Knowledge

Thermodynamic system

Source đź“ť

1740:, by which bodies pass from one equilibrium state to another by transfer of matter and energy between them. The term 'thermodynamic system' is used to refer to bodies of matter and energy in the special context of thermodynamics. The possible equilibria between bodies are determined by the physical properties of the walls that separate the bodies. Equilibrium thermodynamics in general does not measure time. Equilibrium thermodynamics is a relatively simple and well settled subject. One reason for this is the existence of a well defined physical quantity called 'the entropy of a body'. 3465:, who investigated a system of chemically reacting substances. In this case the internal variables appear to be measures of incompleteness of chemical reactions, that is measures of how much the considered system with chemical reactions is out of equilibrium. The theory can be generalized, to consider any deviations from the equilibrium state, such as structure of the system, gradients of temperature, difference of concentrations of substances and so on, to say nothing of degrees of completeness of all chemical reactions, to be internal variables. 1748:. It is characterized by presence of flows of matter and energy. For this topic, very often the bodies considered have smooth spatial inhomogeneities, so that spatial gradients, for example a temperature gradient, are well enough defined. Thus the description of non-equilibrium thermodynamic systems is a field theory, more complicated than the theory of equilibrium thermodynamics. Non-equilibrium thermodynamics is a growing subject, not an established edifice. Example theories and modeling approaches include the 3077: 117: 1687: 94: 33: 2033: 1985: 1960: 1950: 1902: 2112:. The properties of the walls determine what transfers can occur. A wall that allows transfer of a quantity is said to be permeable to it, and a thermodynamic system is classified by the permeabilities of its several walls. A transfer between system and surroundings can arise by contact, such as conduction of heat, or by long-range forces such as an electric field in the surroundings. 2068: 2058: 2048: 2023: 2013: 1995: 1975: 1940: 1922: 1912: 1830:, each step in the process must be reversible. For a step in a process to be reversible, the system must be in equilibrium throughout the step. That ideal cannot be accomplished in practice because no step can be taken without perturbing the system from equilibrium, but the ideal can be approached by making changes slowly. 3000:
Isolated systems are not equivalent to closed systems. Closed systems cannot exchange matter with the surroundings, but can exchange energy. Isolated systems can exchange neither matter nor energy with their surroundings, and as such are only theoretical and do not exist in reality (except, possibly,
2914:
Truly isolated physical systems do not exist in reality (except perhaps for the universe as a whole), because, for example, there is always gravity between a system with mass and masses elsewhere. However, real systems may behave nearly as an isolated system for finite (possibly very long) times. The
1789:
If there is a temperature difference inside the thermodynamic system, for example in a rod, one end of which is warmer than the other, then thermal energy transfer processes occur in it, in which the temperature of the colder part rises and the warmer part decreases. As a result, after some time, the
1743:
Non-equilibrium thermodynamics, as a subject in physics, considers bodies of matter and energy that are not in states of internal thermodynamic equilibrium, but are usually participating in processes of transfer that are slow enough to allow description in terms of quantities that are closely related
2083:
A wall can be fixed (e.g. a constant volume reactor) or moveable (e.g. a piston). For example, in a reciprocating engine, a fixed wall means the piston is locked at its position; then, a constant volume process may occur. In that same engine, a piston may be unlocked and allowed to move in and out.
2906:
An isolated system is more restrictive than a closed system as it does not interact with its surroundings in any way. Mass and energy remains constant within the system, and no energy or mass transfer takes place across the boundary. As time passes in an isolated system, internal differences in the
2079:
A system is enclosed by walls that bound it and connect it to its surroundings. Often a wall restricts passage across it by some form of matter or energy, making the connection indirect. Sometimes a wall is no more than an imaginary two-dimensional closed surface through which the connection to the
1838:
is a consequence of this fundamental postulate. In reality, practically nothing in nature is in strict thermodynamic equilibrium, but the postulate of thermodynamic equilibrium often provides very useful idealizations or approximations, both theoretically and experimentally; experiments can provide
1798:
If the process of converting one type of energy into another takes place inside a thermodynamic system, for example, in chemical reactions, in electric or pneumatic motors, when one solid body rubs against another, then the processes of energy release or absorption will occur, and the thermodynamic
2211:
In a closed system, no mass may be transferred in or out of the system boundaries. The system always contains the same amount of matter, but (sensible) heat and (boundary) work can be exchanged across the boundary of the system. Whether a system can exchange heat, work, or both is dependent on the
1756:
Another kind of thermodynamic system is considered in most engineering. It takes part in a flow process. The account is in terms that approximate, well enough in practice in many cases, equilibrium thermodynamical concepts. This is mostly beyond the scope of the present article, and is set out in
1842:
In equilibrium thermodynamics the state variables do not include fluxes because in a state of thermodynamic equilibrium all fluxes have zero values by definition. Equilibrium thermodynamic processes may involve fluxes but these must have ceased by the time a thermodynamic process or operation is
3031:
A thermodynamic operation can render impermeable to matter all system walls other than the contact equilibrium wall for that substance. This allows the definition of an intensive state variable, with respect to a reference state of the surroundings, for that substance. The intensive variable is
59:
Thermodynamic systems can be passive and active according to internal processes. According to internal processes, passive systems and active systems are distinguished: passive, in which there is a redistribution of available energy, active, in which one type of energy is converted into another.
1752:
for complex fluids, viscoelasticity, and soft materials. In general, it is not possible to find an exactly defined entropy for non-equilibrium problems. For many non-equilibrium thermodynamical problems, an approximately defined quantity called 'time rate of entropy production' is very useful.
2638:, there may be all sorts of molecules being generated and destroyed by the reaction process. In this case, the fact that the system is closed is expressed by stating that the total number of each elemental atom is conserved, no matter what kind of molecule it may be a part of. Mathematically: 3023:
A wall selectively permeable only to a pure substance can put the system in diffusive contact with a reservoir of that pure substance in the surroundings. Then a process is possible in which that pure substance is transferred between system and surroundings. Also, across that wall a contact
2992:
The second law of thermodynamics for isolated systems states that the entropy of an isolated system not in equilibrium tends to increase over time, approaching maximum value at equilibrium. Overall, in an isolated system, the internal energy is constant and the entropy can never decrease. A
1772:
Theoretical studies of thermodynamic processes in the period from the first theory of heat engines (Saadi Carnot, France, 1824) to the theory of dissipative structures (Ilya Prigozhin, Belgium, 1971) mainly concerned the patterns of interaction of thermodynamic systems with the environment.
1833:
The very existence of thermodynamic equilibrium, defining states of thermodynamic systems, is the essential, characteristic, and most fundamental postulate of thermodynamics, though it is only rarely cited as a numbered law. According to Bailyn, the commonly rehearsed statement of the
3063:
For a contact equilibrium across a wall permeable to a substance, the chemical potentials of the substance must be same on either side of the wall. This is part of the nature of thermodynamic equilibrium, and may be regarded as related to the zeroth law of thermodynamics.
3839: 3107:
In an open system, there is an exchange of energy and matter between the system and the surroundings. The presence of reactants in an open beaker is an example of an open system. Here the boundary is an imaginary surface enclosing the beaker and reactants. It is named
75:. An isolated system does not exchange matter or energy with its surroundings. A closed system may exchange heat, experience forces, and exert forces, but does not exchange matter. An open system can interact with its surroundings by exchanging both matter and energy. 3310: 2099:
The system is delimited by walls or boundaries, either actual or notional, across which conserved (such as matter and energy) or unconserved (such as entropy) quantities can pass into and out of the system. The space outside the thermodynamic system is known as the
3116:, if there is no exchange of heat and substances. The open system cannot exist in the equilibrium state. To describe deviation of the thermodynamic system from equilibrium, in addition to constitutive variables that was described above, a set of internal variables 1807:
In isolated systems it is consistently observed that as time goes on internal rearrangements diminish and stable conditions are approached. Pressures and temperatures tend to equalize, and matter arranges itself into one or a few relatively homogeneous
3695: 1776:
At the same time, thermodynamic systems were mainly classified as isolated, closed and open, with corresponding properties in various thermodynamic states, for example, in states close to equilibrium, nonequilibrium and strongly nonequilibrium.
2237:
of a particular reaction. Electrical energy travels across the boundary to produce a spark between the electrodes and initiates combustion. Heat transfer occurs across the boundary after combustion but no mass transfer takes place either way.
3015:
An open system has one or several walls that allow transfer of matter. To account for the internal energy of the open system, this requires energy transfer terms in addition to those for heat and work. It also leads to the idea of the
2138:
Anything that passes across the boundary and effects a change in the contents of the system must be accounted for in an appropriate balance equation. The volume can be the region surrounding a single atom resonating energy, such as
2134:
allow transfer both of matter and of energy. This scheme of definition of terms is not uniformly used, though it is convenient for some purposes. In particular, some writers use 'closed system' where 'isolated system' is here used.
1816:. The thermodynamic properties of a system in equilibrium are unchanging in time. Equilibrium system states are much easier to describe in a deterministic manner than non-equilibrium states. In some cases, when analyzing a 1780:
In 2010, Boris Dobroborsky (Israel, Russia) proposed a classification of thermodynamic systems according to internal processes consisting in energy redistribution (passive systems) and energy conversion (active systems).
