Knowledge

Anaphase lag

Source πŸ“

184:, the resulting cancer cells have the potential to diverge in sequence and gain new traits. This intratumoral heterogeneity creates a tumor mass with different genomic backgrounds as well as unique cellular traits and drug susceptibilities. Several research groups have shown that heterogeneity and genomic instability are heavily correlated with poor patient outcomes and aggressive cancers. Chang-Min Choi et al. examined the survival of individuals with adenocarcinoma of the lung. Those individuals with higher rates of chromosome instability were associated with worse 5-year survival curves. This was similarly observed in a colorectal study by Walther et al. These more aggressive heterogenous tumors also provide unique difficulties for treatment regimens. To support this hypothesis, Duesberg et al. tested drug susceptibility on cell lines with and without aneuploidy. While the diploid cell lines remained drug sensitive, the aneuploid lines showed marked increases in mutation rates, drug resistance, and unintended morphological changes to cell phenotypes. As the importance of 160:. When Aurora B was partially inhibited by a small molecule drug, Cimini et al. observed lagging chromatids at increasing frequency. Similarly, mutations to the gene Stag2 have been associated with increased aneuploidy in cancers. Stag2 encodes a cohesin protein responsible for holding sister chromatids together pre-anaphase. Imaging of cells with Stag2 86:
originating from both spindle poles of the dividing cell. The merotelic attachments can occur in two ways: centrosome spindle attachments from both poles on the same chromatid kinetochore or the formation of a third centrosome whose microtubule spindles attach to a chromatid kinetochore. Because
843:
Choi, Chang-Min; Seo, Kwang Won; Jang, Se Jin; Oh, Yeon-Mok; Shim, Tae-Sun; Kim, Woo Sung; Lee, Dong-Soon; Lee, Sang-Do (2009-04-01). "Chromosomal instability is a risk factor for poor prognosis of adenocarcinoma of the lung: Fluorescence in situ hybridization analysis of paraffin-embedded tissue
103:
has the capacity to persist in the daughter cell but with abnormal replication and maintenance machinery. This allows for the accumulation of mutations, increasing the potential for future miss-segregation events. In total these events cause problematic aneuploid cells with increased genomic
460:
Cosenza, Marco R.; Cazzola, Anna; Rossberg, Annik; Schieber, Nicole L.; Konotop, Gleb; Bausch, Elena; Slynko, Alla; Holland-Letz, Tim; Raab, Marc S.; Dubash, Taronish; Glimm, Hanno; Poppelreuther, Sven; Herold-Mende, Christel; Schwab, Yannick; KrΓ€mer, Alwin (2017-08-22).
139:
The increasing importance of genomic instability on cancer progression has been emphasized in recent years. There are many ways to cause aneuploidy, however the genomic predispositions for these events are less well understood. In regards to the merotelic
116:, referring to the increased frequency in sequence mutation, chromosome rearrangement, and aneuploidy. The instability allows a cancerous growth to increasingly diverge from normal cell growth and division, with the potential to gain new traits such as 188:
in cancer prognosis/treatment continues, identifying the causes and consequences of mechanisms such as anaphase lag will be critical to understanding how cancer develops as well as developing better multi-target therapies.
51:. Whether the cell survives depends on which sister chromatid was lost and the background genomic state of the cell. The passage of abnormal numbers of chromosomes will have unique consequences with regards to 91:, it cannot migrate to the mass of segregated chromatids at either pole. If the migration is significantly delayed the reformation of nuclei will begin to occur without a full complement of chromosomes. This 47:
with unique repercussions. In either case, anaphase lag will cause one daughter cell to receive a complete set of chromosomes while the other lacks one paired set of chromosomes, creating a form of
721:
Solomon, David A.; Kim, Taeyeon; Diaz-Martinez, Laura A.; Fair, Joshlean; Elkahloun, Abdel G.; Harris, Brent T.; Toretsky, Jeffrey A.; Rosenberg, Steven A.; Shukla, Neerav (2011-08-19).
