1488: 1484: 1480: 1475: 1473: 1469: 1465: 1462: 1458: 1455:is called an 1454: 1450: 1446: 1445:U(c) = (U(c)) 1442: 1438: 1434: 1430: 1427: 1423: 1419: 1409: 1407: 1403: 1399: 1395: 1391: 1386: 1382: 1378: 1377: 1373:The category 1363: 1359: 1356:The category 1355: 1352: 1348: 1341: 1334: 1330: 1326: 1325:Banach spaces 1319: 1315: 1312: 1308: 1304: 1300: 1296: 1293: 1274: 1268: 1263: 1252: 1249: 1245: 1236: 1232: 1228: 1224: 1220: 1216: 1213: 1209: 1205: 1201: 1197: 1193: 1189: 1185: 1181: 1178: 1174: 1171: 1167: 1163: 1159: 1155: 1151: 1147: 1143: 1139: 1135: 1131: 1127: 1123: 1119: 1116:The category 1115: 1112: 1108: 1104: 1100: 1096: 1092: 1088: 1084: 1080: 1076: 1072: 1068: 1064: 1045: 1042: 1039: 1036: 1033: 1030: 1027: 1020: 1017: 1014: 1011: 1005: 999: 993: 971: 967: 958: 954: 950: 947: 927: 924: 921: 918: 915: 893: 889: 880: 876: 872: 868: 864: 863: 859:The category 858: 840: 834: 825: 819: 811: 807: 788: 785: 782: 779: 776: 773: 770: 764: 758: 752: 744: 740: 736: 732: 728: 724: 720: 716: 712: 709: 705: 702: 698: 694: 690: 686: 682: 680: 663: 655: 651: 650: 644: 625: 621: 590: 586: 577: 569: 565: 550: 548: 544: 540: 536: 532: 528: 524: 520: 516: 512: 508: 504: 500: 496: 492: 488: 484: 480: 476: 472: 468: 463: 461: 457: 452: 450: 446: 443: 439: 435: 431: 427: 423: 418: 416: 412: 408: 404: 400: 396: 386: 384: 380: 376: 372: 368: 364: 360: 356: 352: 348: 344: 340: 336: 332: 328: 324: 320: 316: 312: 308: 304: 300: 296: 292: 288: 284: 280: 276: 272: 268: 264: 260: 256: 252: 248: 244: 240: 236: 232: 228: 227:concretizable 224: 219: 217: 213: 209: 208:homomorphisms 204: 202: 198: 194: 190: 182: 178: 174: 170: 167: 164: 161: 160: 159: 157: 153: 149: 139: 137: 133: 129: 125: 121: 117: 113: 109: 105: 101: 97: 93: 89: 88:homomorphisms 85: 81: 77: 73: 69: 64: 62: 61:concretizable 58: 54: 50: 46: 43:, and of its 42: 38: 34: 30: 26: 22: 1672: 1667: 1659: 1642: 1614: 1601: 1587: 1583: 1581: 1576: 1570: 1564: 1561: 1557: 1553: 1549: 1545: 1541: 1537: 1533: 1529: 1525: 1522:topos theory 1519: 1509: 1494: 1490: 1486: 1482: 1478: 1476: 1471: 1467: 1463: 1456: 1452: 1444: 1440: 1436: 1432: 1428: 1421: 1417: 1415: 1397: 1393: 1389: 1374: 1372: 1361: 1357: 1346: 1339: 1332: 1317: 1310: 1306: 1302: 1298: 1294: 1234: 1230: 1226: 1222: 1218: 1211: 1207: 1203: 1199: 1195: 1191: 1187: 1183: 1176: 1172: 1165: 1161: 1157: 1153: 1149: 1145: 1141: 1137: 1133: 1129: 1125: 1121: 1117: 1110: 1106: 1102: 1098: 1094: 1090: 1086: 1078: 1074: 1066: 878: 874: 860: 809: 805: 742: 738: 734: 730: 726: 722: 718: 714: 710: 700: 696: 692: 684: 678: 653: 551: 546: 542: 538: 534: 530: 526: 522: 518: 514: 510: 506: 502: 498: 494: 490: 486: 482: 478: 474: 470: 466: 464: 459: 455: 453: 448: 444: 440:denotes the 437: 433: 429: 425: 421: 419: 414: 410: 406: 402: 398: 392: 378: 370: 366: 362: 358: 354: 350: 346: 342: 338: 334: 330: 326: 322: 318: 314: 310: 306: 302: 298: 294: 290: 286: 282: 278: 274: 270: 262: 258: 254: 250: 246: 242: 238: 234: 230: 226: 222: 220: 215: 211: 207: 205: 200: 196: 188: 187:The functor 186: 176: 172: 168: 162: 158:) such that 155: 151: 147: 145: 135: 131: 127: 123: 119: 115: 111: 107: 103: 99: 95: 91: 87: 83: 79: 75: 71: 65: 60: 24: 18: 1402:Peter Freyd 986:defined by 221:A category 150:is a pair ( 21:mathematics 1634:References 1506:equivalent 1449:subfunctor 1156:) for all 652:Any group 142:Definition 1588:construct 1502:signature 1447:. Then a 1351:unit ball 1253:∈ 1246:∐ 1073:. Hence 1031:∈ 1024:∃ 1021:∣ 1015:∈ 994:ρ 964:→ 948:ρ 925:× 919:⊆ 871:relations 832:↪ 786:≤ 774:∈ 721:whenever 664:∗ 578:× 