2119:. This is an idealized conception, because in practice some transfer is always possible, for example by gravitational forces. It is an axiom of thermodynamics that an isolated system eventually reaches internal 3420: 4784:
Dobroborsky B.S. Machine safety and the human factor / Edited by Doctor of Technical Sciences, prof. S.A. Volkov. — St. Petersburg: SPbGASU, 2011. — pp. 33–35. — 114 p. — ISBN 978-5-9227-0276-8. (Ru)
2629: 3718: 1406: 2907:
system tend to even out and pressures and temperatures tend to equalize, as do density differences. A system in which all equalizing processes have gone practically to completion is in a state of
2718: 3174: 2389: 4514: 3160: 3028:, the pure substance reservoir can be dealt with as a closed system. Its internal energy and its entropy can be determined as functions of its temperature, pressure, and mole number. 2480: 4614:
Pokrovskii V.N. (2013) A derivation of the main relations of non-equilibrium thermodynamics. Hindawi Publishing Corporation: ISRN Thermodynamics, vol. 2013, article ID 906136, 9 p.
2523: 3598: 3004:'Closed system' is often used in thermodynamics discussions when 'isolated system' would be correct – i.e. there is an assumption that energy does not enter or leave the system. 2955: 1843:
complete bringing a system to its eventual thermodynamic state. Non-equilibrium thermodynamics allows its state variables to include non-zero fluxes, which describe transfers of
3919: 3885: 1736:
Equilibrium thermodynamics, as a subject in physics, considers macroscopic bodies of matter and energy in states of internal thermodynamic equilibrium. It uses the concept of
3946: 2417: 3452: 2277: 1241: 1186: 1131: 938: 891: 806: 759: 671: 624: 2870: 4032: 4005: 3012:
For a thermodynamic process, the precise physical properties of the walls and surroundings of the system are important, because they determine the possible processes.
842: 710: 3970: 3588: 3550: 2798: 1076: 2748: 575: 3512: 3489: 2890: 2838: 2818: 2768: 2566: 2546: 2437: 2340: 2320: 2300: 914: 867: 782: 735: 647: 600: 2634:
For a simple system, with only one type of particle (atom or molecule), a closed system amounts to a constant number of particles. For systems undergoing a
4522: 1716: 4877: 1417: 4465: 3166:
of the system, is their trending to disappear; the local law of disappearing can be written as relaxation equation for each internal variable
1305: 3891:. The sum of the last terms in the equations presents the total energy coming into the system with the stream of particles of substances 539: 3162:
have been introduced. The equilibrium state is considered to be stable and the main property of the internal variables, as measures of
3331: 4544: 4123: 1395: 4651:
Zotin, Alexei; Pokrovskii, Vladimir (2018). "The growth and development of living organisms from the thermodynamic point of view".
17: 2578: 5039: 1428: 3834:{\displaystyle T\,dS=\Delta Q-\sum _{j}\,\Xi _{j}\,\Delta \xi _{j}+\sum _{\alpha =1}^{k}\,\eta _{\alpha }\,\Delta N_{\alpha }.} 2892:
in the system, which remains constant, since the system is closed. There is one such equation for each element in the system.
4815: 4449: 1729:
Thermodynamic equilibrium is characterized not only by the absence of any flow of mass or energy, but by “the absence of any
998: 3305:{\displaystyle {\frac {d\xi _{i}}{dt}}=-{\frac {1}{\tau _{i}}}\,\left(\xi _{i}-\xi _{i}^{(0)}\right),\quad i=1,\,2,\ldots ,} 1709: 1296: 965: 532: 410: 2644: 2185:. Depending on the type of system, it may interact with the system by exchanging mass, energy (including heat and work), 1827: 348: 4037:
This approach to the open system allows describing the growth and development of living objects in thermodynamic terms.
4870: 2569: 1480: 1454: 975: 429: 2348: 5105: 4846: 4748: 4726: 4229: 2920: 381: 5194: 1533: 1004: 403: 2130:
allow transfer of energy as heat and as work, but not of matter, between it and its surroundings. The walls of an
5143: 1702: 2096:. Actual physical materials that provide walls with such idealized properties are not always readily available. 5184: 5179: 3458: 3119: 1633: 165: 82:, which can be specified by the values of a set of thermodynamic state variables. A thermodynamic system is in 4757: 4605:
Pokrovskii V.N. (2005) Extended thermodynamics in a discrete-system approach, Eur. J. Phys. vol. 26, 769–781.
2445: 2148: 1528: 5189: 4863: 2491: 1608: 1381: 358: 3690:{\displaystyle dG=\sum _{j}\,\Xi _{j}\,\Delta \xi _{j}+\sum _{\alpha }\,\mu _{\alpha }\,\Delta N_{\alpha },} 1812:. A system in which all processes of change have gone practically to completion is considered in a state of 5090: 3088: 2939: 2223: 1835: 993: 196: 186: 72: 2177:
is the remainder of the universe that lies outside the boundaries of the system. It is also known as the
2229:
One example is fluid being compressed by a piston in a cylinder. Another example of a closed system is a
1820:, one can assume that each intermediate state in the process is at equilibrium. Such a process is called 201: 191: 3894: 3860: 5004: 4894: 2194: 1769:
The classification of thermodynamic systems arose with the development of thermodynamics as a science.
1485: 1449: 161: 4222:
Generalized Thermodynamics. The Thermodynamics of Irreversible Processes and Generalized Hydrodynamics
2947: 2197:. The environment is ignored in the analysis of the system, except in regards to these interactions. 1523: 5158: 2908: 2217: 2120: 1813: 1278: 1026: 472: 285: 275: 83: 3924: 2342:
the work done by the system. For infinitesimal changes the first law for closed systems may stated:
4919: 4762:
Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance
4086: 2397: 4772:. Physical Chemistry: An Advanced Treatise. Vol. 1. New York: Academic Press. pp. 1–97. 3425: 3112:, if borders are impenetrable for substance, but allow transit of energy in the form of heat, and 2247: 1790:
temperature in the rod will equalize – the rod will come to a state of thermodynamic equilibrium.
5138: 5123: 5113: 5069: 3422:
is a relaxation time of a corresponding variable. It is convenient to consider the initial value
3025: 1690: 1518: 1315: 1196: 1141: 1086: 1018: 957: 493: 482: 148: 4491: 920: 873: 788: 741: 653: 606: 4768:
Haase, R. (1971). "Survey of Fundamental Laws". In Eyring, H.; Henderson, D.; Jost, W. (eds.).
2966: 2843: 2206: 2156: 2093: 1623: 1340: 424: 178: 153: 68: 4439: 4010: 3983: 1543: 824: 689: 36:
Properties of isolated, closed, and open thermodynamic systems in exchanging energy and matter
4984: 4944: 4081: 3955: 3555: 3517: 2168: 1817: 1737: 1558: 1135: 448: 294: 143: 2773: 1046: 5128: 4670: 4633: 4335: 2726: 2635: 2230: 1638: 1563: 1553: 353: 4553: 8: 5133: 5034: 4886: 4076: 3888: 2916: 1583: 1345: 367: 333: 328: 241: 4674: 4637: 4245: 1578: 557: 4990: 4686: 4660: 4188: 3977: 3973: 3949: 3497: 3474: 3017: 2962: 2924: 2875: 2823: 2803: 2753: 2551: 2531: 2422: 2325: 2305: 2285: 2234: 1672: 1335: 1330: 1283: 899: 852: 767: 720: 632: 585: 515: 499: 386: 338: 323: 313: 122: 116: 2241:
The first law of thermodynamics for energy transfers for closed system may be stated:
5153: 4975: 4842: 4825: 4811: 4773: 4744: 4722: 4445: 4389: 4225: 4091: 4061: 3469: 2982: 1749: 1667: 1628: 1618: 1190: 988: 816: 318: 308: 250: 87: 78:
The physical condition of a thermodynamic system at a given time is described by its
4690: 1799:
system will always tend to a non-equilibrium state with respect to the environment.
63:
Depending on its interaction with the environment, a thermodynamic system may be an
5095: 4678: 4421: 4046: 1588: 1573: 1513: 1508: 1325: 1320: 970: 438: 303: 3857:
The stationary states of the system exist due to exchange of both thermal energy (
1753:
Non-equilibrium thermodynamics is mostly beyond the scope of the present article.
5118: 4066: 4056: 3163: 2986: 2901: 2190: 2116: 2089: 1538: 1386: 1040: 681: 504: 265: 232: 64: 4682: 5085: 5044: 5029: 5014: 4949: 4939: 4934: 4909: 4736: 4589: 4307: 4071: 3462: 2085: 1809: 1745: 1593: 1363: 463: 343: 280: 270: 138: 108: 53: 2485:
For a quasi-reversible heat transfer, the second law of thermodynamics reads:
90:
apparent flows of matter or energy within it or between it and other systems.
5173: 5148: 5064: 5019: 4980: 4954: 4924: 4417: 4051: 2127: 1662: 980: 549: 510: 222: 5054: 5049: 5024: 4970: 4929: 2997:
system's entropy can decrease e.g. when heat is extracted from the system.