952:
Lee, Alvin J X; Endesfelder, David; Rowan, Andrew J; Walther, Axel; Birkbak, Nicolai J; Futreal, P Andrew; Downward, Julian; Szallasi, Zoltan; Tomlinson, Ian P M (2011-03-01).
515:
Chen, Guangbo; Mulla, Wahid A.; Kucharavy, Andrei; Tsai, Hung-Ji; Rubinstein, Boris; Conkright, Juliana; McCroskey, Scott; Bradford, William D.; Weems, Lauren (2015-02-12).
124: 165: 1011:"Explaining the high mutation rates of cancer cells to drug and multidrug resistance by chromosome reassortments that are catalyzed by aneuploidy" 104:
instability. This has important implications in the development and persistence of cancers as well as debilitating developmental diseases.
206: 415:"Merotelic kinetochore orientation versus chromosome mono-orientation in the origin of lagging chromosomes in human primary cells" 1082: 305:
Gordon, David J.; Resio, Benjamin; Pellman, David (March 2012). "Causes and consequences of aneuploidy in cancer".
786:
McGranahan, Nicholas; Burrell, Rebecca A.; Endesfelder, David; Novelli, Marco R.; Swanton, Charles (2012-06-01).
131:, as such the potential heterogeneity within these cells makes diagnosis and treatment increasingly difficult. 905: 666:"Aurora Kinase Promotes Turnover of Kinetochore Microtubules to Reduce Chromosome Segregation Errors" 231: 356:
Redli, Patrick M.; Gasic, Ivana; Meraldi, Patrick; Nigg, Erich A.; Santamaria, Anna (2016-10-10).
889:"Association between chromosomal instability and prognosis in colorectal cancer: a meta-analysis" 210: 900: 1087: 218: 63:
There are two notable mechanisms that cause Anaphase Lag, each of which are characterized by
144:
attachments associated with anaphase lag, several genes have been implicated. Aurora B is a
1022: 734: 621:
Cimini, Daniela (2008-09-01). "Merotelic kinetochore orientation, aneuploidy, and cancer".
8: 463:"Asymmetric Centriole Numbers at Spindle Poles Cause Chromosome Missegregation in Cancer" 185: 181: 113: 1026: 738: 986: 953: 934: 820: 787: 763: 722: 703: 549: 516: 413:
Cimini, Daniela; Fioravanti, Daniela; Salmon, E. D.; Degrassi, Francesca (2002-02-01).
390: 357: 338: 282: 249: 35:
and the daughter cells will lose some genetic information. It is one of many causes of
1058: 1053: 1040: 1010: 991: 973: 926: 918: 869: 861: 825: 807: 768: 750: 695: 687: 646: 638: 603: 595: 554: 536: 492: 484: 442: 434: 395: 377: 330: 322: 287: 269: 28: 938: 707: 1097: 1092: 1048: 1030: 981: 965: 910: 853: 815: 799: 758: 742: 677: 630: 585: 544: 528: 474: 426: 385: 369: 342: 314: 277: 261: 92: 969: 857: 87:
the chromatid is being pulled in two opposing directions or away from the correct
479: 462: 75:
responsible for chromatid separation. Merotelic attachments occur when a single
634: 1015:
Proceedings of the National Academy of Sciences of the United States of America
664:
Cimini, Daniela; Wan, Xiaohu; Hirel, Christophe B.; Salmon, E.D. (2006-09-05).
590: 573: 532: 358:"The Ska complex promotes Aurora B activity to ensure chromosome biorientation" 152:, and has been shown to function as a checkpoint for the proper attachments of 682: 665: 414: 64: 1076: 1044: 1035: 977: 922: 865: 811: 754: 691: 642: 599: 540: 488: 438: 381: 326: 273: 20: 914: 746: 1062: 995: 930: 873: 829: 772: 699: 650: 607: 558: 496: 446: 399: 334: 291: 169: 157: 117: 100: 96: 83: 72: 68: 803: 430: 373: 265: 141: 79: 55:
and development as well as the progression and heterogeneity of cancers.