477:, then ( 45:morphisms 41:structure 1685:Category 1613:(1999), 1544:) where 1493:), with 1424:) and a 1338: : 1225: : 1164:; hence 733: : 436:) where 395:property 267:codomain 171: : 51:and the 29:category 1615:Algebra 1540:,  1459:and a 1420:,  537:,  529:,  521:,  513:,  489:,  485:) and ( 481:,  432:,  409:,  389:Remarks 241::  72:objects 59:is not 35:to the 1650:  1621:  1431:, let 265:whose 1594:Notes 1573:sorts 1569:with 1499:large 1198:then 708:poset 687:as a 533:) β†’ ( 517:) β†’ ( 68:class 27:is a 1648:ISBN 1619:ISBN 1394:hTop 1376:hTop 1327:and 867:sets 681:-set 469:and 325:) β†’ 82:and 23:, a 1670:. 1584:Set 1577:Set 1526:Set 1508:to 1470:an 1451:of 1441:Set 1398:Set 1396:to 1390:any 1358:Cat 1347:Set 1340:Ban 1323:of 1318:Ban 1311:Set 1303:Set 1231:Set 1227:Set 1217:If 1212:Set 1208:Set 1196:Set 1177:Set 1173:Set 1166:Set 1152:), 1140:to 1122:Rel 1118:Set 1111:Sup 1109:in 1107:Rel 1103:Sup 1099:Set 1095:Sup 1091:Rel 1081:of 1079:Sup 1075:Rel 862:Rel 745:to 739:Set 725:≀ 697:Set 543:Top 507:Set 503:Top 495:Top 449:Set 445:Set 430:Set 426:Set 403:Set 345:of 317:): 305:of 289:of 269:is 257:of 247:Set 225:is 177:Set 134:to 126:to 118:to 110:to 70:of 19:In 1687:: 1609:; 1590:. 1579:. 1560:a 1556:β†’ 1512:. 1474:. 1466:β†’ 1439:β†’ 1345:β†’ 1309:β†’ 1301:β†’ 1229:β†’ 1210:β†’ 1206:β†’ 1194:β†’ 1175:β†’ 1160:∈ 1132:β†’ 1128:: 1097:β†’ 1093:β†’ 808:β†’ 737:β†’ 717:β†’ 695:β†’ 643:. 549:. 505:β†’ 451:. 447:β†’ 417:. 361:β†’ 357:: 355:gf 341:β†’ 337:: 301:β†’ 297:: 281:β†’ 277:: 245:β†’ 175:β†’ 146:A 138:. 1571:N 1565:X 1558:X 1554:C 1550:U 1546:C 1542:U 1538:C 1530:X 1510:C 1495:N 1491:U 1489:, 1487:C 1483:N 1479:N 1468:U 1464:U 1453:U 1437:C 1433:U 1429:N 1422:U 1418:C 1362:C 1353:. 1343:1 1336:1 1333:U 1321:1 1313:. 1307:C 1299:C 1297:: 1295:Y 1278:) 1275:c 1272:( 1269:X 1264:C 1260:b 1257:o 1250:c 1235:X 1223:P 1219:C 1214:. 1204:C 1200:C 1192:C 1188:U 1184:C 1179:. 1162:X 1158:x 1154:x 1150:x 1148:( 1146:f 1142:X 1138:Y 1134:Y 1130:X 1126:f 1113:. 1087:U 1067:R 1049:} 1046:y 1043:R 1040:x 1037:: 1034:A 1028:x 1018:Y 1012:y 1009:{ 1006:= 1003:) 1000:A 997:( 972:Y 968:2 959:X 955:2 951:: 928:Y 922:X 916:R 894:X 890:2 879:X 875:U 856:. 844:) 841:y 838:( 835:D 829:) 826:x 823:( 820:D 810:y 806:x 792:} 789:x 783:a 780:: 777:P 771:a 768:{ 765:= 762:) 759:x 756:( 753:D 743:x 735:P 731:D 727:y 723:x 719:y 715:x 711:P 701:G 693:G 685:G 679:G 654:G 630:Z 626:4 622:/ 617:Z 595:Z 591:2 587:/ 582:Z 574:Z 570:2 566:/ 561:Z 547:X 539:T 535:X 531:T 527:X 523:S 519:X 515:S 511:X 499:X 491:T 487:X 483:S 479:X 475:X 471:T 467:S 460:U 456:U 438:I 434:I 422:C 415:C 411:U 407:C 399:C 379:U 371:c 369:( 367:U 363:c 359:a 351:b 349:( 347:U 343:b 339:a 335:f 331:c 329:( 327:U 323:b 321:( 319:U 315:g 313:( 311:U 307:C 303:c 299:b 295:g 291:C 287:a 283:b 279:a 275:f 271:b 263:C 259:C 255:b 251:U 243:C 239:U 235:U 233:, 231:C 223:C 216:U 212:U 201:C 197:C 189:U 183:. 173:C 169:U 163:C 156:U 154:, 152:C 136:C 132:A 128:C 124:B 120:B 116:A 112:A 108:A 104:A 100:A 96:B 92:A 84:B 80:A

Index

mathematics
category
faithful functor
category of sets
structure
morphisms
category of topological spaces
category of groups
homotopy category of topological spaces
class
faithful functor
forgetful functor
codomain
Further examples
Counter-examples
property
identity functor
G-set
group of permutations
poset
Rel
sets
relations
complete lattices
supremum-preserving maps
complete lattices
contravariant powerset functor
Yoneda embedding
Banach spaces
linear contractions

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