2144: 1758: 1613: 1598: 1548: 1031: 4615: 4437: 1568: 376: 3076: 5059: 4855: 4342:, (1st edition 1949) 5th edition 1967, North-Holland, Amsterdam, p. 14. 2970: 2928: 2140: 1657: 1603: 4355:, translated by E.S. Halberstadt, Wiley–Interscience, London, pp. 6–7. 4494:. The Department of Physics and Astronomy of Georgia State University 2943: 2151:
defined in 1824. It could also be just one nuclide (i.e. a system of
255: 52:
separate from its surroundings that can be studied using the laws of
49: 3024:
equilibrium with respect to that substance is possible. By suitable
4665: 4241: 2974: 2186: 1371: 1288: 1080: 488: 260: 93: 3049:. The corresponding extensive variable can be the number of moles 32: 4777: 4340:
Thermodynamics. An Advanced Treatment for Chemists and Physicists
3492: 2935: 1852: 477: 4546:
Material and Energy Balances for Engineers and Environmentalists
3415:{\displaystyle \tau _{i}=\tau _{i}(T,x_{1},x_{2},\ldots ,x_{n})} 2173:
The system is the part of the universe being studied, while the
4129: 4104: 2978: 2959: 2572:, used to compute changes in internal energy, is expressed as: 2152: 1856: 1848: 45: 4630:
Thermodynamics of Complex Systems: Principles and applications
2919:
approximating many real-world situations. It is an acceptable
2233:, a type of constant-volume calorimeter used in measuring the 2115:
A system with walls that prevent all transfers is said to be
2624:{\displaystyle \mathrm {d} U=T\mathrm {d} S-P\mathrm {d} V.} 4839:
Fundamentals of Equilibrium and Steady-State Thermodynamics
4441:
Thermodynamics of Spontaneous and Non-Spontaneous Processes
1844: 453: 4515:"Open, Closed and Isolated Systems in Physical Chemistry" 4253: 2951: 4788:
Halliday, David; Resnick, Robert; Walker, Jearl (2008).
4594:
Introduction to Thermodynamics of Irreversible Processes
4317: 4277: 4571: 4519:
Foundations of Quantum Mechanics and Physical Chemistry
3032:
called the chemical potential; for component substance
2216:
Adiabatic boundary – not allowing any heat exchange: A
2143:
defined in 1900; it can be a body of steam or air in a
4741:
Thermodynamics and an Introduction to Thermostatistics
4438:
I.M.Kolesnikov; V.A.Vinokurov; S.I.Kolesnikov (2001).
4787: 4653:
Physica A: Statistical Mechanics and Its Applications
4370: 4358: 4289: 4013: 3986: 3958: 3927: 3897: 3863: 3721: 3601: 3558: 3520: 3500: 3477: 3428: 3334: 3177: 3122: 2878: 2846: 2826: 2806: 2776: 2756: 2729: 2647: 2581: 2554: 2534: 2494: 2448: 2425: 2400: 2351: 2328: 2308: 2288: 2250: 1199: 1144: 1089: 1049: 923: 902: 876: 855: 827: 791: 770: 744: 723: 692: 656: 635: 609: 588: 560: 4399: 4189:
Time and irreversibility in axiomatic thermodynamics
4141: 2915:
concept of an isolated system can serve as a useful
2713:{\displaystyle \sum _{j=1}^{m}a_{ij}N_{j}=b_{i}^{0}} 2568:
the entropy of the system. With these relations the
4552:. Imperial College Press. p. 7. Archived from 4202: 4165: 4153: 4124:
Introduction to Chemical Engineering Thermodynamics
4265: 4126:, Fifth Edition (1996), .p.34, italics in original 4026: 3999: 3972:.The middle terms in equations (2) and (3) depict 3964: 3940: 3913: 3879: 3833: 3689: 3582: 3544: 3506: 3483: 3446: 3414: 3304: 3154: 2884: 2864: 2832: 2812: 2792: 2762: 2742: 2712: 2623: 2560: 2540: 2517: 2474: 2431: 2411: 2383: 2334: 2314: 2294: 2271: 2222:Rigid boundary – not allowing exchange of work: A 1839:scenarios of practical thermodynamic equilibrium. 1235: 1180: 1125: 1070: 932: 908: 885: 861: 836: 800: 776: 753: 729: 704: 665: 641: 618: 594: 569: 4721:. New York: American Institute of Physics Press. 2958:could be specified, treating the walls simply as 27:Body of matter in a state of internal equilibrium 5171: 2384:{\displaystyle \mathrm {d} U=\delta Q-\delta W.} 4650: 4428:, Addison-Wesley Publishing, Reading MA, p. 43. 3921:that can be positive or negative; the quantity 3007: 4797:Moran, Michael J.; Shapiro, Howard N. (2008). 4707: 4521:. McGill University (Montreal). Archived from 3980:) due to the relaxation of internal variables 3459:thermodynamics of open non-equilibrium systems 2977:in actual walls is considered, along with the 2950:, which assumed that a system (for example, a 2123:, when its state no longer changes with time. 4871: 1710: 4796: 4596:. 3rd edition, Wiley Interscience, New York. 2394:If the work is due to a volume expansion by 4512: 2954:) was isolated. That is all the mechanical 2934:In the attempt to justify the postulate of 2302:denotes the internal energy of the system, 4878: 4864: 4799:Fundamentals of Engineering Thermodynamics 4627: 4396:, fourth edition, Wiley, Hoboken NJ, p. 4. 4314:, Longmans, Green & Co, London, p. 66. 3060:of the component substance in the system. 2548:denotes the thermodynamic temperature and 1717: 1703: 115: 4710:Thermodynamics with Chemical Applications 4664: 4224:, Kluwer Academic Publishers, Dordrecht, 3814: 3803: 3765: 3754: 3725: 3670: 3659: 3632: 3621: 3289: 3228: 3155:{\displaystyle \xi _{1},\xi _{2},\ldots } 1802: 4885: 4836: 4444:. Nova science Publishers. p. 136. 4376: 4295: 4122:J.M. Smith, H.C. Van Ness, M.M. Abbott. 2475:{\displaystyle \delta W=P\mathrm {d} V.} 1757:other articles, for example the article 92: 31: 5040:Homogeneous charge compression ignition 4805: 4250:, Oxford University Press, London, p.44 4147: 4135: 4110: 2518:{\displaystyle \delta Q=T\mathrm {d} S} 1733:toward change on a macroscopic scale.” 14: 5172: 4810:(3rd ed.). Taylor & Francis. 4735: 4716: 4708:Abbott, M.M.; van Hess, H. G. (1989). 4616:https://dx.doi.org/10.1155/2013/906136 4577: 4405: 4283: 4247:Natural Philosophy of Cause and Chance 4208: 4159: 2872:the total number of atoms of element 2207:Closed system § In thermodynamics 4859: 4824: 4767: 4364: 4323: 4271: 4259: 4171: 4806:Rex, Andrew; Finn, C. B. P. (2017). 3712: 3592: 3168: 3071: 4187:, Brown, H.R., Valente, G. (2015). 24: 4472:. University of California - Davis 4015: 3914:{\displaystyle \Delta N_{\alpha }} 3898: 3880:{\displaystyle \Delta Q_{\alpha }} 3864: 3815: 3766: 3756: 3735: 3671: 3633: 3623: 2981:effect of the ambient, background 2895: 2611: 2597: 2583: 2570:fundamental thermodynamic relation 2508: 2462: 2402: 2353: 2251: 1784: 924: 877: 792: 745: 657: 610: 430:Intensive and extensive properties 25: 5206: 4743:(2nd ed.). New York: Wiley. 3457:The specific contribution to the 1793: 3075: 2200: 2084:Ideally, a wall may be declared 2066: 2056: 2046: 2031: 2021: 2011: 1993: 1983: 1973: 1958: 1948: 1938: 1920: 1910: 1900: 1686: 1685: 1005:Table of thermodynamic equations 227: 4644: 4632:. IOP Publishing, Bristol, UK. 4621: 4608: 4599: 4583: 4537: 4506: 4484: 4466:"A System and Its Surroundings" 4458: 4431: 4411: 4382: 4345: 4329: 4301: 4235: 3276: 2800:the number of atoms of element 2162: 1481:Maxwell's thermodynamic surface 4764:(in French). Paris: Bachelier. 