95:
formation is also seen for the lone lagging sister chromatid, forming a
788:"Cancer chromosomal instability: therapeutic and diagnostic challenges" 161: 121: 76: 36: 888: 164:
showed increased frequency of lagging anaphase chromatids; subsequent
153: 149: 128: 88: 52: 24: 723:"Mutational Inactivation of STAG2 Causes Aneuploidy in Human Cancer" 318: 785: 48: 32: 954:"Chromosomal Instability Confers Intrinsic Multi-Drug Resistance" 44: 40: 250:"Losing balance: the origin and impact of aneuploidy in cancer" 172:
cell lines reduced the occurrence of this genomic instability.
145: 31:. The chromosome or chromatid does not properly migrate during 459: 412: 27:
do not properly separate from each other because of improper
112:
One of the hallmarks of cancer formation and persistence is
720: 951: 886: 517:"Targeting the Adaptability of Heterogeneous Aneuploids" 887:
Walther, A.; Houlston, R.; Tomlinson, I. (2008-07-01).
623:
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer
1008: 514: 127:. Aneuploidy is a drastic divergence from the normal 1009:
Duesberg, P.; Stindl, R.; Hehlmann, R. (2000-12-19).
355: 663: 572:
Hanahan, Douglas; Weinberg, Robert A. (2011-03-04).
304: 248:Holland, Andrew J; Cleveland, Don W (June 2012). 1074: 247: 571: 842: 574:"Hallmarks of Cancer: The Next Generation" 175: 1052: 1034: 985: 904: 819: 762: 681: 589: 548: 478: 389: 281: 1075: 620: 120:, immune system evasion, and loss of 107: 510: 508: 506: 243: 241: 19:is a consequence of an event during 39:. This event can occur during both 13: 14: 1109: 503: 238: 134: 1002: 945: 880: 836: 779: 714: 657: 614: 565: 453: 406: 349: 298: 199: 1: 970:10.1158/0008-5472.CAN-10-3604 858:10.1016/j.lungcan.2008.07.016 192: 58: 480:10.1016/j.celrep.2017.08.005 7: 635:10.1016/j.bbcan.2008.05.003 362:The Journal of Cell Biology 10: 1114: 591:10.1016/j.cell.2011.02.013 533:10.1016/j.cell.2015.01.026 207:"Human Molecular Genetics" 156:spindles to the chromatid 1083:Chromosomal abnormalities 683:10.1016/j.cub.2006.07.022 1036:10.1073/pnas.97.26.14295 915:10.1136/gut.2007.135004 844:from Korean patients". 747:10.1126/science.1203619 419:Journal of Cell Science 307:Nature Reviews Genetics 176:Prognosis and treatment 226:Cite journal requires 804:10.1038/embor.2012.61 431:10.1242/jcs.115.3.507 374:10.1083/jcb.201603019 266:10.1038/embor.2012.55 1027:2000PNAS...9714295D 1021:(26): 14295–14300. 739:2011Sci...333.1039S 733:(6045): 1039–1043. 186:genomic instability 182:genomic instability 180:Consequent of this 114:genomic instability 108:Hallmark of cancer 676:(17): 1711–1718. 213:on June 29, 2007. 29:spindle formation 1105: 1067: 1066: 1056: 1038: 1006: 1000: 999: 989: 964:(5): 1858–1870. 949: 943: 942: 908: 906:10.1.1.1019.9550 884: 878: 877: 840: 834: 833: 823: 783: 777: 776: 766: 718: 712: 711: 685: 661: 655: 654: 618: 612: 611: 593: 569: 563: 562: 552: 512: 501: 500: 482: 473:(8): 1906–1920. 