4214: 4177: 4116: 3941:{\displaystyle \mu _{\alpha }} 3409: 3358: 3263: 3257: 3067: 1866: 1215: 1203: 1160: 1148: 1105: 1093: 1065: 1053: 13: 1: 4628:Pokrovskii, Vladimir (2020). 4392:, Bawendi, M.G. (1955/2005). 4097: 2412:{\displaystyle \mathrm {d} V} 2092:, impermeable, permeable, or 1868:Types of transfers permitted 1746:thermodynamic state variables 1382:Mechanical equivalent of heat 4712:(2nd ed.). McGraw Hill. 3447:{\displaystyle \xi _{i}^{0}} 3008:Selective transfer of matter 2985:, Boltzmann's assumption of 2940:second law of thermodynamics 2272:{\displaystyle \Delta U=Q-W} 2224:mechanically isolated system 2065: 2055: 2045: 2030: 2020: 2010: 1992: 1982: 1972: 1957: 1947: 1937: 1919: 1909: 1899: 1836:zeroth law of thermodynamics 994:Onsager reciprocal relations 7: 4945:Stirling (pseudo/adiabatic) 4683:10.1016/j.physa.2018.08.094 4040: 4034:are thermodynamic forces. 3847: 3703: 3318: 1486:Entropy as energy dispersal 1297:"Perpetual motion" machines 1236:{\displaystyle G(T,p)=H-TS} 1181:{\displaystyle A(T,V)=U-TS} 1126:{\displaystyle H(S,p)=U+pV} 100: 10: 5211: 4830:Generalized Thermodynamics 4719:A Survey of Thermodynamics 4701: 4426:Elements of Thermodynamics 2899: 2322:heat added to the system, 2212:property of its boundary. 2204: 2195:other conserved properties 2166: 1764: 933:{\displaystyle \partial T} 886:{\displaystyle \partial V} 801:{\displaystyle \partial p} 754:{\displaystyle \partial V} 666:{\displaystyle \partial T} 619:{\displaystyle \partial S} 5104: 5078: 5003: 4963: 4904: 4893: 4310:, Defay, R. (1950/1954). 2965:. This inevitably led to 2909:thermodynamic equilibrium 2865:{\displaystyle b_{i}^{0}} 2218:thermally isolated system 2121:thermodynamic equilibrium 1878: 1814:thermodynamic equilibrium 1407:An Inquiry Concerning the 84:thermodynamic equilibrium 4837:Tschoegl, N. W. (2000). 4353:Classical Thermodynamics 4087:Two-state quantum system 4027:{\displaystyle \Xi _{j}} 4000:{\displaystyle \xi _{j}} 3026:thermodynamic operations 2080:surroundings is direct. 1932:permeable to energy but 1862: 1420:Heterogeneous Substances 837:{\displaystyle \alpha =} 705:{\displaystyle \beta =-} 18:Boundary (thermodynamic) 5195:Thermodynamic processes 4841:. Amsterdam: Elsevier. 4790:Fundamentals of Physics 4312:Chemical Thermodynamics 3965:{\displaystyle \alpha } 3583:{\displaystyle p=const} 3545:{\displaystyle T=const} 1738:thermodynamic processes 4808:Finn's Thermal Physics 4801:(6th ed.). Wiley. 4792:(8th ed.). Wiley. 4028: 4001: 3966: 3942: 3915: 3881: 3835: 3802: 3691: 3584: 3546: 3508: 3485: 3448: 3416: 3306: 3156: 3038:it is usually denoted 3001:the entire universe). 2886: 2866: 2834: 2814: 2794: 2793:{\displaystyle a_{ij}} 2764: 2750:denotes the number of 2744: 2714: 2668: 2625: 2562: 2542: 2519: 2476: 2433: 2413: 2385: 2336: 2316: 2296: 2273: 2157:quantum thermodynamics 2007:impermeable to matter 1934:impermeable to matter 1859:and its surroundings. 1803:Systems in equilibrium 1237: 1182: 1127: 1072: 1071:{\displaystyle U(S,V)} 934: 910: 887: 863: 838: 802: 778: 755: 731: 706: 667: 643: 620: 596: 571: 550:Specific heat capacity 154:Quantum thermodynamics 97: 37: 5185:Equilibrium chemistry 5180:Thermodynamic systems 4082:Thermodynamic process 4029: 4002: 3967: 3943: 3916: 3882: 3836: 3782: 3692: 3585: 3547: 3509: 3486: 3449: 3417: 3307: 3157: 2923:used in constructing 2887: 2867: 2835: 2815: 2795: 2765: 2745: 2743:{\displaystyle N_{j}} 2715: 2648: 2626: 2563: 2543: 2520: 2477: 2434: 2414: 2386: 2337: 2317: 2297: 2274: 2169:Environment (systems) 2155:) as hypothesized in 1818:thermodynamic process 1418:On the Equilibrium of 1238: 1183: 1136:Helmholtz free energy 1128: 1073: 935: 911: 888: 864: 839: 803: 779: 756: 732: 707: 668: 644: 621: 597: 572: 96: 35: 5190:Thermodynamic cycles 5129:Regenerative cooling 5007:combustion / thermal 4906:Without phase change 4897:combustion / thermal 4887:Thermodynamic cycles 4351:MĂĽnster, A. (1970). 4138:, p. 1–2. 4113:, p. 1–4. 4011: 3984: 3956: 3925: 3895: 3861: 3719: 3599: 3556: 3518: 3498: 3475: 3426: 3332: 3175: 3120: 2876: 2844: 2824: 2804: 2774: 2754: 2727: 2645: 2579: 2552: 2532: 2492: 2446: 2423: 2398: 2349: 2326: 2306: 2286: 2248: 1897:permeable to matter 1826:For a process to be 1431:Motive Power of Fire 1197: 1142: 1087: 1047: 999:Bridgman's equations 976:Fundamental relation 921: 900: 874: 853: 825: 789: 768: 742: 721: 690: 654: 633: 607: 586: 558: 42:thermodynamic system 4717:Bailyn, M. (1994). 4675:2018PhyA..512..359Z 4638:2020tcsp.book.....P 4262:, p. 109, 112. 4148:Rex & Finn 2017 4136:Rex & Finn 2017 4111:Rex & Finn 2017 4077:Thermodynamic cycle 3889:stream of particles 3590:are determined as 3468:The increments of 3443: 3267: 2967:Loschmidt's paradox 2963:boundary conditions 2927:of certain natural 2925:mathematical models 2861: 2709: 1872: 1869: 1409:Source ... Friction 1341:Loschmidt's paradox 533:Material properties 411:Conjugate variables 4592:(1955/1961/1967). 4394:Physical Chemistry 4326:, p. 112–113. 4024: 3997: 3978:entropy production 3974:energy dissipation 3962: 3950:chemical potential 3938: 3911: 3877: 3831: 3753: 3687: 3658: 3620: 3580: 3542: 3504: 3481: 3444: 3429: 3412: 3302: 3247: 3152: 3087:. You can help by 3018:chemical potential 2989:can be justified. 2969:. However, if the 2956:degrees of freedom 2882: 2862: 2847: 2830: 2810: 2790: 2770:-type molecules, 2760: 2740: 2710: 2695: 2621: 2558: 2538: 2515: 2472: 2429: 2409: 2381: 2332: 2312: 2292: 2269: 2235:heat of combustion 1870: 1867: 1673:Order and disorder 1429:Reflections on the 1336:Heat death paradox 1233: 1178: 1123: 1068: 930: 906: 883: 859: 834: 798: 774: 751: 727: 702: 663: 639: 616: 592: 570:{\displaystyle c=} 567: 540:Property databases 516:Reduced properties 500:Chemical potential 464:Functions of state 387:Thermal efficiency 123:Carnot heat engine 98: 86:when there are no 38: 5167: 5166: 5144:Vapor-compression 5070:Staged combustion 4999: 4998: 4964:With phase change 4817:978-1-498-71887-5 4559:on 15 August 2009 4513:Bryan Sanctuary. 4451:978-1-56072-904-4 4286:, p. 15, 17. 4220:Eu, B.C. (2002). 4092:GENERIC formalism 4062:Mechanical system 3855: 3854: 3744: 3711: 3710: 3649: 3611: 3507:{\displaystyle S} 3484:{\displaystyle G} 3470:Gibbs free energy 3326: 3325: 3226: 3203: 3105: 3104: 2983:thermal radiation 2885:{\displaystyle i} 2833:{\displaystyle j} 2813:{\displaystyle i} 2763:{\displaystyle j} 2636:chemical reaction 2561:{\displaystyle S} 2541:{\displaystyle T} 2432:{\displaystyle P} 2335:{\displaystyle W} 2315:{\displaystyle Q} 2295:{\displaystyle U} 2077: 2076: 1879:type of transfer 1871:by types of wall 1750:GENERIC formalism 1727: 1726: 1668:Self-organization 1493: 1492: 1191:Gibbs free energy 989:Maxwell relations 947: 946: 943: 942: 909:{\displaystyle V} 862:{\displaystyle 1} 817:Thermal expansion 811: 810: 777:{\displaystyle V} 730:{\displaystyle 1} 676: 675: 642:{\displaystyle N} 595:{\displaystyle T} 523: 522: 439:Process functions 425:Property diagrams 404:System properties 394: 393: 359:Endoreversibility 251:Equation of state 16:(Redirected from 5202: 5139:Vapor absorption 4902: 4901: 4880: 4873: 4866: 4857: 4856: 4852: 4833: 4821: 4802: 4793: 4781: 4754: 4732: 4713: 4695: 4694: 4668: 4648: 4642: 4641: 4625: 4619: 4612: 4606: 4603: 4597: 4587: 4581: 4580:, p. 19–23. 4575: 4569: 4568: 4566: 4564: 4558: 4551: 4541: 4535: 4534: 4532: 4530: 4510: 4504: 4503: 4501: 4499: 4488: 4482: 4481: 4479: 4477: 4462: 4456: 4455: 4435: 4429: 4415: 4409: 4403: 4397: 4386: 4380: 4374: 4368: 4362: 4356: 4349: 4343: 4336:Guggenheim, E.A. 4333: 4327: 4321: 4315: 4305: 4299: 4293: 4287: 4281: 4275: 4269: 4263: 4257: 4251: 4239: 4233: 4218: 4212: 4206: 4200: 4186: 4181: 4175: 4169: 4163: 4157: 4151: 4145: 4139: 4133: 4127: 4120: 4114: 4108: 4047:Dynamical system 4033: 4031: 4030: 4025: 4023: 4022: 4006: 4004: 4003: 3998: 3996: 3995: 3971: 3969: 3968: 3963: 3947: 3945: 3944: 3939: 3937: 3936: 3920: 3918: 3917: 3912: 3910: 3909: 3886: 3884: 3883: 3878: 3876: 3875: 3849: 3840: 3838: 3837: 3832: 3827: 3826: 3813: 3812: 3801: 3796: 3778: 3777: 3764: 3763: 3752: 3713: 3705: 3696: 3694: 3693: 3688: 3683: 3682: 3669: 3668: 3657: 3645: 3644: 3631: 3630: 3619: 3593: 3589: 3587: 3586: 3581: 3551: 3549: 3548: 3543: 3513: 3511: 3510: 3505: 3490: 3488: 3487: 3482: 3453: 3451: 3450: 3445: 3442: 3437: 3421: 3419: 3418: 3413: 3408: 3407: 3389: 3388: 3376: 3375: 3357: 3356: 3344: 3343: 3320: 3311: 3309: 3308: 3303: 3272: 3268: 3266: 3255: 3243: 3242: 3227: 3225: 3224: 3212: 3204: 3202: 3194: 3193: 3192: 3179: 3169: 3161: 3159: 3158: 3153: 3145: 3144: 3132: 3131: 3100: 3097: 3079: 3072: 3059: 3048: 3037: 2973:behavior of the 2938:increase in the 2891: 2889: 2888: 2883: 2871: 2869: 2868: 2863: 2860: 2855: 2839: 2837: 2836: 2831: 2819: 2817: 2816: 2811: 2799: 2797: 2796: 2791: 2789: 2788: 2769: 2767: 2766: 2761: 2749: 2747: 2746: 2741: 2739: 2738: 2719: 2717: 2716: 2711: 2708: 2703: 2691: 2690: 2681: 2680: 2667: 2662: 2630: 2628: 2627: 2622: 2614: 2600: 2586: 2567: 2565: 2564: 2559: 2547: 2545: 2544: 2539: 2524: 2522: 2521: 2516: 2511: 2481: 2479: 2478: 2473: 2465: 2438: 2436: 2435: 2430: 2418: 2416: 2415: 2410: 2405: 2390: 2388: 2387: 2382: 2356: 2341: 2339: 2338: 2333: 2321: 2319: 2318: 2313: 2301: 2299: 2298: 2293: 2278: 2276: 2275: 2270: 2231:bomb calorimeter 2073: 2070: 2069: 2063: 2060: 2059: 2053: 2050: 2049: 2038: 2035: 2034: 2028: 2025: 2024: 2018: 2015: 2014: 2000: 1997: 1996: 1990: 1987: 1986: 1980: 1977: 1976: 1965: 1962: 1961: 1955: 1952: 1951: 1945: 1942: 1941: 1927: 1924: 1923: 1917: 1914: 1913: 1907: 1904: 1903: 1873: 1719: 1712: 1705: 1689: 1688: 1396:Key publications 1377: 1376:("living force") 1326:Brownian ratchet 1321:Entropy and life 1316:Entropy and time 1267: 1266: 1242: 1240: 1239: 1234: 1187: 1185: 1184: 1179: 1132: 1130: 1129: 1124: 1077: 1075: 1074: 1069: 971:Clausius theorem 966:Carnot's theorem 939: 937: 936: 931: 915: 913: 912: 907: 892: 890: 889: 884: 868: 866: 865: 860: 847: 846: 843: 841: 840: 835: 807: 805: 804: 799: 783: 781: 780: 775: 760: 758: 757: 752: 736: 734: 733: 728: 715: 714: 711: 709: 708: 703: 672: 670: 669: 664: 648: 646: 645: 640: 625: 623: 622: 617: 601: 599: 598: 593: 580: 579: 576: 574: 573: 568: 546: 545: 419: 418: 238: 237: 119: 105: 104: 21: 5210: 5209: 5205: 5204: 5203: 5201: 5200: 5199: 5170: 5169: 5168: 5163: 5100: 5074: 5006: 4995: 4985:Organic Rankine 4959: 4913: 4910:hot air engines 4907: 4896: 4889: 4884: 4849: 4818: 4751: 4729: 4704: 4699: 4698: 4649: 4645: 4626: 4622: 4613: 4609: 4604: 4600: 4588: 4584: 4576: 4572: 4562: 4560: 4556: 4549: 4543: 4542: 4538: 4528: 4526: 4511: 4507: 4497: 4495: 4490: 4489: 4485: 4475: 4473: 4464: 4463: 4459: 4452: 4436: 4432: 4416: 4412: 4404: 4400: 4387: 4383: 4375: 4371: 4367:, p. 1–97. 4363: 4359: 4350: 4346: 4334: 4330: 4322: 4318: 4306: 4302: 4294: 4290: 4282: 4278: 4270: 4266: 4258: 4254: 4240: 4236: 4219: 4215: 4207: 4203: 4184: 4182: 4178: 4170: 4166: 4158: 4154: 4146: 4142: 4134: 4130: 4121: 4117: 4109: 4105: 4100: 4067:Physical system 4057:Isolated system 4043: 4018: 4014: 4012: 4009: 4008: 3991: 3987: 3985: 3982: 3981: 3957: 3954: 3953: 3932: 3928: 3926: 3923: 3922: 3905: 3901: 3896: 3893: 3892: 3871: 3867: 3862: 3859: 3858: 3822: 3818: 3808: 3804: 3797: 3786: 3773: 3769: 3759: 3755: 3748: 3720: 3717: 3716: 3678: 3674: 3664: 3660: 3653: 3640: 3636: 3626: 3622: 3615: 3600: 3597: 3596: 3557: 3554: 3553: 3519: 3516: 3515: 3499: 3496: 3495: 3476: 3473: 3472: 3454:equal to zero. 3438: 3433: 3427: 3424: 3423: 3403: 3399: 3384: 3380: 3371: 3367: 3352: 3348: 3339: 3335: 3333: 3330: 3329: 3256: 3251: 3238: 3234: 3233: 3229: 3220: 3216: 3211: 3195: 3188: 3184: 3180: 3178: 3176: 3173: 3172: 3164:non-equilibrium 3140: 3136: 3127: 3123: 3121: 3118: 3117: 3101: 3095: 3092: 3085:needs expansion 3070: 3058: 3050: 3047: 3039: 3033: 3010: 2987:molecular chaos 2904: 2902:Isolated system 2898: 2896:Isolated system 2877: 2874: 2873: 2856: 2851: 2845: 2842: 2841: 2825: 2822: 2821: 2805: 2802: 2801: 2781: 2777: 2775: 2772: 2771: 2755: 2752: 2751: 2734: 2730: 2728: 2725: 2724: 2704: 2699: 2686: 2682: 2673: 2669: 2663: 2652: 2646: 2643: 2642: 2610: 2596: 2582: 2580: 2577: 2576: 2553: 2550: 2549: 2533: 2530: 2529: 2507: 2493: 2490: 2489: 2461: 2447: 2444: 2443: 2424: 2421: 2420: 2401: 2399: 2396: 2395: 2352: 2350: 2347: 2346: 2327: 2324: 2323: 2307: 2304: 2303: 2287: 2284: 2283: 2249: 2246: 2245: 2209: 2203: 2191:electric charge 2171: 2165: 2126:The walls of a 2071: 2067: 2061: 2057: 2051: 2047: 2036: 2032: 2026: 2022: 2016: 2012: 1998: 1994: 1988: 1984: 1978: 1974: 1963: 1959: 1953: 1949: 1943: 1939: 1925: 1921: 1915: 1911: 1905: 1901: 1865: 1805: 1796: 1787: 1785:Passive systems 1767: 1723: 1678: 1677: 1653: 1645: 1644: 1643: 1503: 1495: 1494: 1473: 1459: 1434: 1430: 1423: 1419: 1412: 1408: 1375: 1368: 1350: 1331:Maxwell's demon 1293: 1264: 1263: 1247: 1246: 1245: 1198: 1195: 1194: 1193: 1143: 1140: 1139: 1138: 1088: 1085: 1084: 1083: 1048: 1045: 1044: 1043: 1041:Internal energy 1036: 1021: 1011: 1010: 985: 960: 950: 949: 948: 922: 919: 918: 901: 898: 897: 875: 872: 871: 854: 851: 850: 826: 823: 822: 790: 787: 786: 769: 766: 765: 743: 740: 739: 722: 719: 718: 691: 688: 687: 682:Compressibility 655: 