457: 451: 450: 410: 404: 403: 393: 353: 347: 346: 302: 296: 295: 285: 245: 236: 235: 229: 224: 222: 214: 209:. Archived from 203: 125:checkpoint genes 93:nuclear envelope 1113: 1112: 1108: 1107: 1106: 1104: 1103: 1102: 1073: 1072: 1071: 1070: 1007: 1003: 958:Cancer Research 950: 946: 885: 881: 841: 837: 784: 780: 719: 715: 670:Current Biology 662: 658: 619: 615: 570: 566: 513: 504: 458: 454: 411: 407: 354: 350: 319:10.1038/nrg3123 303: 299: 246: 239: 227: 225: 216: 215: 205: 204: 200: 195: 178: 166:gene correction 148:active in late 137: 110: 67:attachments of 61: 12: 11: 5: 1111: 1101: 1100: 1095: 1090: 1085: 1069: 1068: 1001: 944: 899:(7): 941–950. 879: 835: 798:(6): 528–538. 778: 713: 656: 613: 584:(5): 646–674. 564: 527:(4): 771–784. 502: 452: 425:(3): 507–515. 405: 348: 313:(3): 189–203. 297: 260:(6): 501–514. 237: 228:|journal= 197: 196: 194: 191: 177: 174: 136: 135:Genomic causes 133: 109: 106: 60: 57: 9: 6: 4: 3: 2: 1110: 1099: 1096: 1094: 1091: 1089: 1086: 1084: 1081: 1080: 1078: 1064: 1060: 1055: 1050: 1046: 1042: 1037: 1032: 1028: 1024: 1020: 1016: 1012: 1005: 997: 993: 988: 983: 979: 975: 971: 967: 963: 959: 955: 948: 940: 936: 932: 928: 924: 920: 916: 912: 907: 902: 898: 894: 890: 883: 875: 871: 867: 863: 859: 855: 851: 847: 839: 831: 827: 822: 817: 813: 809: 805: 801: 797: 793: 789: 782: 774: 770: 765: 760: 756: 752: 748: 744: 740: 736: 732: 728: 724: 717: 709: 705: 701: 697: 693: 689: 684: 679: 675: 671: 667: 660: 652: 648: 644: 640: 636: 632: 628: 624: 617: 609: 605: 601: 597: 592: 587: 583: 579: 575: 568: 560: 556: 551: 546: 542: 538: 534: 530: 526: 522: 518: 511: 509: 507: 498: 494: 490: 486: 481: 476: 472: 468: 464: 456: 448: 444: 440: 436: 432: 428: 424: 420: 416: 409: 401: 397: 392: 387: 383: 379: 375: 371: 367: 363: 359: 352: 344: 340: 336: 332: 328: 324: 320: 316: 312: 308: 301: 293: 289: 284: 279: 275: 271: 267: 263: 259: 255: 251: 244: 242: 233: 220: 212: 208: 202: 198: 190: 187: 183: 173: 171: 167: 163: 159: 155: 151: 147: 143: 132: 130: 126: 123: 119: 115: 105: 102: 98: 94: 90: 85: 81: 78: 74: 70: 66: 56: 54: 50: 46: 42: 38: 34: 30: 26: 23:where sister 22: 21:cell division 18: 1088:Cytogenetics 1018: 1014: 1004: 961: 957: 947: 896: 892: 882: 852:(1): 66–70. 849: 845: 838: 795: 792:EMBO Reports 791: 781: 730: 726: 716: 673: 669: 659: 629:(1): 32–40. 626: 622: 616: 581: 577: 567: 524: 520: 470: 467:Cell Reports 466: 455: 422: 418: 408: 368:(1): 77–93. 