652: 651: 634: 631: 630: 608: 605: 604: 587: 584: 583: 559: 556: 555: 535: 525: 524: 505:Particle number 458: 417: 406: 396: 395: 354:Irreversibility 266:State of matter 233:Isolated system 218: 208: 207: 206: 181: 171: 170: 166:Non-equilibrium 158: 133: 125: 103: 88:macroscopically 65:isolated system 28: 23: 22: 15: 12: 11: 5: 5208: 5198: 5197: 5192: 5187: 5182: 5165: 5164: 5162: 5161: 5156: 5151: 5146: 5141: 5136: 5131: 5126: 5121: 5116: 5110: 5108: 5102: 5101: 5099: 5098: 5093: 5088: 5082: 5080: 5076: 5075: 5073: 5072: 5067: 5062: 5057: 5052: 5047: 5042: 5037: 5032: 5027: 5022: 5017: 5011: 5009: 5001: 5000: 4997: 4996: 4994: 4993: 4988: 4978: 4973: 4967: 4965: 4961: 4960: 4958: 4957: 4952: 4947: 4942: 4937: 4932: 4927: 4922: 4916: 4914: 4905: 4899: 4891: 4890: 4883: 4882: 4875: 4868: 4860: 4854: 4853: 4847: 4834: 4822: 4816: 4803: 4794: 4785: 4782: 4770:Thermodynamics 4765: 4755: 4749: 4733: 4727: 4714: 4703: 4700: 4697: 4696: 4643: 4620: 4607: 4598: 4582: 4570: 4536: 4525:on 30 May 2012 4505: 4492:"Hyperphysics" 4483: 4457: 4450: 4430: 4410: 4398: 4388:Silbey, R.J., 4381: 4369: 4357: 4344: 4328: 4316: 4300: 4288: 4276: 4264: 4252: 4234: 4213: 4201: 4176: 4174:, p. 119. 4164: 4152: 4140: 4128: 4115: 4102: 4101: 4099: 4096: 4095: 4094: 4089: 4084: 4079: 4074: 4072:Quantum system 4069: 4064: 4059: 4054: 4049: 4042: 4039: 4021: 4017: 3994: 3990: 3961: 3935: 3931: 3908: 3904: 3900: 3874: 3870: 3866: 3853: 3852: 3843: 3841: 3830: 3825: 3821: 3817: 3811: 3807: 3800: 3795: 3792: 3789: 3785: 3781: 3776: 3772: 3768: 3762: 3758: 3751: 3747: 3743: 3740: 3737: 3734: 3731: 3728: 3724: 3709: 3708: 3699: 3697: 3686: 3681: 3677: 3673: 3667: 3663: 3656: 3652: 3648: 3643: 3639: 3635: 3629: 3625: 3618: 3614: 3610: 3607: 3604: 3579: 3576: 3573: 3570: 3567: 3564: 3561: 3541: 3538: 3535: 3532: 3529: 3526: 3523: 3503: 3480: 3463:Ilya Prigogine 3441: 3436: 3432: 3411: 3406: 3402: 3398: 3395: 3392: 3387: 3383: 3379: 3374: 3370: 3366: 3363: 3360: 3355: 3351: 3347: 3342: 3338: 3324: 3323: 3314: 3312: 3301: 3298: 3295: 3292: 3288: 3285: 3282: 3279: 3275: 3271: 3265: 3262: 3259: 3254: 3250: 3246: 3241: 3237: 3232: 3223: 3219: 3215: 3210: 3207: 3201: 3198: 3191: 3187: 3183: 3151: 3148: 3143: 3139: 3135: 3130: 3126: 3103: 3102: 3096:September 2016 3082: 3080: 3069: 3066: 3054: 3043: 3009: 3006: 2942:, Boltzmann's 2900:Main article: 2897: 2894: 2881: 2859: 2854: 2850: 2829: 2809: 2787: 2784: 2780: 2759: 2737: 2733: 2721: 2720: 2707: 2702: 2698: 2694: 2689: 2685: 2679: 2676: 2672: 2666: 2661: 2658: 2655: 2651: 2632: 2631: 2620: 2617: 2613: 2609: 2606: 2603: 2599: 2595: 2592: 2589: 2585: 2557: 2537: 2526: 2525: 2514: 2510: 2506: 2503: 2500: 2497: 2483: 2482: 2471: 2468: 2464: 2460: 2457: 2454: 2451: 2428: 2419:at a pressure 2408: 2404: 2392: 2391: 2380: 2377: 2374: 2371: 2368: 2365: 2362: 2359: 2355: 2331: 2311: 2291: 2280: 2279: 2268: 2265: 2262: 2259: 2256: 2253: 2227: 2226: 2220: 2205:Main article: 2202: 2199: 2164: 2161: 2094:semi-permeable 2075: 2074: 2064: 2054: 2044: 2040: 2039: 2029: 2019: 2009: 2002: 2001: 1991: 1981: 1971: 1967: 1966: 1956: 1946: 1936: 1929: 1928: 1918: 1908: 1898: 1894: 1893: 1890: 1887: 1884: 1881: 1880: 1877: 1864: 1861: 1804: 1801: 1795: 1794:Active systems 1792: 1786: 1783: 1766: 1763: 1725: 1724: 1722: 1721: 1714: 1707: 1699: 1696: 1695: 1694: 1693: 1680: 1679: 1676: 1675: 1670: 1665: 1660: 1654: 1651: 1650: 1647: 1646: 1642: 1641: 1636: 1631: 1626: 1621: 1616: 1611: 1606: 1601: 1596: 1591: 1586: 1581: 1576: 1571: 1566: 1561: 1556: 1551: 1546: 1541: 1536: 1531: 1526: 1521: 1516: 1511: 1505: 1504: 1501: 1500: 1497: 1496: 1491: 1490: 1489: 1488: 1483: 1475: 1474: 1472: 1471: 1468: 1464: 1461: 1460: 1458: 1457: 1452: 1450:Thermodynamics 1446: 1443: 1442: 1438: 1437: 1436: 1435: 1426: 1424: 1415: 1413: 1404: 1399: 1398: 1392: 1391: 1390: 1389: 1384: 1379: 1367: 1366: 1364:Caloric theory 1360: 1357: 1356: 1352: 1351: 1349: 1348: 1343: 1338: 1333: 1328: 1323: 1318: 1312: 1309: 1308: 1302: 1301: 1300: 1299: 1292: 1291: 1286: 1281: 1275: 1272: 1271: 1265: 1262: 1261: 1258: 1254: 1253: 1252: 1249: 1248: 1244: 1243: 1232: 1229: 1226: 1223: 1220: 1217: 1214: 1211: 1208: 1205: 1202: 1188: 1177: 1174: 1171: 1168: 1165: 1162: 1159: 1156: 1153: 1150: 1147: 1133: 1122: 1119: 1116: 1113: 1110: 1107: 1104: 1101: 1098: 1095: 1092: 1078: 1067: 1064: 1061: 1058: 1055: 1052: 1037: 1035: 1034: 1029: 1023: 1022: 1017: 1016: 1013: 1012: 1009: 1008: 1001: 996: 991: 984: 983: 978: 973: 968: 962: 961: 956: 955: 952: 951: 945: 944: 941: 940: 929: 926: 916: 905: 894: 893: 882: 879: 869: 858: 844: 833: 830: 820: 813: 812: 809: 808: 797: 794: 784: 773: 762: 761: 750: 747: 737: 726: 712: 701: 698: 695: 685: 678: 677: 674: 673: 662: 659: 649: 638: 627: 626: 615: 612: 602: 591: 577: 566: 563: 553: 544: 543: 542: 536: 531: 530: 527: 526: 521: 520: 519: 518: 513: 508: 497: 486: 467: 466: 460: 459: 457: 456: 451: 445: 442: 441: 435: 434: 433: 432: 427: 408: 407: 402: 401: 398: 397: 392: 391: 390: 389: 384: 379: 371: 370: 364: 363: 362: 361: 356: 351: 346: 344:Free expansion 341: 336: 331: 326: 321: 316: 311: 306: 298: 297: 291: 290: 289: 288: 283: 281:Control volume 278: 273: 271:Phase (matter) 268: 263: 258: 253: 245: 244: 236: 235: 230: 225: 219: 214: 213: 210: 209: 205: 204: 199: 194: 189: 183: 182: 177: 176: 173: 172: 169: 168: 157: 156: 151: 146: 141: 135: 134: 131: 130: 127: 126: 121:The classical 120: 112: 111: 109:Thermodynamics 102: 99: 54:thermodynamics 26: 9: 6: 4: 3: 2: 5207: 5196: 5193: 5191: 5188: 5186: 5183: 5181: 5178: 5177: 5175: 5160: 5157: 5155: 5152: 5150: 5147: 5145: 5142: 5140: 5137: 5135: 5134:Transcritical 5132: 5130: 5127: 5125: 5122: 5120: 5117: 5115: 5114:Hampson–Linde 5112: 5111: 5109: 5107: 5106:Refrigeration 5103: 5097: 5094: 5092: 5089: 5087: 5084: 5083: 5081: 5077: 5071: 5068: 5066: 5063: 5061: 5058: 5056: 5053: 5051: 5048: 5046: 5043: 5041: 5038: 5036: 5035:Gas-generator 5033: 5031: 5028: 5026: 5023: 5021: 5020:Brayton/Joule 5018: 5016: 5013: 5012: 5010: 5008: 5002: 4992: 4989: 4986: 4982: 4979: 4977: 4974: 4972: 4969: 4968: 4966: 4962: 4956: 4953: 4951: 4948: 4946: 4943: 4941: 4938: 4936: 4933: 4931: 4928: 4926: 4925:Brayton/Joule 4923: 4921: 4918: 4917: 4915: 4911: 4903: 4900: 4898: 4892: 4888: 4881: 4876: 4874: 4869: 4867: 4862: 4861: 4858: 4850: 4848:0-444-50426-5 4844: 4840: 4835: 4831: 4827: 4826:Tisza, LászlĂł 4823: 4819: 4813: 4809: 4804: 4800: 4795: 4791: 4786: 4783: 4779: 4775: 4771: 4766: 4763: 4759: 4756: 4752: 4750:0-471-86256-8 4746: 4742: 4738: 4737:Callen, H. B. 4734: 4730: 4728:0-88318-797-3 4724: 4720: 4715: 4711: 4706: 4705: 4692: 4688: 4684: 4680: 4676: 4672: 4667: 4662: 4658: 4654: 4647: 4639: 4635: 4631: 4624: 4617: 4611: 4602: 4595: 4591: 4590:Prigogine, I. 4586: 4579: 4574: 4555: 4548: 4547: 4540: 4524: 4520: 4516: 4509: 4493: 4487: 4471: 4467: 4461: 4453: 4447: 4443: 4442: 4434: 4427: 4423: 4422:Wergeland, H. 4419: 4414: 4408:, p. 17. 4407: 4402: 4395: 4391: 4390:Alberty, R.A. 4385: 4378: 4377:Tschoegl 2000 4373: 4366: 4361: 4354: 4348: 4341: 4338:(1949/1967). 4337: 4332: 4325: 4320: 4313: 4309: 4308:Prigogine, I. 4304: 4297: 4296:Tschoegl 2000 4292: 4285: 4280: 4273: 4268: 4261: 4256: 4249: 4248: 4243: 4238: 4231: 4230:1-4020-0788-4 4227: 4223: 4217: 4211:, p. 22. 4210: 4205: 4199:(7): 628–634. 4198: 4194: 4190: 4183:Marsland, R. 4180: 4173: 4168: 4162:, p. 20. 4161: 4156: 4150:, p. 20. 4149: 4144: 4137: 4132: 4125: 4119: 4112: 4107: 4103: 4093: 4090: 4088: 4085: 4083: 4080: 4078: 4075: 4073: 4070: 4068: 4065: 4063: 4060: 4058: 4055: 4053: 4052:Energy system 4050: 4048: 4045: 4044: 4038: 4035: 4019: 3992: 3988: 3979: 3975: 3959: 3952:of substance 3951: 3933: 3929: 3906: 3902: 3890: 3872: 3868: 3851: 3844: 3842: 3828: 3823: 3819: 3809: 3805: 3798: 3793: 3790: 3787: 3783: 3779: 3774: 3770: 3760: 3749: 3745: 3741: 3738: 3732: 3729: 3726: 3722: 3715: 3714: 3707: 3700: 3698: 3684: 3679: 3675: 3665: 3661: 3654: 3650: 3646: 3641: 3637: 3627: 3616: 3612: 3608: 3605: 3602: 3595: 3594: 3591: 3577: 3574: 3571: 3568: 3565: 3562: 3559: 3539: 3536: 3533: 3530: 3527: 3524: 3521: 3501: 3494: 3478: 3471: 3466: 3464: 3460: 3455: 3439: 3434: 3430: 3404: 3400: 3396: 3393: 3390: 3385: 3381: 3377: 3372: 3368: 3364: 3361: 3353: 3349: 3345: 3340: 3336: 3322: 3315: 3313: 3299: 3296: 3293: 3290: 3286: 3283: 3280: 3277: 3273: 3269: 3260: 3252: 3248: 3244: 3239: 3235: 3230: 3221: 3217: 3213: 3208: 3205: 3199: 3196: 3189: 3185: 3181: 3171: 3170: 3167: 3165: 3149: 3146: 3141: 3137: 3133: 3128: 3124: 3115: 3111: 3099: 3090: 3086: 3083:This section 3081: 3078: 3074: 3073: 3065: 3061: 3057: 3053: 3046: 3042: 3036: 3029: 3027: 3021: 3019: 3013: 3005: 3002: 2998: 2996: 2990: 2988: 2984: 2980: 2976: 2972: 2968: 2964: 2961: 2957: 2953: 2949: 2945: 2941: 2937: 2932: 2930: 2926: 2922: 2918: 2912: 2910: 2903: 2893: 2879: 2857: 2852: 2848: 2827: 2807: 2785: 2782: 2778: 2757: 2735: 2731: 2705: 2700: 2696: 2692: 2687: 2683: 2677: 2674: 2670: 2664: 2659: 2656: 2653: 2649: 2641: 2640: 2639: 2637: 2618: 2615: 2607: 2604: 2601: 2593: 2590: 2587: 2575: 2574: 2573: 2571: 2555: 2535: 2512: 2504: 2501: 2498: 2495: 2488: 2487: 2486: 2469: 2466: 2458: 2455: 2452: 2449: 2442: 2441: 2440: 2426: 2406: 2378: 2375: 2372: 2369: 2366: 2363: 2360: 2357: 2345: 2344: 2343: 2329: 2309: 2289: 2266: 2263: 2260: 2257: 2254: 2244: 2243: 2242: 2239: 2236: 2232: 2225: 2221: 2219: 2215: 2214: 2213: 2208: 2201:Closed system 2198: 2196: 2192: 2188: 2184: 2180: 2176: 2170: 2160: 2158: 2154: 2150: 2146: 2142: 2136: 2133: 2129: 2128:closed system 2124: 2122: 2118: 2113: 2111: 2107: 2103: 2097: 2095: 2091: 2087: 2081: 2042: 2041: 2008: 2005:adynamic and 2004: 2003: 1969: 1968: 1935: 1931: 1930: 1896: 1895: 1891: 1888: 1885: 1883: 1882: 1876:type of wall 1875: 1874: 1860: 1858: 1854: 1850: 1846: 1840: 1837: 1831: 1829: 1824: 1823: 1819: 1815: 1811: 1800: 1791: 1782: 1778: 1774: 1770: 1762: 1760: 1754: 1751: 1747: 1741: 1739: 1734: 1732: 1720: 1715: 1713: 1708: 1706: 1701: 1700: 1698: 1697: 1692: 1684: 1683: 1682: 1681: 1674: 1671: 1669: 1666: 1664: 1663:Self-assembly 1661: 1659: 1656: 1655: 1649: 1648: 1640: 1637: 1635: 1634:van der Waals 1632: 1630: 1627: 1625: 1622: 1620: 1617: 1615: 1612: 1610: 1607: 1605: 1602: 1600: 1597: 1595: 1592: 1590: 1587: 1585: 1582: 1580: 1577: 1575: 1572: 1570: 1567: 1565: 1562: 1560: 1559:von Helmholtz 1557: 1555: 1552: 1550: 1547: 1545: 1542: 1540: 1537: 1535: 1532: 1530: 1527: 1525: 1522: 1520: 1517: 1515: 1512: 1510: 1507: 1506: 1499: 1498: 1487: 1484: 1482: 1479: 1478: 1477: 1476: 1469: 1466: 1465: 1463: 1462: 1456: 1453: 1451: 1448: 1447: 1445: 1444: 1440: 1439: 1433: 1432: 1425: 1422: 1421: 1414: 1411: 1410: 1403: 1402: 1401: 1400: 1397: 1394: 1393: 1388: 1385: 1383: 1380: 1378: 1374: 1370: 1369: 1365: 1362: 1361: 1359: 1358: 1354: 1353: 1347: 1344: 1342: 1339: 1337: 1334: 1332: 1329: 1327: 1324: 1322: 1319: 1317: 1314: 1313: 1311: 1310: 1307: 1304: 1303: 1298: 1295: 1294: 1290: 1287: 1285: 1282: 1280: 1277: 1276: 1274: 1273: 1269: 1268: 1259: 1256: 1255: 1251: 1250: 1230: 1227: 1224: 1221: 1218: 1212: 1209: 1206: 1200: 1192: 1189: 1175: 1172: 1169: 1166: 1163: 1157: 1154: 1151: 1145: 1137: 1134: 1120: 1117: 1114: 1111: 1108: 1102: 1099: 1096: 1090: 1082: 1079: 1062: 1059: 1056: 1050: 1042: 1039: 1038: 1033: 1030: 1028: 1025: 1024: 1020: 1015: 1014: 1007: 1006: 1002: 1000: 997: 995: 992: 990: 987: 986: 982: 981:Ideal gas law 979: 977: 974: 972: 969: 967: 964: 963: 959: 954: 953: 927: 917: 903: 896: 895: 880: 870: 856: 849: 848: 845: 831: 828: 821: 818: 815: 814: 795: 785: 771: 764: 763: 748: 738: 724: 717: 716: 713: 699: 696: 693: 686: 683: 680: 679: 660: 650: 636: 629: 628: 613: 603: 589: 582: 581: 578: 564: 561: 554: 551: 548: 547: 541: 538: 537: 534: 529: 528: 517: 514: 512: 511:Vapor quality 509: 507: 506: 501: 498: 496: 495: 490: 487: 484: 480: 479: 474: 471: 470: 469: 468: 465: 462: 461: 455: 452: 450: 447: 446: 444: 443: 440: 437: 436: 431: 428: 426: 423: 422: 421: 420: 416: 412: 405: 400: 399: 388: 385: 383: 380: 378: 375: 374: 373: 372: 369: 366: 365: 360: 357: 355: 352: 350: 349:Reversibility 347: 345: 342: 340: 337: 335: 332: 330: 327: 325: 322: 320: 317: 315: 312: 310: 307: 305: 302: 301: 300: 299: 296: 293: 292: 287: 284: 282: 279: 277: 274: 272: 269: 267: 264: 262: 259: 257: 254: 252: 249: 248: 247: 246: 243: 240: 239: 234: 231: 229: 226: 224: 223:Closed system 221: 220: 217: 212: 211: 203: 200: 198: 195: 193: 190: 188: 185: 184: 180: 175: 174: 167: 163: 160: 159: 155: 152: 150: 147: 145: 142: 140: 137: 136: 129: 128: 124: 118: 114: 113: 110: 107: 106: 95: 91: 89: 85: 81: 76: 74: 70: 69:closed system 66: 61: 57: 55: 51: 47: 44:is a body of 43: 34: 30: 19: 4991:Regenerative 4920:Bell Coleman 4838: 4832:. MIT Press. 4829: 4807: 4798: 4789: 4769: 4761: 4758:Carnot, Sadi 4740: 4718: 4709: 4656: 4652: 4646: 4629: 4623: 4610: 4601: 4593: 4585: 4573: 4561:. Retrieved 4554:the original 4545: 4539: 4527:. Retrieved 4523:the original 4518: 4508: 4496:. Retrieved 4486: 4474:. Retrieved 4469: 4460: 4440: 4433: 4425: 4418:ter Haar, D. 4413: 4401: 4393: 4384: 4379:, p. 3. 4372: 4360: 4352: 4347: 4339: 4331: 4319: 4311: 4303: 4298:, p. 5. 4291: 4279: 4274:, p. 7. 