365: 361: 351: 310: 306: 300: 257: 254:EMBO Reports 253: 219:cite journal 211:the original 201: 179: 170:glioblastoma 158:kinetochores 138: 118:angiogenesis 111: 101:micronucleus 97:micronucleus 84:microtubules 82:attaches to 73:microtubules 69:kinetochores 62: 17:Anaphase lag 16: 15: 846:Lung Cancer 142:kinetochore 80:kinetochore 1077:Categories 193:References 162:knock-outs 122:cell cycle 77:centromere 59:Mechanisms 37:aneuploidy 25:chromatids 1045:0027-8424 978:0008-5472 923:0017-5749 901:CiteSeerX 866:0169-5002 812:1469-3178 755:0036-8075 692:0960-9822 643:0304-419X 600:0092-8674 541:0092-8674 489:2211-1247 439:0021-9533 382:0021-9525 327:1471-0064 274:1469-221X 168:in human 154:centriole 150:metaphase 129:karyotype 89:centriole 65:merotelic 53:mosaicism 1063:11121035 996:21363922 939:26360129 931:18364437 874:18814932 830:22595889 773:21852505 708:18117282 700:16950108 651:18549824 608:21376230 559:25679766 497:28834753 447:11861758 400:27697923 335:22269907 292:22565320 49:monosomy 33:anaphase 1098:Mitosis 1093:Meiosis 1023:Bibcode 987:3059493 821:3367245 764:3374335 735:Bibcode 727:Science 550:4328141 391:5057281 343:4956346 283:3367240 99:. The 71:to the 45:mitosis 41:meiosis 1061:  1051:  1043:  994:  984:  976:  937:  929:  921:  903:  872:  864:  828:  818:  810:  771:  761:  753:  706:  698:  690:  649:  641:  606:  598:  557:  547:  539:  495:  487:  445:  437:  398:  388:  380:  341:  333:  325:  290:  280:  272:  146:kinase 1054:18912 935:S2CID 704:S2CID 339:S2CID 1059:PMID 1041:ISSN 992:PMID 974:ISSN 927:PMID 919:ISSN 870:PMID 862:ISSN 826:PMID 808:ISSN 769:PMID 751:ISSN 696:PMID 688:ISSN 647:PMID 639:ISSN 627:1786 604:PMID 596:ISSN 578:Cell 555:PMID 537:ISSN 521:Cell 493:PMID 485:ISSN 443:PMID 435:ISSN 396:PMID 378:ISSN 331:PMID 323:ISSN 288:PMID 270:ISSN 232:help 43:and 1049:PMC 1031:doi 982:PMC 966:doi 911:doi 893:Gut 854:doi 816:PMC 800:doi 759:PMC 743:doi 731:333 678:doi 631:doi 586:doi 582:144 545:PMC 529:doi 525:160 475:doi 427:doi 423:115 386:PMC 370:doi 366:215 315:doi 278:PMC 262:doi 1079:: 1057:. 1047:. 1039:. 1029:. 1019:97 1017:. 1013:. 990:. 980:. 972:. 962:71 960:. 956:. 933:. 925:. 917:. 909:. 897:57 895:. 891:. 868:. 860:. 850:64 848:. 824:. 814:. 806:. 796:13 794:. 790:. 767:. 757:. 749:. 741:. 729:. 725:. 702:. 694:. 686:. 674:16 672:. 668:. 645:. 637:. 625:. 602:. 594:. 580:. 576:. 553:. 543:. 535:. 523:. 519:. 505:^ 491:. 483:. 471:20 469:. 465:. 441:. 433:. 421:. 417:. 394:. 384:. 376:. 364:. 360:. 337:. 329:. 321:. 311:13 309:. 286:. 276:. 268:. 258:13 256:. 252:. 240:^ 223:: 221:}} 217:{{ 1065:. 1033:: 1025:: 998:. 968:: 941:. 913:: 876:. 856:: 832:. 802:: 775:. 745:: 737:: 710:. 680:: 653:. 633:: 610:. 588:: 561:. 531:: 499:. 477:: 449:. 429:: 402:. 372:: 345:. 317:: 294:. 264:: 234:) 230:(

Index

cell division
chromatids
spindle formation
anaphase
aneuploidy
meiosis
mitosis
monosomy
mosaicism
merotelic
kinetochores
microtubules
centromere
kinetochore
microtubules
centriole
nuclear envelope
micronucleus
micronucleus
genomic instability
angiogenesis
cell cycle
checkpoint genes
karyotype
kinetochore
kinase
metaphase
centriole
kinetochores
knock-outs

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