4267: 4255: 4246: 4237: 4221: 4216: 4204: 4196: 4193:Am. J. Phys. 4192: 4179: 4167: 4155: 4143: 4131: 4118: 4106: 4036: 3856: 3845: 3701: 3467: 3461:was made by 3456: 3327: 3316: 3113: 3109: 3106: 3093: 3089:adding to it 3084: 3062: 3055: 3051: 3044: 3040: 3034: 3030: 3022: 3014: 3011: 3003: 2999: 2994: 2991: 2933: 2921:idealization 2913: 2905: 2820:in molecule 2722: 2633: 2527: 2484: 2393: 2281: 2240: 2228: 2210: 2182: 2178: 2175:surroundings 2174: 2172: 2163:Surroundings 2145:steam engine 2137: 2131: 2125: 2114: 2109: 2105: 2102:surroundings 2101: 2098: 2082: 2078: 2006: 1933: 1841: 1832: 1825: 1822:quasistatic. 1821: 1806: 1797: 1788: 1779: 1775: 1771: 1768: 1759:Flow process 1755: 1742: 1735: 1730: 1728: 1524:CarathĂ©odory 1455:Heat engines 1427: 1416: 1405: 1387:Motive power 1372: 1032:Free entropy 1003: 503: 502: / 492: 491: / 483:introduction 476: 475: / 414: 377:Heat engines 215: 164: / 79: 77: 62: 58: 41: 39: 29: 5159:Ionocaloric 5154:Vuilleumier 4976:Hygroscopic 4659:: 359–366. 4578:Bailyn 1994 4406:Callen 1985 4284:Callen 1985 4209:Bailyn 1994 4160:Bailyn 1994 3068:Open system 2979:randomizing 2179:environment 2149:Sadi Carnot 2132:open system 2110:environment 1346:Synergetics 1027:Free energy 473:Temperature 334:Quasistatic 329:Isenthalpic 286:Instruments 276:Equilibrium 228:Open system 162:Equilibrium 144:Statistical 73:open system 5174:Categories 5124:Pulse tube 5096:Mixed/dual 4666:1808.00108 4365:Haase 1971 4324:Tisza 1966 4272:Haase 1971 4260:Tisza 1966 4172:Tisza 1966 4098:References 2971:stochastic 2167:See also: 2147:, such as 2141:Max Planck 2090:diathermal 2043:isolating 1970:adiabatic 1855:between a 1828:reversible 1658:Nucleation 1502:Scientists 1306:Philosophy 1019:Potentials 382:Heat pumps 339:Polytropic 324:Isentropic 314:Isothermal 5119:Kleemenko 5005:Internal 4778:73-117081 4739:(1985) . 4016:Ξ 3989:ξ 3960:α 3934:α 3930:μ 3907:α 3899:Δ 3873:α 3865:Δ 3824:α 3816:Δ 3810:α 3806:η 3788:α 3784:∑ 3771:ξ 3767:Δ 3757:Ξ 3746:∑ 3742:− 3736:Δ 3680:α 3672:Δ 3666:α 3662:μ 3655:α 3651:∑ 3638:ξ 3634:Δ 3624:Ξ 3613:∑ 3431:ξ 3394:… 3350:τ 3337:τ 3297:… 3249:ξ 3245:− 3236:ξ 3218:τ 3209:− 3186:ξ 3150:… 3138:ξ 3125:ξ 2975:molecules 2948:equations 2944:H-theorem 2929:phenomena 2650:∑ 2605:− 2496:δ 2450:δ 2373:δ 2370:− 2364:δ 2264:− 2252:Δ 2183:reservoir 2108:, or the 2106:reservoir 2086:adiabatic 1639:Waterston 1589:von Mayer 1544:de Donder 1534:Clapeyron 1514:Boltzmann 1509:Bernoulli 1470:Education 1441:Timelines 1225:− 1170:− 958:Equations 925:∂ 878:∂ 829:α 793:∂ 746:∂ 700:− 694:β 658:∂ 611:∂ 319:Adiabatic 309:Isochoric 295:Processes 256:Ideal gas 139:Classical 50:radiation 5086:Combined 5045:Humphrey 5030:Expander 5015:Atkinson 4950:Stoddard 4940:Stirling 4935:Ericsson 4895:External 4828:(1966). 4760:(1824). 4691:53605597 4470:ChemWiki 4424:(1966). 4244:(1949). 4242:Born, M. 4041:See also 4007:, while 3887:) and a 3114:isolated 2187:momentum 2117:isolated 1731:tendency 1691:Category 1629:Thompson 1539:Clausius 1519:Bridgman 1373:Vis viva 1355:Theories 1289:Gas laws 1081:Enthalpy 489:Pressure 304:Isobaric 261:Real gas 149:Chemical 132:Branches 101:Overview 71:, or an 5149:Siemens 5065:Scuderi 4981:Rankine 4702:Sources 4671:Bibcode 4634:Bibcode 3493:entropy 2936:entropy 2840:, and 2181:or the 1886:Matter 1853:entropy 1765:History 1614:Smeaton 1609:Rankine 1599:Onsager 1584:Maxwell 1579:Massieu 1284:Entropy 1279:General 1270:History 1260:Culture 1257:History 481: ( 478:Entropy 415:italics 216:Systems 48:and/or 5055:Miller 5050:Lenoir 5025:Diesel 4971:Kalina 4955:Manson 4930:Carnot 4845:  4814:  4776:  4747:  4725:  4689:  4448:  4228:  3328:where 3110:closed 2995:closed 2960:mirror 2723:where 2528:where 2439:then: 2282:where 2153:quarks 1857:system 1849:energy 1810:phases 1604:Planck 1594:Nernst 1569:Kelvin 1529:Carnot 819:  684:  552:  494:Volume 409:Note: 368:Cycles 197:Second 187:Zeroth 46:matter 5079:Mixed 4687:S2CID 4661:arXiv 4563:9 May 4557:(PDF) 4550:(PDF) 4529:9 May 4498:9 May 4476:9 May 2946:used 2917:model 2193:, or 1892:Heat 1889:Work 1863:Walls 1652:Other 1619:Stahl 1574:Lewis 1564:Joule 1554:Gibbs 1549:Duhem 242:State 202:Third 192:First 80:state 5091:HEHC 5060:Otto 4843:ISBN 4812:ISBN 4774:LCCN 4745:ISBN 4723:ISBN 4565:2012 4531:2012 4500:2012 4478:2012 4446:ISBN 4226:ISBN 3552:and 3491:and 2104:, a 1845:mass 1624:Tait 454:Heat 449:Work 179:Laws 67:, a 4679:doi 4657:512 4185:III 3948:is 3514:at 3091:. 2952:gas 1851:or 1847:or 1744:to 1467:Art 413:in 5176:: 4685:. 4677:. 4669:. 4655:. 4517:. 4468:. 4420:, 4197:83 4195:, 4191:, 3020:. 2931:. 2911:. 2189:, 2159:. 2088:, 1761:. 56:. 40:A 4987:) 4983:( 4912:) 4908:( 4879:e 4872:t 4865:v 4851:. 4820:. 4780:. 4753:. 4731:. 4693:. 4681:: 4673:: 4663:: 4640:. 4636:: 4618:. 4567:. 4533:. 4502:. 4480:. 4454:. 4232:. 4020:j 3993:j 3976:( 3903:N 3869:Q 3850:) 3848:3 3846:( 3829:. 3820:N 3799:k 3794:1 3791:= 3780:+ 3775:j 3761:j 3750:j 3739:Q 3733:= 3730:S 3727:d 3723:T 3706:) 3704:2 3702:( 3685:, 3676:N 3647:+ 3642:j 3628:j 3617:j 3609:= 3606:G 3603:d 3578:t 3575:s 3572:n 3569:o 3566:c 3563:= 3560:p 3540:t 3537:s 3534:n 3531:o 3528:c 3525:= 3522:T 3502:S 3479:G 3440:0 3435:i 3410:) 3405:n 3401:x 3397:, 3391:, 3386:2 3382:x 3378:, 3373:1 3369:x 3365:, 3362:T 3359:( 3354:i 3346:= 3341:i 3321:) 3319:1 3317:( 3300:, 3294:, 3291:2 3287:, 3284:1 3281:= 3278:i 3274:, 3270:) 3264:) 3261:0 3258:( 3253:i 3240:i 3231:( 3222:i 3214:1 3206:= 3200:t 3197:d 3190:i 3182:d 3147:, 3142:2 3134:, 3129:1 3098:) 3094:( 3056:i 3052:N 3045:i 3041:ÎĽ 3035:i 2880:i 2858:0 2853:i 2849:b 2828:j 2808:i 2786:j 2783:i 2779:a 2758:j 2736:j 2732:N 2706:0 2701:i 2697:b 2693:= 2688:j 2684:N 2678:j 2675:i 2671:a 2665:m 2660:1 2657:= 2654:j 2619:. 2616:V 2612:d 2608:P 2602:S 2598:d 2594:T 2591:= 2588:U 2584:d 2556:S 2536:T 2513:S 2509:d 2505:T 2502:= 2499:Q 2470:. 2467:V 2463:d 2459:P 2456:= 2453:W 2427:P 2407:V 2403:d 2379:. 2376:W 2367:Q 2361:= 2358:U 2354:d 2330:W 2310:Q 2290:U 2267:W 2261:Q 2258:= 2255:U 2072:N 2062:N 2052:N 2037:Y 2027:N 2017:N 1999:N 1989:Y 1979:N 1964:Y 1954:Y 1944:N 1926:N 1916:N 1906:Y 1718:e 1711:t 1704:v 1231:S 1228:T 1222:H 1219:= 1216:) 1213:p 1210:, 1207:T 1204:( 1201:G 1176:S 1173:T 1167:U 1164:= 1161:) 1158:V 1155:, 1152:T 1149:( 1146:A 1121:V 1118:p 1115:+ 1112:U 1109:= 1106:) 1103:p 1100:, 1097:S 1094:( 1091:H 1066:) 1063:V 1060:, 1057:S 1054:( 1051:U 928:T 904:V 881:V 857:1 832:= 796:p 772:V 749:V 725:1 697:= 661:T 637:N 614:S 590:T 565:= 562:c 485:) 20:)

Index

Boundary (thermodynamic)

matter
radiation
thermodynamics
isolated system
closed system
open system
thermodynamic equilibrium
macroscopically

Thermodynamics

Carnot heat engine
Classical
Statistical
Chemical
Quantum thermodynamics
Equilibrium
Non-equilibrium
Laws
Zeroth
First
Second
Third
Systems
Closed system
Open system
Isolated system
State

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